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Unconventional superconductivity in nearly flat bands in twisted bilayer graphene
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Flat electronic bands can accommodate a plethora of interaction-driven quantum phases, since kinetic energy
is quenched therein and electronic interactions therefore prevail. Twisted bilayer graphene, near the so-called
“magic angles”, features slow Dirac fermions close to the charge-neutrality point that persist up to high
energies. Starting from a continuum model of slow but strongly interacting Dirac fermions, we show that with
increasing chemical doping away from the charge-neutrality point, a time-reversal symmetry breaking, valley
pseudospin-triplet, topological p + ip superconductor gradually sets in, when the system resides at the brink
of an antiferromagnetic ordering (due to Hubbard repulsion), in qualitative agreement with recent experimental
findings. The p + ip paired state exhibits quantized spin and thermal Hall conductivities, and polar Kerr and
Faraday rotations. Our conclusions should also be applicable for other correlated two-dimensional Dirac
materials.
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Introduction. Carbon, owing to its flexibility in chemi-
cal bonding, yields a variety of low-dimensional allotropes:
fullerene, nanotubes, and one-atom-thin honeycomb crystal
graphene [1,2]. Due to the van der Waals interaction, the
next generation of allotropes can be synthesized by stacking
a few carbon layers [3]. For example, monolayer graphene
features pseudorelativistic Dirac fermions at low energies [4],
responsible for its unusual electronic properties [5,6]. Further-
more, the Bernal arrangement of two graphene layers hosts
quadratically dispersing gapless chiral excitations [7], while
in rhombohedral trilayer graphene the quasiparticles display
cubic dispersion [8], falling outside the realm of standard
Fermi liquid.

This zoo can further be diversified by introducing a relative
twist between two layers of graphene, which generically gives
rise to incommensurate lattices. In particular, a small twist in
bilayer graphene yields nearly flat bands (NFBs) at a series
of so-called “magic angles”, the first of which occurs at θ ∼
1.05◦, and slow massless Dirac fermions residing near the
charge-neutrality point (CNP) provide an excellent starting
point to describe this system [9–16]. Such NFBs, reported in
recent experiments [17,18], represent an ideal arena for the
interaction effects to set in [19–24]. In fact, superconductivity
with a critical temperature Tc ∼ 1.7 K has been observed in
twisted bilayer graphene close to the first magic angle (MA-
TBLG) upon doping this system [25], standing as the first
example of a pure carbon-based two-dimensional supercon-
ductor. Even more intriguingly, the superconductivity possibly
arises from a parent Mott-like insulating state [25]. Motivated
by these experimental observations, we theoretically address
the effects of strong electronic interactions on slow (due to
a small Fermi velocity) Dirac fermions [26], constituting an
effective low-energy model for MA-TBLG [9–16], and arrive
at the representative phase diagrams, shown in Figs. 1 and 2.

Our main findings can be summarized as follows. First,
assuming that the on-site Hubbard repulsion is the dominant

finite-range Coulomb interaction at the lattice scale, we show
that the leading instability of massless slow Dirac fermions
near the CNP (zero doping) is toward the formation of an
antiferromagnetic (AFM) ground state. However, as the sys-
tem is doped away from the CNP, pairing interactions develop
from the Hubbard repulsion. Among various possible super-
conducting channels, we show that a time-reversal symmetry
breaking, valley pseudospin-triplet (but spin-singlet), topolog-
ical p + ip paired state is energetically most favored. Our
proposed phase diagrams display such competition (Fig. 1)
and a possible coexistence of the AFM and paired states
(Fig. 2). These features are in qualitative agreement with
recent experimental findings [25]. The predicted time-reversal
symmetry breaking p + ip pairing can support quantized
anomalous spin and thermal Hall conductivities, as well as
finite polar Kerr and Faraday rotations.

