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By using the local-density approximation + dynamical mean-field theory approach, we study the low-energy
electronic properties of Sr2RhO4 in a realistic setting, and compare to Sr2RuO4. We investigate the interplay of
spin-orbit coupling, crystal field, and Coulomb interaction, including the tetragonal terms of the Coulomb tensor.
We find that (i) differently than in Sr2RuO4, the zero-frequency effective crystal-field “enhancement” due to
Coulomb repulsion, �εCF(ω = 0), is small and, depending on the parameters, even negative. (ii) In addition, the
effects of (realistic) anisotropic Coulomb terms are weak. (iii) Instead, the effective zero-frequency enhancement
of the spin-orbit interaction doubles the value of the corresponding local-density approximation couplings. This
explains the experimental Fermi surface and supports a previous proposal based on static mean-field calculations.
We find that the sign of the Coulomb-induced spin-orbit anisotropy is influenced by the octahedral rotation.
Based on these conclusions, we examine recent optical conductivity experiments. (iv) We show that the spin-orbit
interaction is key for understanding them; differently than in Sr2RuO4, the t2g intraorbital contributions are small;
thus, the single-band picture does not apply.
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I. INTRODUCTION

Sr2RhO4 is a remarkable example of strongly correlated
metal. It is a layered perovskite with a crystal structure very
similar to that of the unconventional superconductor Sr2RuO4

[1], with which it also shares a similar electronic structure—
having, however, five instead of four electrons in the t2g

shell. Quantum oscillation and angle-resolved photoemission
experiments [2,3] yield relatively large mass enhancements,
with m∗/me ∼ 3, placing the single-layer rhodate in the family
of strongly correlated compounds. Sr2RhO4 was a puzzle right
after it was synthetized because the experimental Fermi sur-
face substantially disagreed with local-density approximation
(LDA) predictions, a very surprising result even for a strongly
correlated material.

The riddle was partially solved, taking into account the
effects of the rotation of corner-sharing octahedra [4,5]; the
structure of Sr2RhO4 is shown in Fig. 1. Still, even after
the actual crystal structure was used in the calculations,
surprisingly, a strong disagreement remained. It was then
shown that including the spin-orbit (SO) interaction brings
the LDA Fermi surface much closer to experimental data [6].
For the last discrepancies, a possible explanation emerged via
LDA+U calculations. It was shown [7] that the Coulomb in-
teraction yields an effective Hartree-Fock enhancement of the
SO coupling; indeed, with optimal choices of U − J , the ex-
perimental and LDA+U Fermi surface can be brought to per-
fect agreement. Good agreement with experiments was later
also obtained in LDA+DMFT (local-density approximation
plus dynamical mean-field theory) calculations [8–10], using
a hybridization-expansion continuous-time quantum Monte
Carlo solver. In one of these works [8], it was suggested that

the LDA+U SO enhancement could be an artefact of the static
mean-field approximation. The question remains unresolved,
however, since, due to the difficulties of the problem, DMFT
calculations had been performed with approximation either
in the t2g Hubbard Hamiltonian and/or the Green’s function
matrix.

Furthermore, recently it was pointed out that approximated
versions of the Coulomb tensor, as the one used, e.g., in the
above-discussed LDA+U work, can lead to a strong overesti-
mate the Hartree-Fock enhancement of the SO coupling [11].
Finally, nonspherical Coulomb terms were found playing a
key role for Sr2RuO4 [11], in particular in determining the size
of the effective zero-frequency crystal-field splitting, and thus
the shape of the Fermi surface, opening the question whether
or not they are also important for the single-layered rhodate.

To further complicate the scenario, recent experiments [12]
suggest that SO effects are responsible for a midinfrared peak
observed in the in-plane conductivity σab(ω). Such a peak,
identified by the name β by the authors, would then corre-
spond to an inter-band transition rather than being the result
of strong-correlation effects, as often assumed in analogous
materials. This led the authors, by analogy, to extend the
conclusion to layered ruthenates, systems which also exhibit a
midinfrared peak similar to β, thus challenging the so-called
resilient quasiparticle picture [13]. Such a scenario, however,
seems at odds with recent LDA+DMFT results for Sr2RuO4

[14]. In the latter, SO effects were found to be stronger
at low, rather than intermediate frequency. Furthermore, in-
traorbital processes were shown to give a large contribu-
tion to the optical conductivity, even in the presence of SO
interaction.
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FIG. 1. The I41/acd layered tetragonal crystal structure of
Sr2RhO4. The figure shows perovskite cells in three subsequent
layers along the c axis and displays the rotation of corner-sharing
RhO6 octahedra [1]. This rotation is absent in Sr2RuO4.

