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We show that any interacting integrable model possesses a class of initial states for which the leading
corrections to ballistic transport are subdiffusive rather than diffusive. These initial states are natural to realize
experimentally and include the domain-wall initial condition that has been the object of much recent scrutiny.
Upon performing numerical matrix product state simulations in the spin-1/2 XXZ chain, we find that such states
can exhibit subdiffusive t1/3 scaling of fronts of spin, energy, and entanglement entropy across the entire range
of anisotropies. This demonstrates that Tracy-Widom scaling is not incompatible with model interactions, as was
previously believed.
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Introduction. The typical relaxation dynamics of conserved
quantities such as energy and particle number in classical
many-body systems has been understood for well over a
century, and is described to a great degree of accuracy by
phenomenological “laws of diffusion,” such as Fick’s law and
Fourier’s law. At the same time, attempts to derive these laws
from a microscopic model of deterministic Hamiltonian evo-
lution are still in their infancy, owing to the tremendous tech-
nical difficulties involved in such a task [1]. These difficulties
are perhaps related to a growing understanding that classical
transport in low dimensions is frequently anomalous, in the
sense of being characterized by quantities that exhibit t1/3

scaling with time [2,3] corresponding to the Kardar-Parisi-
Zhang universality class of dynamics, rather than ordinary,
microscopic Brownian motion that would give rise to diffusive
t1/2 scaling.

These recent advances in the theory of low-dimensional
classical transport have been complemented by the develop-
ment of a hydrodynamic theory of time evolution in quantum
integrable models [4,5], which usually goes by the name
of “generalized hydrodynamics” (GHD). Quantum integrable
models include experimentally realizable examples like the
Lieb-Liniger gas of delta interacting bosons in one spatial
dimension and the spin-1/2 Heisenberg chain. At first, gen-
eralized hydrodynamics was limited to describing ballistic
transport in such models, for which it has so far yielded im-
pressive agreement with numerical simulations [4–14]. How-
ever, the diffusive corrections to the “Bethe-Boltzmann” equa-
tion underlying the hydrodynamic approach were recently
derived [15,16], and have raised the novel possibility of using
generalized hydrodynamic techniques to analyze subleading
corrections to ballistic transport.

In the present work, we study time evolution from a class
of initial states in the spin-1/2 XXZ chain with anisotropy
�, for which these recent results predict that the diffusive
corrections to the Bethe-Boltzmann equation ought to vanish.
Upon performing numerical simulations using the real-time
density matrix renormalization group [17–19], we find that
these states exhibit subdiffusive t1/3 scaling of fronts of spin,

energy, and entanglement entropy across the entire range
of anisotropies, which we interpret to be a consequence of
third-order derivative terms [20] in the hydrodynamics of the
propagating front. The class of states we discuss includes a
domain-wall initial state that was found to support superdif-
fusive transport at the isotropic point [21,22] � = 1; it was
subsequently argued that this effect might be a transient devi-
ation from diffusive transport [23]. The fact that the leading
corrections to ballistic transport are diffusive away from the
isotropic point is supported by studies of domain-wall initial
states in the gapless phase, |�| < 1, including a hydrody-
namic argument [13] that fronts of spin scale with time as t1/2,
together with an analytical study of return probabilities in the
six-vertex model that also found the t1/2 scaling characteristic
of diffusion [24].

Before presenting our results in detail, we briefly sum-
marize how they relate to these earlier analyses of time
evolution from domain-wall initial states. For time evolution
from domain walls with |�| < 1, we find that ballistic fronts
of spin and energy propagate at a light-cone speed v∗ = 1,
rather than the value v∗ = √

1 − �2 found in previous works
[13,24]. Spreading of observables in the “forbidden” region√