Model. Low-energy excitations in a MA-TBLG near the
CNP can be described as a collection of slow Dirac fermions
[9–16], with the Fermi velocity vF being ∼25 times smaller
than that in an isolated monolayer graphene [18]. The corre-
sponding Dirac Hamiltonian reads as [29]

HD(k) = vF σ0(�01kx + �02ky) − μ. (1)

The spinor basis is ��(k) = [��
↑ (k), ��

↓ (k)], with ��
σ (k) =

[a1,σ (k), b1,σ (k), a2,σ (k), b2,σ (k)], where a, b are two sub-
lattices, 1,2 represent two inequivalent valleys of the single-
layer graphene lattice, and σ =↑,↓ are two projections of
electronic spin. The chemical potential (μ) is measured from
the CNP. Two valleys are located at the corners of the hexag-
onal Brillouin zone (the K points). An identical Hamiltonian
describes the low-energy excitations in the other layer and we
treat the layer as a decoupled flavor degree of freedom. The
above Hamiltonian arises in the small-angle approximation
where at low energies intravalley tunneling processes between
the layers dominate [9,11]. The five mutually anticommuting
four-component � matrices are the following: �0 = α0β3,
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FIG. 1. Various cuts of the phase diagram of interacting Dirac
fermions at finite temperature (t) and chemical potential (μ, mea-
sured from the CNP), measured in units of vF �. Here, gt

2 =
U�/(12vF ) is the dimensionless coupling constant, vF is the Fermi
velocity, � is the ultraviolet momentum cutoff for slow Dirac
fermions, and U is the strength of the repulsive on-site Hubbard
interaction. The red shaded region is occupied by an antiferromagnet
and the blue region denotes Eg or p + ip pairing (see also Fig. 2).
The region outside these shaded ones is occupied by a correlated
Dirac liquid without any long-range order. The results are obtained
from a renormalization group calculation summarized in Eq. (6) and
the Supplemental Material [28].

�1 = α3β2, �2 = α0β1, �3 = α1β2, and �5 = α2β2. In addi-
tion, ten commutators are defined as � jk = [� j, �k]/(2i). Two
sets of Pauli matrices {αμ} and {βμ} respectively operate on
the valley or pseudospin and sublattice degrees of freedom,
and {σμ} on the spin indices. The noninteracting theory enjoys
separate SU(2) pseudospin and spin rotational symmetries,
respectively generated by {�3, �5, �35} and {σ1, σ2, σ3}, be-
sides the rotational and translational symmetries, respectively
generated by �12 and �35 [see also the Supplemental Material
(SM) [28]).

The quintessential features of an interacting Dirac liquid in
MA-TBLG can be captured by the Hubbard model,

HU = U

2

∑
i

ni,↑ni,↓, (2)

as the on-site interaction is the dominant component of a
finite-range Coulomb interaction [30], where U (> 0) denotes
the strength of the on-site repulsion, and ni,σ is the number
operator at site i with spin projection σ =↑,↓. The low-
energy version of the Hubbard model can be obtained by
decomposing the fermionic operators in terms of the Fourier
modes around two valleys, leading to

HU =
∫

d2x

⎡
⎣gt

1
(�†σ1�)2 + gt

2
(�†σ�0�)2

+ gt
3

∑
j=1,2

∑
k=3,5

(
�†σ� jk�

)2

⎤
⎦, (3)

where gt
1 = gt

2 = 2gt
3 = −U/12 (see SM [28]). While the

first two terms represent forward scattering, the last one
corresponds to backscattering between two valleys. Using
a Fierz identity [31], the above Hamiltonian can also be

written in terms of four-fermion interactions in the spin-
singlet channels, after taking gt

j → −3gs
j and σ → σ0. This

change of representation, along with the change of signs
for all quartic couplings, confirms that a repulsive Hubbard
interaction is conducive for excitonic orderings, but only in
the spin-triplet channel.