The complex panorama described above calls for revisiting
the problem. In this paper, we do this via the LDA+DMFT
approach, using a general state-of-the art weak-coupling
continuous-time quantum Monte Carlo impurity solver which
allows us to deal with general Coulomb vertices and the
SO interaction without approximations, neither in the one-
electron part of the Hamiltonian nor in the Coulomb tensor.

The paper is organized as follows. In Sec. II we explain
model and method. In Sec. III we present the results. We
show that the many-body crystal-field “enhancement” plays
a small role at the Fermi surface, differently than in the
case of for Sr2RuO4; furthermore, in some case it is even
negative. We show that, in line with LDA+U results, the
SO coupling and its enhancement are key. We emphasize
that, however, for the same Coulomb parameters, LDA+U
calculations overestimate the effect. To single out the effects
of octahedral rotations, we present results for both the ex-
perimental structure of Sr2RhO4 and an idealized structure
with no rotation of octahedra, i.e., the crystal structure of
Sr2RuO4. The associated orbital-resolved spectral functions
are shown in Fig. 2. We show that the interplay of distortions
and SO interaction is key not only at the Fermi surface, but
also for understanding conductivity experiments. We show
that intraorbital processes are small for Sr2RhO4, differently
than for Sr2RuO4. This explains the apparent discrepancy
between theory and experiments. We show that, however, the
SO interaction enhances rather than generates the β peak.
Finally, we discuss mass enhancements and scattering rates.
The conclusions can be found in Sec. IV. In the Appendix,
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FIG. 2. The diagonal elements of the t2g spectral function matrix
for Sr2RhO4 in states/eV/formula-unit. Calculations are for T ∼
290 K and (U, J ) = (2.3, 0.4) eV for both the idealized tetragonal
(TI ) and the experimental tetragonal (TE ) structure. For the latter, the
xy states are almost full.

we give the Coulomb interaction tensor in the total angular
momentum basis, including the terms which do not have the
density-density form, often neglected.

II. MODEL AND METHOD

We use the LDA+DMFT approach [15]. First we calculate
the electronic structure in the LDA via the full-potential
linearized augmented plane-wave method as implemented in
WIEN2K code [16]. Then, via the maximally localized Wan-
nier function method [17,18] and t2g projectors, we construct
localized t2g-like Wannier functions centered at Rh atoms
spanning the t2g bands. Using these Wannier orbitals, we build
the t2g Hubbard Hamiltonian,

H = −
∑
ii′σσ ′

∑
mm′

t ii′
mσ,m′σ ′ c†

imσ ci′m′σ ′

+ 1

2

∑
iσσ ′

∑
mm′ pp′

Umm′ pp′c†
imσ c†

im′σ ′cip′σ ′cipσ − Hdc, (1)

where cimσ (c†
imσ ) annihilates (creates) an electron at lattice

site i with spin σ ∈ {↑,↓} and orbital quantum number m ∈
{xy, yz, xz}. The one-electron terms −t ii′

mm′ yield hopping inte-
grals (i �= i′) and the crystal-field matrix (i = i′). We calculate
the noninteracting Hamiltonian both without (LDA) and with
(LDA+SO) SO interaction. For what concerns the second
case, the on-site part of the SO term takes the form

HSO =
∑

iμ

∑
mσm′σ ′

λμε
iμ
mσm′σ ′c

†
imσ cim′σ ′ ,

where μ = x, y, z, and

ε
iμ
mσm′σ ′ = 〈mσ |si

μl i
μ|m′σ ′〉.

