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Nonlocal control of spin-spin correlations in a finite-geometry helical edge
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An infinite edge of a quantum Hall system prohibits indirect exchange coupling between two spins, whereas a
quantum spin-Hall edge prohibits out-of-plane coupling. In this study, we analyze an unexpected breakdown of
this behavior in a finite system, where the two spins can interact also via a longer path that traverses the whole
perimeter of the system. We explain this using an analytical model as well as tight-binding models in real space.
Based on this finding, we show how using a lead far away from the spins can switch the coupling on and off
among them nonlocally.
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Introduction. Nonlocal control of the interaction among
spins has been a field of intense study in the past few years,
and it has assisted in quantum-information processing [1] as
well as spintronic applications. Effective interaction among
localized spins mediated by the underlying delocalized elec-
trons is described by the Ruderman-Kittel-Kasuya-Yoshida
(RKKY) theory [2]. It has been proposed to control such
coupling nonlocally, such as via optical means [3,4], an ex-
ternal magnetic field [5], or an applied electric field [6,7],
among others methods [8–15], and some of these approaches
have been verified experimentally [16–19]. Solid-state-based
systems, spin-orbit coupled systems [20–22], and especially
topological systems are among the significant candidates
that can mediate long-range controllable coupling [6,23–27]
among spins.

Quantum Hall (QH) and quantum spin-Hall (QSH) states
are characterized by nonzero spin-Chern numbers and they
have topologically protected chiral edge states, where a given
spin mode can traverse in a given direction [28]. QH states
break time-reversal symmetry and have edge states where
both spins move in chiral channels in the same direction,
whereas in QSH states, the edge states have oppositely mov-
ing channels for opposite spins, preserving the time-reversal
symmetry of the system. Due to the chiral nature of states and
the one-dimensionality, it is expected that such edge states
would carry long-range correlation also among two spins
placed on the edge, which is indeed what has been explored
in recent studies [23,25,29].

The spin-momentum locking (helicity) of the edge states
gives rise to vanishing out-of-plane RKKY coupling for the
spins on a QSH edge, whereas in a QH edge, all components
of the RKKY coupling vanish [23,25]. In this work, we
analyze and propose manipulating an unexpected breakdown
of this result when the geometry is finite. This behavior is a
result of the fact that in a finite geometry, the helical edge
states can come back by traversing the whole edge of the
sample. Further, such long-range coupling between the spins
is found to be antiferromagnetic in nature, and the amplitude
of the coupling becomes almost independent of the distance
between the spins. We show this using a lattice simulation

with two models, one in a hexagonal lattice [30,31] and the
other in a square lattice [32]. This surprising behavior can also
be explained using an analytical model of the edge states. The
longer path of interaction between the spins through the whole
perimeter of the system can be controlled by using a lead
attached to the edge far away from the spins, which can induce
decoherence in the edge states, resulting in turning off the
relevant interaction among the spins. This mechanism allows
us to have a truly nonlocal control of the coupling between the
spins, where none of the local parameters are modified.

RKKY interaction by an infinite chiral edge. The hallmark
of topologically nontrivial states are the chiral edge states
where a given spin can move in a definite direction. In
particular, the helical edge (running along the ±x direction) of
the QSH phase can be represented by the Hamiltonian Hedge =
−ivF σz∂x, where σi are the Pauli matrices of the spin and vF

is the Fermi velocity. The corresponding Green’s function is
block-diagonal in the up and down spin sector [23]:

GQSH
± (x, x′; ω) = − i

vF
ei ω

vF
(x−x′ )

θ ( ± (x − x′)), (1)

where the ± refers to up and down spin states, respectively.
Spin-susceptibility of a system can be captured by the

effective interaction between two impurity spins, mediated
by conduction electrons of the system. Considering that the
impurity spins (S1, S2 at positions x1, x2 on the edge) couple to
the delocalized electrons in the edge through the Kondo cou-
pling H ′ = − J

2

∑
r,σ,σ ′ ψ†

rσ (x)[S1,σσ ′δ(x − x1) + S2,σσ ′δ(x −
x2)]ψrσ ′ (x), where r could denote left- or right-moving states,
second-order perturbation in H ′ gives the effective RKKY
interaction among the impurity spins,

HRKKY = −J2

π

∫ EF

−∞
dω Tr[(S1 · σ )G(r12; ω + i0+)(S2 · σ )