1 − �2 < x/t < 1 was explicitly noted in Ref. [24] (and
indeed earlier [21]), but characterized as a transient effect.
Here, we argue that this discrepancy with theory is due
to a specific choice of “coarse-graining” in earlier works,
corresponding to the ansatz Eq. (9) for the hydrodynamic
initial state, which omits a finite energy δE = −J�/2 at
the domain wall itself. In the ballistic scaling limit as t →
∞, this subextensive contribution to the dynamics vanishes,
and the usual GHD prediction [4,5] is presumably exact.
However, in the context of GHD on finite time and length
scales [7–9,25], the inhomogeneity cannot be neglected, and
generates quasiparticles that propagate ballistically through
the system for all t < ∞, with a light-cone speed v∗ = 1.
Upon performing a scaling analysis of time-dependent density
matrix renormalization group (tDMRG) data at this physical
light-cone edge, we find t1/3 behavior rather than diffusive t1/2

scaling; an example is shown in Fig. 2.
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FIG. 1. Scaling of fronts of the single-cut entanglement en-
tropy in tDMRG data for time evolution from domain-wall initial
conditions in the gapped phase of the XXZ chain, with example
anisotropies � = 1.5 and � = 20. The t1/3 scaling collapse, together
with the “staircase feature” characteristic of the Airy kernel, are clear.

We now turn to anisotropies � � 1, for which conventional
wisdom predicts no ballistic propagation of observables at
all. Once again, this is based on the “two-reservoir” hydro-
dynamic ansatz Eq. (9), which is susceptible to subleading
corrections at finite times. Indeed, in the absence of extensive
contributions to ballistic transport, the lattice-scale inhomo-
geneity at the domain wall may dominate the finite-time
dynamics. From numerical tDMRG simulations, we observe
that the inhomogeneity generates ballistically spreading fronts
of energy, spin, and entanglement entropy. As in the gapless
phase, the light-cone speed for the associated quasiparticles
is v∗ = 1, and the spreading of the quasiparticle front is
subdiffusive in time, scaling as t1/3. See Fig. 1 for examples
with � > 1, or the Appendix for examples with � = 1.

Hydrodynamics of integrable models. Consider a generic
quantum integrable model, whose equilibrium states may be
characterized in terms of quasiparticle distribution functions
ρn,k , with n ∈ N a discrete quasiparticle index and k ∈ R a
continuous rapidity variable. There is now a substantial body

of numerical evidence [4–14] that the ballistic part of time
evolution in such models, from smooth, locally equilibrated
initial conditions, i.e., those that can be modeled by smoothly
varying distribution functions ρn,k (x), may be captured by the
system of Boltzmann-type equations [4,5]

∂tρn,k + ∂x(ρn,kvn,k[ρ]) = 0, (1)

where the local quasiparticle velocities vn,k (x, t ) at each
space-time point are fixed in terms of the full set of local dis-
tribution functions {ρn′,k′ (x, t ) : n′ ∈ N, k′ ∈ R} via thermo-
dynamic Bethe ansatz. As it stands, the system (1) conserves
the local Yang-Yang entropy density at each point (as follows
from its time-reversal invariance) and so cannot capture dif-
fusive effects. However, the leading diffusive correction to
this ballistic hydrodynamics was recently derived by taking
two-body scattering processes into account [15] and upon
including this correction, the entropy-conserving system (1)
is replaced by a dissipative system of equations, of the form

∂tρn,k + ∂x(ρn,kvn,k[ρ]) = ∂x(Dn,k[∂xρ]), (2)

where the “diffusion operator” Dn,k acts on ∂xρ as a linear
integral kernel. Meanwhile, a kinetic theory argument based
on the propagation of a tagged soliton through a fluctuating
medium [16] predicts the linear diffusion equation

∂tδθn,k + vn,k[θ ]∂xδθn,k = Dn,k[θ ]∂xxδθn,k (3)

for small perturbations δθn,k (x, t ) of a locally equilibrated
background with local Fermi factors {θn′,k′ (x, t ) : n′ ∈ N, k′ ∈
R}. This turns out to coincide with the diagonal, linear-
response component of the full transport equation, Eq. (2),
as might be expected from its derivation [26]. In the present
work, our arguments are based on the qualitative picture
leading to Eq. (3) but our conclusions are also consistent with
the full transport equation, Eq. (2).