We extract the SO couplings by comparing the LDA
and LDA+SO Hamiltonians. By ordering the basis as
|xy〉↑, |yz〉↑, |xz〉↑, |xy〉↓, |yz〉↓, |xz〉↓, the on-site crystal-field
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matrix can be then expressed as

ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxy 0 0 0 λy

2 − iλx
2

0 εyz
iλz

2 − λy

2 0 0

0 − iλz

2 εxz
iλx
2 0 0

0 − λy

2 − iλx
2 εxy 0 0

λy

2 0 0 0 εyz − iλz

2
iλx
2 0 0 0 iλz

2 εxz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The diagonal terms are εxz, εyz, and εxy, where εxy = (εxz +
εyz )/2 − εCF, and where εCF is the crystal-field splitting in the
absence of SO interaction; the couplings λx and λy are the SO
matrix elements between xy and xz/yz orbitals and λz between
yz and xz orbitals. We consider two structures. The first is
the idealized I4/mmm structure, in which Rh sites have D4h

symmetry, and the second is the actual experimental structure,
space group I41/acd [1]. In the latter, the RhO4 octahedra
rotate and Rh sites have symmetry S4. The SO couplings
are similar in the two structures; the specific values for the
I41/acd structure are λx = λy = λxy = 106 meV and λz =
102 meV. In the idealized structure the crystal-field splitting
is very small, it varies from 0 to 50 meV, depending on the
specific choice of Wannier functions [19]. In the experimental
structure, it is about 108 meV, similar as in Sr2RuO4.

The terms Umm′ p′ p are elements of the screened Coulomb
interaction tensor. In the O(3)-symmetric case, these ele-
ments can be expressed as a function of the Slater inte-
grals F0, F2, and F4. For t2g states, the essential terms [15]
are the direct [Umm′mm′ = Um,m′ = U − 2J (1 − δm,m′ ) and the
exchange (Umm′m′m = J) screened Coulomb interaction, the
pair-hopping (Ummm′m′ = J), and the spin-flip term (Umm′m′m =
J). In these expressions, we used the relations U = F0 +
4
49 (F2 + F4) and J = 1

49 (3F2 + 20
9 F4), as appropriate for t2g

states [15]. Our calculations are performed in the t2g basis. For
comparison, the spherical Coulomb tensor in the total angular
momentum basis is given in the Appendix. For tetragonal site
symmetry, there are additional parameters. In this paper, we
will discuss, in particular, the effect of �U = Uxy,xy − Uxz,xz,
which was found to play a key role for Sr2RuO4 [11]. For the
the double-counting correction, Hdc, we use the around mean-
field approximation, as we have established in Refs. [11,14].

We solve the Hamiltonian Eq. (1) with DMFT using
continuous-time quantum Monte Carlo [20–23], via the gen-
eral implementation of the interaction expansion (CT-INT)
solver presented in Ref. [23] and extended to explicitly in-
clude the SO interaction in Ref. [11]. For Sr2RhO4, cRPA es-
timates yield U ∼ 2 eV and J ∼ 0.2 − 0.3 eV [9,10]. Here we
perform calculations for cRPA values and slightly larger ones;
we do this to account for the fact that cRPA often overesti-
mates screening effects. Indeed, we do find that slightly larger
U and J values yield a better agreement with experimentally
available data.

III. RESULTS

A. Spectral function matrix and Fermi surface

The LDA+DMFT and LDA+SO+DMFT spectral func-
tion matrix is shown in Fig. 2, both for the idealized (in short,
TI ) and the experimental (in short, TE ) tetragonal structure. An

important difference between the two structures can be found
in the orbital occupations, nσ

m. In the TI case, LDA yields
nσ

xy ∼ 0.74 < nσ
xz/yz, while in the TE case we obtain nσ

xy ∼
0.96 > nσ

xz/yz. This means that the LDA orbital polarization,
p = ∑

σ (nσ
xy − (nσ

xz + nσ
yz )/2), is negative for the TI structure

(p ∼ −0.28) and positive for the TE structure (p ∼ 0.38). The
polarization sign flip does not depend on the specific choice
of the energy window used to build the Wannier functions
[19]. Rather, it arises from the relatively small differences
in bandwidth/shape and crystal-field splitting between TI and
TE structures. Switching on correlations only changes the
orbital polarization a little. The small occupation transfer
is associated with a corresponding small Coulomb-induced
crystal-field modification. The latter is given by

�εCF(ω) = Re	σσ
xz/yz(ω) − Re	σσ

xy (ω).