× G(−r12; ω + i0+)] (2)

≡
∑

i, j=x,y,z

Ji jS1iS2 j, (3)

where r12 is the separation of the two spins, and the resultant
Ji j forms the spin-spin correlation matrix.
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Equation (1) immediately results in vanishing Ising inter-
action among spins that are aligned as up and down spins,
i.e., Jzz = 0. The appearance of the θ functions in Eq. (1) is
essentially responsible for this behavior, which dictates that
|Gσσ (x, x′; ω)| is nonvanishing only for x − x′ > and < 0 for
up and down spin modes respectively. A similar argument
follows for a QH phase, and as both spins can move in only
one direction, the argument of the θ function in Eq. (1) has the
same sign, which results in all correlations Ji j vanishing in a
QH edge.

Lattice simulation. To study a finite topological system,
below we consider a Hamiltonian in a hexagonal lattice that
can represent QH, QSH, or a normal insulator for different
ranges of parameters. Another model on a square lattice has
also been studied and is detailed in the supplemental material
[40]. The Hamiltonian on the hexagonal lattice is [30,31]

H = − t
∑

〈i, j〉,σ
c†

iσ c jσ +
∑

〈〈i, j〉〉σ
iλσνi jc

†
iσ c jσ +

∑
iσ

�ic
†
iσ ciσ ,

(4)

where c†
iσ is the electronic creation operator at site i with

spin σ = ± for up and down spin electrons, respectively. t
is the nearest-neighbor hopping, which also serves as our unit
of energy. Next to the nearest-neighbor hopping amplitude,
λσ , is the spin-orbit coupling strength. �i = μ ± � contains
the chemical potential μ, which we keep at zero, and the
staggered potential �, where ± applies to A and B sublattices.
νi j is ±1 depending on clockwise or anticlockwise hopping.
This Hamiltonian can be realized in various solid-state sys-
tems such as silicene, germanene, and stanene [33,34]. When
λσ = σλ, the Hamiltonian is time-reversal symmetric, and
the ground state is a QSH state when λ > �. If λσ = λ, i.e.,
spin-independent, then the ground state represents a QH state
when λ > �. In what follows, it is not required to have a finite
�, but typically it helps in maintaining numerical stability.
In passing we note that time-reversal symmetry breaking λ

can be introduced through a circularly polarized irradiation
on the sample [33,35,36], which can provide a way for fine-
tuning the parameter. Although the viability of the application
of such a system is still under investigation, application of
terahertz radiation in spintronics applications is viable [3,37].

The result of the preceding section, i.e., vanishing Jzz cor-
relation for an infinite QSH edge, can be verified numerically,
as shown in Fig. 1(a). All other terms in the correlation matrix
are generally nonzero, including the off-diagonal elements, re-
sulting in Dzyaloshinskii-Moriya interaction among the spins
[23].

Instead of an infinite nanoribbon, for a finite geometry,
using the Green’s function G(ω) = [ω − H + i0+]−1 in real
space, the RKKY interaction can be computed as second-
order perturbation, Eq. (2). The impurity spins can be taken
into account within H using the Kondo coupling between the
localized spins, S1, S2, put at site i, j, and the delocalized
electrons given by

H ′ = −J

2

∑
σσ ′

c†
iσ S1,σσ ′ciσ ′ + c†

jσ S2,σσ ′c jσ ′ . (5)

FIG. 1. (a) For an infinite nanoribbon of the QSH state, the
RKKY interaction (in units of J2) between two spins put on an
edge is significantly small when the spins’ moments are aligned
in the up/down direction (i.e., Jzz ≈ 0), resulting from the chiral
nature of the edges. (b) In contrast, for a finite geometry, Jzz is finite.
For numerical simulation in (a), a zigzag nanoribbon of width 16 sites
has been used, whereas in (b) a system size of Nx × Ny = 80 × 16
sites has been used with the impurity spins on the longer zigzag edge.
Other parameters used are λ = 0.5, � = 0.1, and t = 1.0.

The RKKY interaction can also be obtained using an exact
diagonalization method in a finite geometry [39]. Despite
the fact that the exact diagonalization is numerically less
expensive, we use the Green’s function method as it provides
more flexibility, especially for an open system, as we discuss
later. The result from exact diagonalization matches with
the second-order perturbation when J is sufficiently small
[38,39].