Diffusive vs subdiffusive corrections to hydrodynamics. For
noninteracting integrable models, in the sense of Ref. [27],
the possibility of subdiffusive t1/3 scaling of ballistic fronts
is well established by now [28–31], and was recently given a
new interpretation as an effect in “third-order hydrodynamics”
[20,32], which is characterized by the absence of diffusive

FIG. 2. Diffusive (left) versus subdiffusive (right) rescaling of fronts of spin (top) and energy (bottom), obtained from tDMRG predictions
for time evolution from domain-wall initial conditions in the gapless phase of the XXZ chain, with anisotropy � = 0.5. The improvement in
scaling collapse for the right-hand figures is marked.
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terms. By contrast, a recently discovered link between linear-
response diffusive corrections to the Bethe-Boltzmann equa-
tion and local density fluctuations [16] indicates that for
locally equilibrated states of interacting integrable models, the
generic scaling of operator fronts goes as t1/2, rather than t1/3.
The key insight is that the density fluctuations giving rise to
microscopic diffusion are controlled by fluctuations δθn,k in
the local Fermi factors, which satisfy [33]

〈δθn,kδθn′,k′ 〉 ∝ δn,n′δ(k − k′)θn,k (1 − θn,k ) (4)

on a given interval. In order for diffusive corrections to vanish,
the Fermi factors θn,k must vanish for all n and k at every
space-time point. Thus, as claimed in Ref. [16], a generic
local equilibrium state of an interacting integrable model will
exhibit diffusive corrections to ballistic dynamics, and conse-
quently t1/2 scaling of operator fronts. The observation that
we wish to make in the present work is that the “exceptional
case” for which there is vanishing entropy production in the
majority of the system, or equivalently, for which θn,k is 0 or 1
almost everywhere, is physically rather natural. For example,
in the context of spin-1/2 XXZ chains, this class of states
encompasses any initial condition that consists of macroscop-
ically large ferromagnetic domains with spin alignment along
the z axis, which are simple to realize experimentally in spin-
chain compounds [34]. Similar zero-entropy initial states were
considered in the context of Lieb-Liniger Bose gases [9]. On
the basis of the formula, Eq. (4), and recent theoretical results
on third-order derivative terms in GHD [20], we conjecture
that for any integrable lattice model with nearest-neighbor
interactions, initial states that are “pseudovacua” in bulk
will support t1/3 corrections to ballistic dynamics, provided
that the bare dispersion of the fastest quasiparticle satisfies
the technical conditions discussed in Ref. [20]. The single
magnon excitation in the spin-1/2 XXZ chain satisfies these
conditions [35] for all values of the anisotropy �, allowing
for a direct test of our predictions against matrix product state
numerical simulations.

Upon performing a scaling analysis of tDMRG data for
spin, energy, and single-cut entanglement entropy in two
classes of such initial states in the spin-1/2 XXZ chain,
namely, (i) domain-wall initial conditions, which have come
under recent scrutiny [5,13,22–24], and (ii) initial conditions
consisting of a single flipped down spin in a sea of up spins,
we find evidence for t1/3 scaling of fronts across the entire
anisotropy range of the XXZ chain. In more detail, for the
initial condition (i) with � � 1, we find that the single-cut
entanglement entropy at a point x exhibits front scaling

SE (x, t ) ∼ t−1/3 f

(
x − t

t1/3

)
, (5)

consistent with the usual Airy kernel [28–30] (see Fig. 1),
while for both initial conditions (i) and (ii) and all anisotropies
�, fronts of spin and energy exhibit the scaling form (see
Fig. 2 and Appendix)

δ〈O〉(x, t ) ∼ t−2/3g

(
x − t

t1/3

)
, (6)

consistent with the derivative of the Airy kernel, as was found
to capture front scaling in the critical transverse-field Ising

chain [31]. A detailed analysis of these scaling functions is
beyond the scope of the present work, though some analytical
results for the spin-flip initial condition are summarized in the
Appendix.

Initial states supporting subdiffusion of fronts in the XXZ
model. We now discuss the initial conditions (i) and (ii) in
more detail. The Hamiltonian under consideration is the spin-
1/2 XXZ chain with anisotropy �, namely,

H = J
L∑

i=1

Sx
i Sx

i+1 + Sy
i Sy

i+1 + �Sz
i Sz

i+1. (7)

The first class of initial states we consider has the form

|ψ〉 = |↑〉⊗L/2 ⊗ |↓〉⊗L/2 . (8)

This initial condition has been studied frequently in recent
works, both at the isotropic point [22,23] � = 1 and in the
gapless phase [5,13,24] of the XXZ model.