The Hartree-Fock contribution to �εCF(ω) is the infinite
frequency limit �εCF(∞) = (U − 5J ) p

2 . The contribution rel-
evant for the Fermi surface is, instead, the zero-frequency
limit, �εCF(0). For Sr2RhO4, for all realistic Coulomb param-
eter choices, |�εCF(0)| is tiny—more specifically, 1–30 meV,
depending on the values of U and J . Remarkably, we find that
�εCF(0) can even become negative, i.e., can become a crystal-
field reduction. Irrespective of its sign, �εCF(0) is much
smaller than in the case of the t4

2g ruthenate Sr2RuO4, even
for the TE structure, which has an LDA crystal-field splitting
similar in value to the one of Sr2RuO4. As a consequence,
in the single-layered rhodate, �εCF(0) itself affects little the
Fermi surface, while in the case of Sr2RuO4 is an essential
ingredient [11].

Let us now analyze the open question of the interplay of
SO interaction and correlations. If �CF(0) is negligible, is
then the LDA+U enhancement of the SO coupling indeed
an artefact of the static mean-field approximation [8]? Our
LDA+DMFT calculations show that this is not case. The
effective SO-coupling enhancements are defined here as

�λz (ω)

2
= Im	↑↑

yz,xz(ω),

�λxy(ω)

2
= Re	↑↓

xy,yz(ω).

We find that �λz/xy(0) ∼ 100 − 150 meV, both for the ide-
alized and the experimental tetragonal structure, i.e., the ef-
fective SO couplings are almost doubled with respect to the
LDA values. The LDA+DMFT results for the Fermi surface
are shown in Fig. 3, where the calculated Fermi surface is
compared to available ARPES data. By comparing Figs. 3(a)
and 3(c), one may see that correlations do little in the absence
of SO interaction. This is because the self-energy only yields a
negligible effective modification of the crystal-field splitting.
Including the SO interaction improves the agreement with
experiments already at the LDA level, as previously pointed
out [7]. This may be seen comparing Figs. 3(a) and 3(b).
The agreement becomes very good when Coulomb interaction
effects are additionally taken into account [Fig. 3(d)]. We
find that the actual values of �λz/xy(ω) are influenced by the
rotation of the octahedra, and the associated changes in occu-
pations. Indeed, while for the TI structure �λz(0) < �λxy(0),
for the TE structure we find the opposite result, i.e., �λz(0) >
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FIG. 3. The Fermi surface of Sr2RhO4 for the TE (experimental)
structure calculated with (a) LDA, (b) LDA+SO, (c) LDA+DMFT,
and (d) LDA+SO+DMFT. Parameters U = 2.3 eV and J = 0.4 eV.
The grey maps are experimental ARPES maps taken from Ref. [4].

�λxy(0). A large part of the SO effective enhancement—
although not all—can be ascribed to the static Hartree-Fock
high-frequency self-energy terms; hence the enhanced SO
anisotropy is associated in first approximation with the size of
the off-diagonal occupation matrices. While in the TI structure
we obtain |nxz,xy| ∼ 2|nxz,yz|, in the TE case we find |nxz,xy| ∼
|nxz,yz|, and a larger dynamical component. Thus, our results
do confirm the SO enhancement found in static mean-field
calculations. Still, the picture of the Fermi surface emerging
from LDA+U results is only partially correct. Indeed, for
given values of U and J , the Coulomb enhancement can be
sizably overestimated within the approach adopted in Ref. [7].
This happens in part because of the specific form of the
Coulomb tensor used (see discussion in Ref. [24] for the xz-yz
density-density tensor and the Appendix for the complete t2g

tensor), and in part because dynamical effects are obviously
neglected in static mean-field theory. Remarkably, once the
effective enhancement of the SO interaction is taken into
account, the Fermi surface in Fig. 3(d) is easy to understand.
Indeed, leaving aside the band folding due to the supercell,
in the very large SO coupling limit, the Fermi surface can be
described, in first approximation, as the one arising from the
two-dimensional bands:

E±(k) ∼ εxz(k) + εyz(k)

2
± λz

2
.

These yield two round Fermi surfaces, one electronlike and
the other one holelike.