The resulting diagonal terms of interaction matrix among
the spins put on the edge of a finite QSH geometry is plotted
in Fig. 1, which is markedly different from what is predicted
through Eq. (1), as the interaction among the spins is nonzero
even when the spins are both up or down, i.e., Jzz �= 0. As the
chiral nature of the modes is still present, this breakdown from
the previous result is unexpected.

To explore the reason for this, we take a simple geometry
of a disk of radius R, where the chiral modes can run along
the perimeter. The Hamiltonian of the 1D edge modes is then
Hedge = vF σz

R (−i∂φ + 1
2 ), φ being the azimuthal angle. An-

gular momentum −i∂φ is quantized with energy eigenvalues
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FIG. 2. For a QSH disk, the edge states run along the edge of the
disk with impurity spins put in positions φ1 and φ2. The spins can
be connected via two paths as shown, making all relevant couplings
between the spins nonvanishing.

El = σ vF
R (l + 1

2 ) [40]; with the Green’s function

Gσσ (φ, φ′; ω) =
∑

l

ei(φ−φ′ )l/2π

Rω + iRη − σvF (l + 1/2)
, (6)

where σ = ±1 is for up/down spin, respectively. Note that
it is not possible, in general, to convert this summation into
an integral form as the integrand changes swiftly from l
to l + 1, unless the phase φ is very small. In contrast to
Eq. (1), this Green’s function, in the limit when η < vF /2πR,
can now connect between arbitrary points on the circle [i.e.,
|Gσσ (�φ,ω)| is nonzero for all �φ = φ − φ′] for both of
the spin modes [40]. This essentially captures that in a finite
geometry the interaction among the spins is possible through
two possible paths (Fig. 2). In the second-order process,
Eq. (3), it turns out that the integrand of Eq. (2) for the
Jzz component becomes independent of �φ, giving rise to
distance-independent coupling between the spins [41]. Such a
distance-independent nature is true only for the Jzz coupling,
whereas other correlation matrix elements remain functions
of �φ. An analytical explanation is given in the supplemental
material [40]. The results of Fig. 1 in light of this discussion
are one of our main results.

The inversion broken nature of the QSH states also re-
sults in finite noncollinear Dzyaloshinskii-Moriya interaction
among the impurity spins, which is present in either finite or
infinite geometry. For the QH edge, a similar observation to
QSH is made in which, instead of the vanishing correlation
matrix Ji j , one observes nonvanishing values for all of the
elements. In the simple model of QH, Eq. (4), the diagonal
elements of the correlation matrix become independent of the
distance between the spins, whereas the off-diagonal elements
remain zero.

The preceding discussion is strictly true if the perimeter
of the finite QH/QSH geometry is not larger than the mean
free path of the electrons at the edge states [40]. As the
QH/QSH edge prohibits backscattering, one expects a large
mean free path of order a few hundred nanometers [42]. The
consideration of a finite mean free path would result in further
decay of all the elements of the correlation matrix.

FIG. 3. Coupling strengths Ji j (in units of J2) for spins on the
QSH edge that is connected to a lead on one side. The out-of-plane
component Jzz vanishes as the edge states suffer from the decoher-
ence introduced by the lead. For numerical simulation, πρt2

0 = 0.5
(in units of t) has been used to couple to the right side of the system,
where t0 is the system-lead coupling amplitude. Other parameters are
those of Fig. 1(b).

Nonlocal control using leads. Given the different nature
of interaction among spins in an infinite and finite geometry,
one natural question is whether such a difference can be
engineered without actually altering the geometry. Essentially
prohibiting the edge states from fully traversing the perimeter
should mimic the behavior of the infinite geometry, which
can be achieved using a lead attached to the edge far from
the two impurities. Then, for a sufficiently strong system-lead
coupling, the interaction will vanish.

We proceed to treat the system with the lead attached by
considering a self-energy contribution to the Green’s function
G(ω) of the system:

G(ω)−1 = ω − (H + H ′) − i�(ω), (7)

where �(ω) = −iK†g(ω)K is the self-energy of the lead, K
is the system-lead coupling matrix, and g(ω) is the lead’s
Green’s function. The QSH edge states live within the bulk
gap, and it is expected that most of the contribution in the
RKKY interaction comes from states near the Fermi energy.
So, without loss of generality it is sufficient to take the
approximation that the lead’s Green’s function is independent
of energy, and we write g(ω) ≈ iπρ, where ρ is the (energy-
independent) density of states of the lead at the contact. The
effective Green’s function can be used in Eq. (2) to compute
the interaction between the spins [43].