At this point, a remark is in order on the standard hydrody-
namic model for time evolution from “two-reservoir” initial
conditions, corresponding to initial density matrices of the
form ρ = ρL ⊗ ρR, where ρL/R denote Generalized Gibbs En-
semble (GGE) density matrices with associated Fermi factors
θ

L/R
n,k . By now, standard practice is to model the time evolution

of ρ by evolving the hydrodynamic initial state

θn,k (x, 0) =
{

θL
n,k (x), x � 0

θR
n,k (x), x > 0

(9)

under ballistic GHD, to yield a hydrodynamic profile θn,k (x, t )
that is expected to be exact in the ballistic scaling limit as
t → ∞. Even if one assumes that the hypothesis of local
equilibrium is valid at all times, this model of time dynam-
ics is susceptible to two types of hydrodynamic corrections
[11,25]. The first type are higher-order derivative terms in the
hydrodynamic equations [15,16,20]. These capture physical
effects like diffusion (which appears at second order) or
lattice corrections (at third order and above). The second
type of hydrodynamic corrections arise at the level of initial
conditions and are generated by subextensive numbers of
quasiparticles, that may nevertheless dominate dynamics on
finite length and time scales. The effects studied in the present
work arise from the interplay of both types of correction. It
seems worth emphasizing that for two-reservoir initial states
ρL ⊗ ρR, there is always a finite-length correction to the
standard initial condition, Eq. (9), due to the inhomogeneity
at x = 0. Often, this correction is negligibly small, but for
certain states like domain walls with |�| > 1, it can yield the
dominant contribution to time dynamics.

To illustrate how one might describe the finite-length cor-
rection to Eq. (9) in practice, it is instructive to consider a
rather simpler initial state, namely, the localized spin flip

|ψ〉 = |↑〉⊗L/2−1 ⊗ |↓〉 ⊗ |↑〉⊗L/2 . (10)

For this state, a hydrodynamic coarse-graining procedure that
neglects subextensive corrections, as is implicit in Eq. (9),
would predict no time evolution at all. However, the exact
time evolution of a localized magnon can be obtained di-
rectly [28,36] (see Appendix). In particular, its large-scale
dynamics is given by evolving the initial distribution
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ρ1,k (x) = δ(x) of magnons under the hydrodynamic equation
derived in Ref. [20], which yields ballistic spreading with
light-cone speed v∗ = 1 and t1/3 broadening of fronts.

Similarly, we postulate that for domain-wall initial condi-
tions, there is always a finite-length correction to the hydrody-
namic initial condition, Eq. (9), in the single magnon sector,
of the form ρ1,k (x) = C(�)δ(x), for some model-dependent
weight C(�). This postulate, which can be proved [37] as
� → ∞, and is justified on physical grounds by the uncer-
tainty principle (in conjunction with the spatial localization
of the initial inhomogeneity to x = 0), yields the following
predictions for the time dynamics of the state Eq. (8).

First, it implies that the fastest quasiparticles travel at the
magnon light-cone speed, v∗ = 1, which is consistent with
our observations and has been noted previously [21,23,24].
Next, it implies that these quasiparticles travel in a bulk pseu-
dovacuum, experience no microscopic diffusion, and can be
described by the hydrodynamic equation derived in Ref. [20]
(see discussion above). It follows that the degrees of freedom
at the edge of the front are free-particle-like, and that the
particle density profile there coincides with the edge of the
domain-wall front in the XX model, up to rescaling by the
overall factor C(�). From this, it is immediate that broadening
of the front scales as t1/3 in time, and that the position of the
fastest quasiparticle is described by Tracy-Widom statistics
[30]. We now directly verify the prediction of t1/3 scaling
against microscopic tDMRG simulations.

� � 1: Domain-wall initial conditions. As discussed
above, the localized initial energy density at x = 0 gives rise
to ballistic quasiparticle spreading even in the regime � � 1.
This is particularly clear in the profiles of single-cut entan-
glement entropy, whose fronts propagate ballistically in time
for all values of the anisotropy � � 1, in a manner consistent
with the creation of counterpropagating pairs of magnons
at the domain wall itself [38] (this has already been noted
[23] at � = 1). Entanglement spreading from domain-wall
initial conditions in the gapped phase of the XXZ chain will
be discussed further in related work [37]. Upon plotting the
fronts of single-cut entanglement entropy (as was previously
done for free fermions [30]), we find that entanglement fronts
exhibit the t1/3 scaling previously thought to be specific to
noninteracting systems, together with the “staircase” feature
characteristic of the Airy kernel [28,30,31] (see Fig. 1).