Once we have established these conclusions, we can now
examine the effects of the nonspherical Coulomb terms. We
extracted an estimate of �U from reported cRPA calculations
in the total angular momentum basis [9], and then performed

FIG. 4. The Fermi surface of Sr2RhO4 calculated with
LDA+SO+DMFT including the anisotropic Coulomb term �U .
Parameters U = 2.3 eV, J = 0.4 eV, �U = −0.3 eV. The grey
maps are experimental ARPES maps taken from Ref. [4]. The Fermi
surface is very close to the one shown in Fig. 3(d).

calculations in a very large interval around it (−0.45 eV <

�U < 0.45 eV). We find that, remarkably, contrary to the
case of Sr2RuO4, the effect of �U on the crystal-field en-
hancement �εCF(0)—and thus on the Fermi surface—is small
for realistic values. This is because the xy orbital is almost
fully occupied in the TE structure, and it remains so unless
�U becomes unrealistically large. The Fermi surface obtained
with �U ∼ −0.3 eV, a value about two times larger than the
cRPA estimate, is shown in Fig. 4.

B. Optical conductivity

The theoretical description of the optical conductivity ex-
periments in Sr2RhO4 is currently controversial. It has been
recently proposed that the midinfrared β peak at ∼0.2 eV
corresponds to an interband transition activated by the SO
interaction [12]. A midinfrared peak similar to β has been
observed also in the ruthenates,- although at somewhat lower
energy. Thus, it has been argued that the SO-activated transi-
tion could be relevant for these systems as well [12]. This is in
contrast to the strong-correlation picture emerging from early
LDA+DMFT works, which neglects the effects of the SO
interaction. In this picture, the β-like feature can be encom-
passed by the resilient quasiparticle scenario [13,25]. The new
interpretation also differs from our recent LDA+SO+DMFT
results, in which SO effects were accounted for. Indeed,
for Sr2RuO4 we found that the effect of the SO interaction
is particularly important at low—rather than midinfrared—
frequency. Furthermore, we find that the intraorbital con-
tributions remain large, although indeed the SO interaction
does enhance the β-like peak via terms other than the in-
traorbital [14]. In the present paper, we therefore examine in
detail the case of Sr2RhO4 and compare it to Sr2RuO4. Our
LDA+DMFT results for the in-plane σab(ω) and out-of-plane
σc(ω) conductivity are shown in Fig. 5 together with available
experimental data. First of all, the agreement between theory
and experiments is overall good, in particular we do indeed
find a peak at about 0.2 eV, the location of the β feature, in
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FIG. 5. The in-plane [σab(ω)] and out-of-plane [σc(ω)] optical
conductivity of Sr2RhO4 for the TE (square) and TI (circles) structure.
Empty symbols: LDA+DMFT. Filled symbols: LDA+SO+DMFT.
Parameters U = 2.3 eV, J = 0.4 eV, �U = 0. The grey points are
experimental data from Ref. [12]. The calculations are performed
at ∼200 K, the temperature of the experimental data.

line with the data [12]. This peak is present both with and
without SO interaction, and both for the TI and TE structures,
although it moves to lower energy and becomes stronger
for the TE structure with SO interaction. The sharp feature
in the experiments at around ∼80 meV has been identified
with an optical phonon [12] and, indeed, in line with this
interpretation, it is not reproduced in the theoretical electronic
conductivity calculated in this paper.

Let us now examine in more detail the influence of the
SO interaction on the optical response. For the TE structure,
the static value σab(0) is reduced and β feature is enhanced
by the SO coupling. Instead, in the absence of rotations of
the octahedra, for the idealized TI structure, at low frequency
the conductivity is slightly enhanced by the SO interaction,
while the β peak is somewhat suppressed. This may be seen in
the left panel of Fig. 5. The origin of this apparently opposite
behavior can be understood after splitting the contributions to
the transport function in three different channels [14]. These
channels are Tintra, the sum of all the intraorbital terms, Tinter,
the interorbital term, defined as

Tinter = 2π

V

∑
k,m �=m′

[
vk

m′,mAk
m,m(ω + ω′)vk

m,m′Ak
m′,m′ (ω)

]
,

and Trest, which contains all the terms that cannot be classified
as pure intra- or interorbital. The result of the splitting is
shown in Fig. 6.