Results. To compare the propensity toward the formation
of various spin-triplet excitonic orderings, characterized by an
order parameter 〈�†σM�〉, where M is a four-dimensional
Hermitian matrix, we compute a corresponding bare suscepti-
bility by performing a Hubbard-Stratonovich decomposition
of all quartic terms appearing in the Hubbard model, and
subsequently integrating out fermions. For zero external mo-
mentum and frequency the bare susceptibility at T = 0 reads

χ = −
∫

dω d2k
(2π )3

Tr[Gk(iω)σ jMGk(iω)σ jM], (4)

for a specific choice of spin axis j = x, y, z, where ω is the
fermionic Matsubara frequency and Gk(iω) is the fermionic
Green’s function. The integral over momentum is restricted
up to an ultraviolet cutoff � [32]. The bare susceptibility is
largest for M = �0, as this matrix operator anticommutes with
the Dirac Hamiltonian (for μ = 0), and 〈�†σ�0�〉 represents
the AFM order in a honeycomb lattice. Therefore, a mean-
field analysis of the Hubbard model indicates an onset of
AFM order in a half-filled MA-TBLG, which is quite natural
as the honeycomb lattice does not offer any frustration for
a staggered arrangement of electronic spin [33–36]. Even
though the suppression of the Fermi velocity in MA-TBLG
near the CNP boosts the propensity toward the formation of
an antiferromagnet, since χ ∼ �/vF ∼ E�/v2

F
, where E� ≈

vF � is the Dirac bandwidth [32], due to the vanishing density
of states (DoS), such ordering always takes place at a finite
coupling. Presently, it is not clear whether the Hubbard-U
is sufficient to nucleate the AFM order near the CNP (due
to reduced E�), but a recent experiment is suggestive of a
metallic phase in its vicinity [18,25,37]. While the metallic
phase can be an AFM, for large enough U it can become a
Mott insulator [34,35].

Yet another (perhaps most exciting) experimental obser-
vation in Ref. [25] is the onset of superconductivity with
increasing carrier density in the system. Next, we seek to
understand a possible microscopic origin of such a paired
state. To facilitate the following discussion, we now in-
troduce a 16-component Nambu-doubled basis as ��

N =
[��

σ , iσ2�15(�∗
σ )�]. Generalizing the Fierz identity for all

possible four-fermion pairing interactions [38], given by∑
j gp

j (�
†
Nη1Mj�N )

2
, where the summation over j runs over

all superconducting vertices and Mj’s are eight-dimensional
Hermitian matrices, we find that the on-site repulsive Hubbard
interaction does not favor any superconductivity, at least when
μ = 0, since then gp

j � 0 for all j. The newly introduced Pauli
matrices {ημ} operate in the Nambu (particle-hole) space.
However, at finite chemical doping, a pairing interaction,
conducive for superconductivity, may arise from incipient
AFM fluctuations (without any long-range order) [39].

The mechanism of an incipient fluctuation-mediated pair-
ing interaction can be demonstrated from the vertex correc-
tion (δgp

j,v) to the pairing interaction gp
j due to a dominant
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(a)

(b)

FIG. 2. (a) Amplitudes of antiferromagnet (m) and Eg pairing
(�), obtained by minimizing the free energy [see Eq. (7)], as a
function of small to moderate chemical doping (μ), measured from
the CNP, at a fixed temperature t = 0.1. All quantities are dimension-
less (see text). Corresponding variation of the coupling constants,
gj = (U�/vF )hj (μ, t ) in these two channels, for j = 1, 2, where
hj (μ, t ) are phenomenological functions, supplied from the outset. A
finite-temperature phase diagram is qualitatively similar to the ones
shown in (a) for a fixed value of t , since the transition temperature is
proportional to the amplitude of the corresponding order parameter.
The temperature scale on the right vertical axis in (a) is arbitrary. The
white region at finite t represents the normal state (a correlated Dirac
metal). The coexisting regime in (a) arises due to an SO(5) symmetry
among two order parameters [41]. To construct the phase diagram for
even larger μ, one should account for higher gradient terms, besides
the Dirac components [37].