|�| < 1: Domain-wall initial conditions. For |�| < 1, evo-
lution of entanglement from domain-wall initial conditions,
as was considered above, exhibits nonballistic growth in time
due to the gaplessness of magnon excitations on each pseu-
dovacuum. However, as for � � 1, there is ballistic transport
of spin and energy. To our surprise, the standard scaling
analysis of spin fronts [28,30] does not appear clearly to
distinguish between diffusive and subdiffusive scaling. We put
this ambiguity down to the dominance of ballistic transport
and therefore subtract the “two-reservoir” hydrodynamic pre-
diction for the steady-state spin density, given at roots of unity
� = cos γ , γ = π/ν, ν ∈ {2, 3, . . .}, by [13,24]

shydro
z (x, t ) =

⎧⎨
⎩

0.5, x < −(sin γ )t
− 1

2γ
sin−1

(
x
t

)
, |x| < (sin γ )t

−0.5, x > (sin γ )t .
(11)

Once this is subtracted from the numerical data, the oscillatory
features in the spin front show a marked collapse to t1/3 rather
than t1/2 scaling (see Fig. 2 for an example with � = 0.5).
For the energy fronts, we merely subtract the bulk value 〈h〉 =
J�/4 as usual [28], and observe the same scaling.

In both cases, our rescaled horizontal coordinate involves
x − t , rather than the parameter x − √

1 − �2t plotted in
previous work [13]. This is consistent with the physical
light-cone speed, v∗ = 1. As discussed above, the pres-
ence of quasiparticles in the asymptotically forbidden region√

1 − �2 < x/t < 1 is due to the lattice-scale inhomogeneity
at x = 0.

Discussion. The above arguments indicate that the “ex-
ceptional” case of vanishing entropy production in locally
equilibrated states of quantum integrable models [16] in fact
includes a class of states that arise quite naturally in practice,
since any initial condition that gives rise to a dilute gas of
quasiparticle excitations propagating through a bulk pseu-
dovacuum will lack the local density fluctuations that generate
diffusion. The absence of bulk entropy production in these
states can also be seen from the vanishing of the diffusion
kernel [15] in the full transport equation, Eq. (2). Experimen-
tal realizations of such physics include the free expansion of
a spatially localized initial density of Lieb-Liniger gas and,
perhaps more surprisingly, the example of time evolution from
ferromagnetic domain walls in spin-1/2 XXZ chains that was
discussed in detail above.

Furthermore, our analysis identifies an important class of
subleading corrections to the usual hydrodynamic descrip-
tion, Eq. (9), of “two-reservoir” type initial conditions. For
example, we expect such corrections to be present for the
initial states ρ = (1 + μσ z )⊗L/2 ⊗ (1 − μσ z )⊗L/2 that were
shown to support superdiffusive spin transport at the isotropic
point [22,39] of the spin-1/2 XXZ chain (note that in this
Rapid Communication we studied the propagation of fronts,
not transport properties). Previously, it was assumed that
hydrodynamics could say nothing about time evolution from
such initial states for � � 1, because the initial condition,
Eq. (9), is homogeneous for these states. By contrast, our
demonstration that at μ = 1, the standard hydrodynamic de-
scription of these states needs to be augmented by initial
data localized at x = 0, if it is to yield accurate results at
finite times, indicates that the same modification is needed for
μ < 1. Our results additionally show that third-order effects
can generate non-negligible corrections to ballistic dynamics,
even in fully interacting integrable models. Whether or not
these refinements of generalized hydrodynamics can shed any
light not only on the scaling of fronts, but also on the rich
variety of transport phenomena observed at the isotropic point
[21–23,39,40] of the XXZ chain, is an interesting topic for
future investigation.
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FIG. 3. Subdiffusive scaling collapse of fronts of single-cut en-
tanglement entropy, obtained from tDMRG simulations of time
evolution from domain-wall initial conditions in the XXZ chain, at
anisotropy � = 1.

APPENDIX

1. Front scaling for domain-wall initial conditions at � = 1

In this Appendix, we include figures for the scaling of
the ballistically spreading fronts of entanglement (Fig. 3) and
spin and energy (Fig. 4), for time evolution from domain-wall
initial conditions at the isotropic point, � = 1, of the XXZ
chain.