In the presence of the SO interaction, a large weight shifts
from Tintra to the Tinter and the Trest channels, as can be seen
clearly at low frequency. Such a weight transfer happens
also in Sr2RuO4, as we have shown in Ref. [14]; however,
in this material the effect is weaker. For Sr2RhO4, already
in the TI structure the contribution of the Trest channel is
larger than in Sr2RuO4. At the same time, the intraorbital
processes are reduced to about half their values. This is
what one expects even in the uncorrelated case, as a con-
sequence of a moderate SO-induced orbital mixing. Despite
the reduction, the intraorbital terms remain important with
respect to other processes, and contribute in a relevant way
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FIG. 6. In-plane optical conductivity of Sr2RhO4 for the TI

(left) and TE (right) structures split into components. Coulomb
parameters and temperature are the same as in Fig. 5. All curves
are normalized to σab(0) for the TI structure with spin-orbit in-
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at energies around the β peak. The β feature is suppressed
by the SO interaction because, although both intraorbital and
interorbital contributions increase at β with respect to the case
without SO interaction, the increase is overcompensated by
the large Trest. This can be seen in the left panels of Fig. 6.
The shift of weight further increases for the experimental TE

structure, however. Here the Trest term determines the σab(0)
value, since the remaining terms are small. Trest is also the
term that controls the overall shape of the conductivity. If we
now focus on the β peak, the two terms that contribute are
Tinter and Trest, and Tinter dominates. Hence, the SO interaction
enhances the β feature. This can be seen in the right panels
of Fig. 6. Summarizing, Fig. 6 shows that the effect of the SO
interaction is in reality similar for Sr2RuO4 and Sr2RhO4, or
for the TI and TE structures, the difference being quantitative
rather than qualitative; in the case of the TI structure, the
SO-induced weight shift to Trest and Tinter is partial, while
it is very large in the TE case. However, the large weight
transfer also indicates that, as suggested in Ref. [12], the t2g

single-orbital picture is not applicable to describe conductivity
data in Sr2RhO4, even though it can be still used for Sr2RuO4.
In the large SO coupling limit, switching from the t2g basis to
the basis of the atomic �7 − �6 spinor states (see Refs. [24,26]
for the expressions), one can see that the term Trest contributes
to both intra and interspinor terms. For the β peak itself, we
underline that a β-like peak is present also in the absence of
SO coupling. Indeed, the rotations of the octahedra shown
in Fig. 1 already yield alone a sizable β feature. Our results
show that the SO interaction enhances rather than generates
the peak, while at the same time it has a drastic effect on
the distribution of weights at low energy. This can be seen
in Figs. 5 and 6. The figure also shows that the out-of-
plane conductivity σc(ω) is strongly suppressed by the SO
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FIG. 7. Temperature dependence of the resistivity (normalized
to the room temperature value) and scattering rates. The resistivity
is obtained from the zero-frequency conductivity in Fig. 5. The
scattering rate is extracted from the imaginary frequency self-energy.
For the latter, circles are xy and squares xz/yz terms. All calculations
are done with spin-orbit interaction and for the TE structure. The
coulomb parameters are the same of Fig. 5.

interaction at low frequencies; this happens both for the TE

and the idealized TI structure.
To complete the discussion, we analyze the effects of

temperature on quantities relevant for either the Fermi surface
or transport. Figure 7 shows that the scattering rate scales as
∼πkBT in the full considered temperature range, i.e., it is
linear in T as in the case of the single-layered ruthenates,
but its value is much closer to the weakly correlated limit.
This is reflected in the temperature dependence of the in-plane
resistivity. The scattering rate is larger for the xz/yz orbitals,
in accord with the larger effective masses and the fact that the
xy orbital is almost full. The remaining relevant parameters
can be found in Fig. 8. The figure shows that the masses
slightly decrease with temperature, while correspondingly the
xy occupation increases. This is in line with the fact that the
system progressively approaches the xy2 configuration. The
SO enhancements �λα (0), down to 100 K, do not depend
strongly on the temperature.