underlying AFM interaction (gt
2
), given by

δgp
j,v = gt

2
(�†

Nη1Mj�n)�†
N

[∑
iωn

∫
k
σ�0GN

k (iωn, μ)

× η1MjG
N
k (iωn, μ)σ�0

]
�N , (5)

where GN
k (iω,μ) is the fermionic Green’s function in the

Nambu-doubled basis at a finite chemical potential (μ). Notice
that δgp

j,v < 0 (thus conducive for superconductivity) only
when {Mj, σ�0} = 0, since for a repulsive Hubbard interac-
tion gt

2
< 0. Such a criterion immediately justifies one feature:

Incipient magnetic fluctuations can only favor spin-singlet
pairing. Among many possible spin-singlet pairings, only
two, belonging to two-dimensional Eg and A1k representa-
tions of the D3d point group (since we trade the influence
of emergent triangular lattice in favor of a renormalized
Dirac liquid), satisfy the above stringent criterion. In the
announced Nambu-doubled basis these two pairings respec-
tively take the following form: (1) Eg: (η1, η2)σ0(�1, �2);
(2) A1k: (η1, η2)σ0(�03, �05). The Eg pairing directly couples
two inequivalent valleys and preserves the translational sym-
metry in the paired state. This paired state however breaks
the rotational symmetry, since {� j, �12} = 0 for j = 1, 2,
and stands as an example of a nematic superconductor. By
contrast, the A1k pairing takes place separately near two
valleys at ±K and breaks the translational symmetry, since
{�0 j, �35} = 0 for j = 3, 5, with a periodicity of 2|K|. It
represents a commensurate Fulde-Farrel-Larkin-Ovchinikov
(FFLO) pairing [40], also known as a pair-density wave. The
enhancement of pairing interactions in these two channels
stems from an underlying SO(5) symmetry among AFM and
superconducting orders [41].

The A1k pairing commutes with the Dirac Hamiltonian,
implying that δgp

A1k,v = 0 when μ = 0. By contrast, δgp
Eg,v

< 0
for a repulsive Hubbard interaction. Hence, the dominant
propensity in close proximity to an AFM ordering is in the
Eg channel. This conclusion remains valid even when μ �= 0.
The competition between the antiferromagnet and Eg pairing
at finite T and μ can be appreciated from the following
leading order renormalization group (RG) flow equations for
the dominant coupling of the Hubbard model (gt

2
) and the

source terms for these two channels (respectively denoted by
m and �) [42],

dgt
2

d�
= −gt

2
+ 4

(
gt

2

)2
f (t, μ),

dt

d�
= t,

dμ

d�
= μ,

d ln m

d�
− 1 = 7gt

2

2
f (t, μ),

d ln �

d�
−1=3gt

2

4
h(t, μ), (6)

obtained by performing a summation over fermionic Matsub-
ara frequencies and subsequently integrating out a thin Wilso-
nian shell �e−� < |k| < �. Two lengthy functions f (t, μ)
and h(t, μ) are shown in SM [28]. RG flow equations are
expressed in terms of dimensionless variables obtained by tak-
ing gt

2
�/(πvF ) → gt

2
, (T, μ, m,�)/(�vF ) → (t, μ, m,�).

To the leading order vF does not get renormalized by local
interactions.

Both temperature and chemical potential introduce infrared
cutoffs for the RG flow, respectively given by �t

∗ = − ln t (0)
and �

μ
∗ = − ln μ(0), where X (0)(< 1) denotes bare dimen-

sionless parameters. Therefore, we run the flow of gt
2 only

up to a scale �∗ = min (�t
∗, �

μ
∗ ). Now, depending on the bare

coupling constant gt
2
(0), two scenarios can arise: (a) gt

2
(�∗) <

1 or (b) gt
2
(�∗) > 1. While the former situation describes an

interacting Dirac liquid without any spontaneous symmetry
breaking, the latter one indicates a breakdown of perturbation
theory and the onset of an ordered phase. To determine the
actual pattern of the symmetry breaking, we simultaneously
run the flow of the source terms for two competing channels.
When gt

2(�∗) > 1, the broken symmetry phase represents an
antiferromagnet if m(�∗) > �(�∗), or an Eg superconductor
if �(�∗) > m(�∗). Following this procedure, we construct
various cuts of the phase diagram in the (gt

2, t ) plane, for
different values of μ, shown in Fig. 1.