2. Exact spin, energy, and entanglement entropy profiles for
single spin-flip initial conditions

Following the analysis of Refs. [28,36], the exact space-
time profiles of spin, energy, and entanglement for the initial
condition

|ψ〉 = |↑〉⊗L/2−1 ⊗ |↓〉 ⊗ |↑〉⊗L/2 , (A1)

in the limit L → ∞ are straightforwardly found to be

〈
Sz

n

〉
(t ) = 1

2
− J2

n (t ),

〈hn〉(t ) = J�

4
− J�

2

[
J2

n (t ) + J2
n+1(t )

]
,

SE (n, t ) = −
(

n∑
m=−∞

J2
m(t )

)
log

(
n∑

m=−∞
J2

m(t )

)

−
( ∞∑

m=n+1

J2
m(t )

)
log

( ∞∑
m=n+1

J2
m(t )

)
, (A2)

where the Jm(t ) denote Bessel functions of the first kind.
Passing to the ballistic scaling limit, these become

sz(x, t ) = 1

2
− 1

π

1

t

1√
1 − (x/t )2

,

h(x, t ) = J�

4
− J�

π

1

t

1√
1 − (x/t )2

,

SE (x, t ) = −
[

1

2
− 1

π
sin−1

(x

t

)]
log

[
1

2
− 1

π
sin−1

(x

t

)]

−
[

1

2
+ 1

π
sin−1

(x

t

)]
log

[
1

2
+ 1

π
sin−1

(x

t

)]
.

(A3)

The first two formulas can be obtained directly from con-
sidering the hydrodynamic time evolution of the initial state
ρk (x, 0) = δ(x). The comparison of the ballistic approxi-
mation with numerical results and the exact time evolu-
tion is shown in Fig. 5. While the agreement for entan-
glement entropy is very good, the ballistic part of energy
captures only the smoothed out profile, and the qualita-
tive difference induced by third-order derivative terms is
marked.

We now turn to the features that evolution from spin flips
has in common with evolution from domain walls in the
XXZ chain. For spin-flip initial conditions, the entanglement
entropy does not appear to exhibit the t−1/3 height character-
istic of entanglement spreading from noninteracting domain
walls [30]. However, for both spin flips and domain walls,
fronts of spin and energy exhibit the same t−2/3 height. In the
context of spin flips, this follows directly from Bessel function

FIG. 4. Diffusive (left) versus subdiffusive (right) rescaling of fronts of spin (top) and energy (bottom), obtained from tDMRG predictions
for time evolution from domain-wall initial conditions in the XXZ chain, at anisotropy � = 1.
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FIG. 5. Left: Energy profile at t = 100 obtained from tDMRG
data for time evolution from the initial condition, Eq. (A1), in
the spin-1/2 XXZ chain with anisotropy � = 1. The exact re-
sult Eq. (A2) (red dashes) is qualitatively very different from its
ballistic part, Eq. (A3) (blue dashes). Right: The same plot but
for single-cut entanglement entropy. The three curves are almost
indistinguishable.

asymptotics in the transitional region [28], which yield the
front scaling

δsz(x, t ) ∼ t−2/3g1

(
x − t

t1/3

)
,

(A4)

δh(x, t ) ∼ t−2/3g2

(
x + 0.5 − t

t1/3

)
,

FIG. 6. Scaling collapse of fronts of spin and energy at t =
400, obtained from tDMRG data for time evolution from the initial
condition, Eq. (A1), in the spin-1/2 XXZ chain with anisotropy
� = 1. Exact asymptotic predictions [Eq. (A4)] are dashed.

where δsz(x, t ) = 〈Sz〉(x, t ) − 1/2, δh(x, t ) = 〈h〉(x, t ) −
J�/4, and

g1(y) = −22/3[Ai(21/3y)]2,
(A5)

g2(y) = −J�22/3[Ai(21/3y)]2.

Here Ai(z) denotes the Airy function (the offset in the energy
front is a transient due to the local Hamiltonian being a
two-site operator, that is nevertheless necessary to obtain a
good agreement with analytics). See Fig. 6 for a late-time
comparison with these predictions at � = 1.
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