Figure 9 shows the dependence of the parameters on �U .
The effective mass enhancement m∗

xy/mxy is weakly influ-
enced by a large negative �U = −0.45 eV, which merely
increases slightly the occupation nxy; further increasing |�U |,
eventually, the xy band becomes fully occupied and thus
insulating. Instead, a large positive �U ∼ 0.45 eV, which en-
hances the weight of xy1 configurations, can enhance m∗

xy/mxy

up to the value 4.0. For the xz masses, the opposite happens. In
an extreme case, with an unrealistic �U ∼ −0.45 eV, we find
m∗

xz/yz ∼ 4.5. At the same time, idealized DMFT calculations
performed using the Hamiltonian of Sr2RuO4, setting �U =
0 and the electronic t5

2g configuration, do yield masses as
small as obtained in Sr2RhO4. For what concerns the static
conductivity and the average SO enhancement, Fig. 9 shows
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FIG. 8. Temperature dependence of various quantities, TE struc-
ture. Top: Zero-energy self-energy parameters relevant for the Fermi
surface. Middle: Orbital polarization. Bottom: Effective mass en-
hancement m∗

xy/mxy and ratio m∗
xz/yz/m∗

xy. The combined effect of the
large �λxy(ω) and small �εCF(ω) yields a slight decrease in orbital
polarization with respect the LDA+SO values. On lowering the
temperature, the xy orbital slowly increases toward full occupation
(nxy = 2, p = 0.5). Calculations are all for the experimental TE

structure and include spin-orbit coupling.

that, varying �U , σab(0) decreases when �λ(0) increases, in
line with the observations already made for Fig. 6. It has to
be noticed once more, however, that in Fig. 9 the tetragonal
term �U varies in a very large window, |�U | < 0.45 eV; as
previously pointed out, cRPA yields rather |�U | ∼ 0.1 eV or
smaller. For such values, the effect of �U is small on all
quantities. Finally, we find that, in the analyzed temperature
range, the effective masses change little with and without SO
coupling for all realistic values of the Coulomb parameters.

IV. CONCLUSION

In this paper, we reexamined the electronic structure of
Sr2RhO4 via the LDA+DMFT method. We used a gen-
eral interaction-expansion CT-QMC DMFT solver which al-
lows us to perform exact calculations, including both the
SO interaction and tetragonal Coulomb terms. We find
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FIG. 9. Effect of �U on representative quantities (290 K, TE

structure). Symbols of increasing size correspond to increasing
(U, J ): (1.8, 0.3) eV −→ (2.3, 0.4) eV −→ (3.1, 0.7) eV. Top:
Average spin-orbit enhancement (left) and zero-frequency conduc-
tivity (right), renormalized to their �U = 0 values. Bottom, left:
Crystal-field “enhancement” in eV. Bottom, right: Effective mass en-
hancements, renormalized to m∗

xy/mxy for �U = 0; empty symbols:
m∗

xz/yz/mxz/yz; full symbols m∗
xy/mxy.

that the Coulomb interaction only yields a tiny enhance-
ment/reduction of the crystal field at zero frequency, differ-
ently than in the case of Sr2RuO4. We find that instead the
electron-electron repulsion does lead to an effective doubling
of the SO couplings at zero frequency. This supports the
picture emerging from early LDA+U results [7], even if we
find that in LDA+U calculations the effect is overestimated
[24]. We also find that the tetragonal Coulomb term �U ,
for realistic values, does not affect sizably neither the Fermi
surface nor other Fermi-liquid properties. In the second part of
this paper, based on this, we have then studied the electronic
contribution to the optical conductivity. The interpretation of
optical conductivity experiments has been recently a subject
of debate [12]. Our results reproduce well not only the Drude
peak, but also the β feature found in recent experiments.
We show that the conductivity is dominated by terms which
involve t2g off-diagonal elements of the spectral function
matrix and/or of the velocity matrix. Instead, the intraorbital
processes play a small role. This changes the way in which the
conductivity data should be interpreted, since it is not possible
to discuss the experimental results in terms of separate single
t2g orbital contributions. This agrees with the recent proposal
made in Ref. [12]. We find, however, that in this respect, the
case of Sr2RhO4 is different from that of Sr2RuO4; in the
latter, the intraorbital terms remain large, even in the presence
of the SO interaction [14]. We show furthermore that the β

feature is already present in the absence of the SO interaction,
which enhances, rather than generates, the peak.
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APPENDIX

In this Appendix, we give explicitly the complete form of
the spherical Coulomb tensor for t2g electrons in the total an-
gular momentum basis. In spherical symmetry, the Coulomb
interaction tensor for t2g states is given by