The phase diagram shows that beyond a critical strength of
interaction and at zero doping the only possible ordered phase
is an antiferromagnet. But, with increasing chemical doping,
the critical interaction strength for the AFM ordering in-
creases, while a superconducting phase develops for a weaker
interaction. Presently, it is unknown how the bare strength of
the Hubbard interaction scales as a function of the chemical
doping, which can only be accomplished from a microscopic
calculation [30]. Nevertheless, it is conceivable for the real
system to follow a path in the phase diagram (Fig. 1) that goes
through the superconducting phase for low chemical doping,
entering into the AFM phase at higher doping, as we show
(phenomenologically) below (Fig. 2).

To demonstrate a possible coexistence of an antiferro-
magnet and Eg pairing inside an ordered phase, where the
perturbative RG breaks down (since gt

2
> 1), we focus on the
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following mean-field free energy [43],

f̄ = m2

2g1

+ |�|2
4g2

− 4t
∑
j=1,2

∫ ′ d2k
(2π )2

ln

[
2 cosh

(
Ej

2T

)]
, (7)

for kB = 1. All quantities in f̄ are dimensionless, with

Ej = {
v2

F k2 + μ2 + m2 + |�|2 + (−1) j
[
2v2

F k2|�|2

×(1 − sin 2θk ) + 4
(
v2

F k2 + m2)μ2]1/2}1/2
, (8)

where θk = tan−1(ky/kx ). The coupling constant g1 (g2 ) sup-
ports AFM (superconducting) order. Minimization of f̄ with
respect to m and � leads to coupled gap equations, shown
in the SM [28], which we solve numerically to arrive at the
phase diagram, displayed in Fig. 2. We find that it is possible
for the system to first enter into a superconducting phase as
we increase the chemical doping away from the CNP and
subsequently support an AFM state, in qualitative agreement
with experimental observations [25]. The underlying SO(5)
symmetry between these two orders also permits a region of
coexistence.

Responses and topology. To appreciate the phase lock-
ing between two components of the Eg pairing and emer-
gent topology of Bogoliubov–de Gennes (BdG) quasiparticles
deep inside the paired state, we now project it onto the
Fermi surface, yielding the following effective single-particle
Hamiltonian,

HBdG = ξkη3 + |�|
kF

[η1σ0kx + η2σ0ky]α3, (9)

where ξk = vk − μ or [k2/(2m) − μ∗], respectively, in the
presence or absence of AFM order, kF is the Fermi momen-
tum, and μ∗ = μ − m (see SM [28]). The phase locking be-
tween the kx and ky components is dictated by the requirement
of a maximally gapped Fermi surface (since all entries in HBdG

mutually anticommute), yielding the largest gain of conden-
sation energy. The time-reversal symmetry is spontaneously
broken in this paired state. Hence, the Eg pairing close to the
Fermi surface assumes the form of a fully gapped topological

p + ip pairing. This is a class D spin singlet, but pseudo- or
valley-spin-triplet pairing, characterized by a Z topological
invariant [44], and supports quantized anomalous spin and
thermal Hall conductivities, respectively given by

σ 0
xy,S = h̄

4π
, lim

T →0

κxy

T
= 2

3

π2k2
B

h
, (10)

as temperature T → 0, respectively, as well as finite polar
Kerr and Faraday rotations [45]. By contrast, if the pairing
interaction exists over the entire valence and conduction
bands, then a maximally gapped Fermi surface, comprising
two point nodes around which the DoS vanishes as �(E ) ∼
|E |, is obtained from a time-reversal symmetric combination
|�|η1σ0(�1 cos φ + �2 sin φ) of the Eg pairing. Here, φ is
an internal angle, which should be locked at specific values,
depending on the underlying crystal potential. Therefore, the
above-mentioned responses (spin and thermal Hall conductiv-
ities, and Kerr and Faraday rotations) can probe the nature
or extent of the pairing interaction in MA-TBLG. To this
end, the measurement of the penetration depth (�λ) can be
instrumental, leading to �λ ∼ (T/Tc)n, with n ≈ 3–4 for the
fully gapped p + ip state, but n = 1 for gapless Eg pairing,
when T � Tc [46].