If the lead is attached, as expected, we observe a sharp
drop in the zz component of the interaction, whereas other
components are effectively not affected, as shown in Fig. 3.
The Jzz drops as an exponential function of the lead’s density
of state, shown in Fig. 4, but the drop becomes slower after
a threshold value of ρ is reached. In our simulation, we have
attached the lead to the shorter side of a rectangular system
that has 80 × 16 sites. The selective action of the lead to the
Ising interaction is a direct demonstration of the helical nature
of the edge states. For a QH system, such an arrangement can
control the full spin-spin correlation matrix. This can provide
a way to identify the helical nature of edge states by measuring
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FIG. 4. With increasing density of states (ρ) of the lead, the
out-of-plane correlation Jzz (in units of J2) vanishes whereas other
coupling terms remain virtually unaffected. Inset: for a ρ that is 0.5
for 0 > ω > ωc, the Jzz rapidly decreases as a function of ωc until
it reaches the bulk gap, which is 0.4 in our simulation. The two
impurities are at (8, 16) and (30, 16), and other parameters are the
same as in Fig. 1.

the spin susceptibility [44], and it can be used as an effective
control of spin-spin interaction in spintronic applications. This
is one of our main results.

In a realistic setup, the lead’s density of states will be
dependent on the energy, but our main finding should remain
intact. In fact, it is sufficient to consider the lead as a quantum
dot with a broadening of its level of the order of the spin-orbit
gap (δ = λ − �) of the system, which is typically of the order
of a few millielectron volts. We further show in Fig. 4 that as
long as ρ(ω) is nonzero for the range of ω within the bulk gap
of the QSH system, the Jzz correlation remains vanishingly
small, whereas as soon as ρ(ω) is zero for a range of ω where
edge states exist, Jzz acquires a finite value. This provides a
concrete way to control the interaction among the spins: for
turning the interaction on or off, it is sufficient to either change
the quantum dot’s band gap through a gate bias or the system
to lead coupling.

Although unrealistic, the same result can be achieved using
a finite iη (η > 0) added on the right-hand side of the Eq. (7)
instead of the lead, which would basically add a finite lifetime
to all the eigenstates. As the states near the Fermi energy are

moving with the Fermi velocity, the coherence is present only
for a given length of their path (i.e., the mean free path) given
by ∼vF /η. If the perimeter is larger than the finite length, then
Ising interaction would inevitably vanish. But a finite η will
effect also other possible interactions among the spins.

Discussion. The effective system size we have taken is of
the order of a few nanometers (about 100 lattice spacings of
typical solid-state systems). In other scales, essentially the
spin-orbit coupling λ is taken to be large enough (please see
the figure caption of Fig. 1) for the benefit of numerical sim-
ulation. A larger spin-orbit coupling yields a larger band gap
in the bulk, although it results in smaller spin-spin correlation
[40]. In realistic systems, even if the spin-orbit coupling is
smaller, the system size can be much larger, so that the RKKY
interaction mediated by the bulk states can still be neglected.
To clearly observe the physics we propose, one needs to have
a system whose perimeter is much larger than the mean free
path of the bulk states, but shorter than the mean free path
of the edge states. We expect the results to hold for absorbed
impurities [45] as well.

Interaction in the one-dimensional edge can fractionalize
the modes, and in general more than one propagating mode
will be present and most of the conclusions of an infinite
edge follow similarly [25]. A study with interaction is left
for the future, but we expect the physics behind Fig. 2 to
remain intact. In passing, we note that, interestingly, distant-
independent and nonoscillating RKKY interaction has also
been reported in an interacting graphene system [46], although
the mechanism is different. With interaction, the graphene
edges become spin-polarized, rendering antiferromagnetic
orientation costly irrespective of the distance.

In summary, we theoretically demonstrate how the effec-
tive interaction among spins on a QSH or a QH edge differs in
nature in a finite system compared to an infinite edge. The
difference in nature can be observed using a lead attached
to the system with a controllable density of states of the
lead. This provides both a way to identify the helical edges
of a system as well as a truly nonlocal way to control the
interaction among the spins.
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