ĤU = U
∑

m

nm↑nm↓

+U ′ ∑
m �=m′

nm↑nm′↓ + (U ′ − J )
∑

mσ<m′σ

nmσ nm′σ

+ J
∑
m �=m′

c†
m↑c†

m′↓cm↓cm′↑ + J
∑
m �=m′

c†
m↑c†

m↓cm′↓cm′↑,

where U ′ = U − 2J . The t2g creation operators can be ex-
pressed as follows in the total angular momentum basis:

c†
xy;↑ = i√

3

[
+

√
2c†

1
2

− d†
1
2

]
,

c†
xy;↓ = i√

3

[
+

√
2c†

− 1
2

+ d†
− 1

2

]
,

c†
yz;↑ = i√

6

[
−

√
3c†

3
2

+ c†
− 1

2

−
√

2d†
− 1

2

]
,

c†
yz;↓ = i√

6

[
+

√
3c†

− 3
2

− c†
1
2

−
√

2d†
1
2

]
,

c†
xz;↑ = 1√

6

[
−

√
3c†

3
2

− c†
− 1

2

+
√

2d†
− 1

2

]
,

c†
xz;↓ = 1√

6

[
−

√
3c†

− 3
2

− c†
1
2

−
√

2d†
1
2

]
.

Here the d†
mj

(c†
mj

) operators create electrons with j = 1/2
( j = 3/2). The latter are defined in terms of creators of the
effective p states,

p†
+1;σ = −c†

xz;σ − ic†
yz;σ√

2
,

p†
0;σ = −ic†

xy;σ ,

p†
−1;σ = −c†

xz;σ + ic†
yz;σ√

2
,

so

c†
± 3

2

= p†
±1;± 1

2

,

c†
± 1

2

=
p†

±1;∓ 1
2

+ √
2p†

0;± 1
2√

3
,

d†
± 1

2

= ±
√

2p†
±1;∓ 1

2

− p†
0;± 1

2√
3

.

In the new basis, the Coulomb Hamiltonian is made of two
terms, ĤU = ĤU + ĤJ . The first is proportional to U and it is
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given by

ĤU = U
∑

j

∑
mj<m′

j

n j
mj

n j
m′

j
+ U

∑
m 1

2
,m 3

2

n
1
2
m 1

2
n

3
2
m 3

2
,

where mj = − j, . . . ,+ j. The second term, proportional to J ,
can be split into a density-density operator

ĤJ
1 = −J

∑
j1mj1 > j2mj2

α j1mj1 , j2mj2
n j1

mj1
n j2

mj2
,

where, ordering the states in decreasing order of j, mj ,

α j1mj1 , j2mj2
= 1

3

⎛
⎜⎜⎜⎜⎜⎝

0 7 7 3 5 8
7 0 3 7 6 7
7 3 0 7 7 6
3 7 7 0 8 5
5 6 7 8 0 4
8 7 6 5 4 0

⎞
⎟⎟⎟⎟⎟⎠

.

In addition, there is a weighted hopping operator,

ĤJ
2 = −J

3
2∑

p=− 3
2

1
2∑

σ=− 1
2

βp,σ n
3
2

(−1)δpσ p
(c†

σ dσ + d†
σ cσ ),

where βp,σ = −
√

2
3 (−1)δpσ (p + σ ). The remaining Coulomb

terms can be written as

ĤJ
3 = −J

3

{
5c†

1
2

c†
− 1

2

d− 1
2
d 1

2
+ 5c†

3
2

c†
− 3

2

d 1
2
d− 1

2

+4 c†
3
2

c†
− 3

2

c− 1
2
c 1

2
+ 2c†

− 1
2

d†
1
2

c 1
2
d− 1

2

+
√

2c†
3
2

c†
− 3

2

(c− 1
2
d 1

2
+ c 1

2
d− 1

2
)

+
√

3

1
2∑

σ=− 1
2

2σc†
σ d†

σ c3σ (
√

2c−σ + 2σd−σ )

}
+ H.c.

In the literature, terms without the density-density form are
often neglected. Furthermore, in some cases, approximated
forms of the density-density couplings are used. This might, in
specific cases, lead to overestimates of Coulomb Hartree-Fock
terms. See Ref. [24] for a discussion of an example. We point
out that the form of the Coulomb tensor changes in the �7 −
�6 basis obtained with finite crystal field (see Refs. [14,26] for
the analytic expression), since its components are not invariant
under unitary transformations.
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