In brief, starting from an effective low-energy model of
interacting slow Dirac fermions, we demonstrate that MA-
TBLG can display an intriguing confluence of competing
AFM and singlet Eg nematic superconducting phases [47], if
the on-site Hubbard repulsion stands as the dominant com-
ponent of the finite-range Coulomb interaction. Close to the
Fermi surface, the Eg superconductor represents a pseudospin-
triplet p + ip pairing, which can support quantized anomalous
spin and thermal Hall conductivities. Such a superconducting
state supports Majorana edge modes [48,49], turning MA-
TBLG into a potential platform for topological quantum com-
puting [50].

Acknowledgments. We are thankful to Pablo Jarillo-
Herrero and Andras Szabó for useful discussions.

[1] A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Carbon Nan-
otubes: Advanced Topics in the Synthesis, Structure, Properties
and Applications (Springer, Berlin, 2008).

[2] M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cam-
bridge University Press, Cambridge, U.K., 2012).

[3] A. K. Geim and I. V. Grigorieva, Nature (London) 499, 419
(2013).

[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 (2004).

[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[6] Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature (London)
438, 201 (2005).

[7] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I.
Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim,
Nat. Phys. 2, 177 (2006).

[8] L. Zhang, Y. Zhang, J. Camacho, M. Khodas, and I. Zaliznyak,
Nat. Phys. 7, 953 (2011).

[9] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Phys. Rev. Lett. 99, 256802 (2007).

[10] E. Suarez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z.
Barticevic, Phys. Rev. B 82, 121407 (2010).

[11] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. USA
108, 12233 (2011).

[12] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Phys. Rev. B 86, 155449 (2012).

[13] G. Trambly de Laissardière, D. Mayou, and L. Magaud, Phys.
Rev. B 86, 125413 (2012).

[14] B. Roy and K. Yang, Phys. Rev. B 88, 241107(R)
(2013).

[15] S. Fang and E. Kaxiras, Phys. Rev. B 93, 235153
(2016).

[16] H.-C. Po, L. Zou, A. Vishwanath, and T. Senthil, Phys. Rev. X
8, 031089 (2018).

121407-4

https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nphys245
https://doi.org/10.1038/nphys245
https://doi.org/10.1038/nphys245
https://doi.org/10.1038/nphys245
https://doi.org/10.1038/nphys2104
https://doi.org/10.1038/nphys2104
https://doi.org/10.1038/nphys2104
https://doi.org/10.1038/nphys2104
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevB.86.125413
https://doi.org/10.1103/PhysRevB.86.125413
https://doi.org/10.1103/PhysRevB.86.125413
https://doi.org/10.1103/PhysRevB.86.125413
https://doi.org/10.1103/PhysRevB.88.241107
https://doi.org/10.1103/PhysRevB.88.241107
https://doi.org/10.1103/PhysRevB.88.241107
https://doi.org/10.1103/PhysRevB.88.241107
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089


UNCONVENTIONAL SUPERCONDUCTIVITY IN NEARLY … PHYSICAL REVIEW B 99, 121407(R) (2019)

[17] Y. Cao, J. Y. Luo, V. Fatemi, S. Fang, J. D. Sanchez-Yamagishi,
K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero,
Phys. Rev. Lett. 117, 116804 (2016).

[18] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature (London)
556, 80 (2018).

[19] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B
83, 220503(R) (2011).
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