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Counterflowing edge current and its equilibration in quantum Hall devices with sharp edge
potential: Roles of incompressible strips and contact configuration
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We report the observation of counterflowing edge current in InAs quantum wells which leads to the breakdown
of quantum Hall (QH) effects at high magnetic fields. Counterflowing edge channels arise from the Fermi-level
pinning of InAs and the resultant sharp edge potential with downward bending. By measuring the counterflow
conductance for varying edge lengths, we determine the effective number 〈NC〉 of counterflowing modes and
their equilibration length λeq at a bulk integer filling factor ν = 1–4. λeq increased exponentially with magnetic
field B, reaching 200 μm for ν = 4 at B � 7.6 T. Our data reveal important roles of the innermost incompressible
strip with even filling in determining 〈NC〉 and λeq and the impact of the contact configuration on the QH effect
breakdown. Our results show that counterflowing edge channels manifest as transport anomalies only at high
fields and in short edges. This in turn suggests that, even in the integer QH regime, the actual microscopic
structure of the edge states can differ from that anticipated from macroscopic transport measurements, which is
relevant to various systems including atomic-layer materials.
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Understanding and controlling the electronic states at the
edge of a two-dimensional system are becoming increasingly
important. This is particularly true for topologically nontrivial
systems, such as quantum Hall (QH) [1–3] and quantum spin
Hall [4,5] systems, where gapless edge states with distinct
properties appear. Recent theories [6–10] predict that, by
coupling their edge states to superconductors, QH as well as
quantum spin Hall systems can be exploited to engineer exotic
quasiparticles with non-Abelian statistics, a building block
for robust quantum computation [11,12]. Semiconductor het-
erostructures comprising InAs, which can form transparent
junctions with superconductors [13–15], are promising for
such purposes. Theory further predicts that certain fractional
QH edge states coupled through a superconductor may harbor
even more exotic quasiparticles that would allow for universal
topological quantum computation [6–10]. Motivated by these
predictions, recently, the quality of InAs-based heterostruc-
tures has been improved significantly [16,17], which has led
to the observation of a fractional QH effect [18].

In standard GaAs-based heterostructures, the edge poten-
tial is bent upward by the Fermi-level pinning in the band
gap so that the electron density decreases monotonically
toward the edge [1,19]. This forms the basis for the com-
mon situation in QH systems where all edge channels have
the same chirality, flowing in the same direction set by the
magnetic field [20]. In contrast, in InAs the surface pinning
occurs in the conduction band [21,22], which implies that
in heterostructures the edge potential is bent downward so
the electron density increases near the edge. While this is
advantageous for superconducting junctions, it gives rise to
trivial edge conduction with no topological origin at zero
magnetic field [15,23–26]. In a quantizing magnetic field, this
suggests that the Fermi level can cross Landau levels extra
times (see the inset in Fig. 1), where additional sets of edge
channels form [27]. Since the direction of the electron drift

velocity is determined by the sign of the potential gradient,
the additional edge channels carry current in the forward and
counterflow directions. As recently revealed in graphene [28],
a similar situation can also occur in a gated device due to
electric field focusing near the edge [29].

Counterflowing edge channels were first conceived by van
Wees et al. [27], who observed in their InAs quantum well
that QH effects collapsed when a negative gate voltage below
a certain threshold (∼−0.4 V) was applied. The results were
then explained using the Landauer-Büttiker model [3], taking
into account the scattering between forward and counterflow-
ing edge channels, which indicated a typical equilibration
length in excess of 200 μm. However, it remains unknown
what determines the equilibration length and how it depends
on the parameters such as the magnetic field and filling factor.
In this Rapid Communication, we address these issues by
systematically studying QH edge transport in InAs quantum
wells using gated Hall-bar devices with only well-defined
edges. We directly detect the upstream charge current using
a three-terminal setup, which allows us to determine the
effective number of counterflowing modes and their equilibra-
tion length. Our data reveal important roles of the innermost
incompressible strip with even filling and the impact of the
contact configuration for the counterflowing edge channels
to manifest in transport. Our results provide insights into the
microscopic details of QH edge states, which will be useful
for understanding edge transport in various systems including
atomic-layer materials and in superconducting junctions, not
only in the QH but also in the quantum spin Hall setups.

The heterostructure studied was grown by molecular beam
epitaxy on an n-type GaSb (001) substrate. The layer structure
comprises a 20-nm-thick InAs quantum well sandwiched
between Al0.7Ga0.3Sb barriers, with no intentional doping to
supply carriers. The center of the well is located 65 nm below
the surface of the 5-nm-thick GaSb cap. The heterostructure
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FIG. 1. Probe-position dependence of Rxx vs B of sample A.
The insets show the contact configuration for each measurement.
Inset of the upper panel: Schematic diagram of the conduction band
edge (EC) and Landau-level dispersion in the presence of Fermi-level
pinning in the conduction band at the edge. Edge channels are formed
when the Fermi level (EF) crosses the Landau levels.

was processed into 50-μm-wide Hall bars as shown in the
inset of Fig. 1 by wet etching [30]. We fabricated devices
with ten Ti/Au Ohmic electrodes and a Ti/Au gate on an
atomic-layer-deposited 40-nm-thick Al2O3 insulator. The gate
covers all the mesa edges and their interface with Ohmic
contacts, so that all the edges are defined in the same way. The
sample had a sheet electron density of n = 3.65 × 1015 m−2

and a low-temperature mobility of 50 m2/V s. We used two
samples fabricated from the same wafer, sample A with all
edges having the same length of Ledge = 60 μm and sample B
with varying Ledge (=30−280 μm). Measurements were done
at 1.5 K using a standard lock-in technique with a frequency
of 33 Hz and current Iin of 10 nA. The virtual-ground input of
the lock-in amplifier was used to measure the current.

We first present results for sample A. Figure 1 shows the
magnetic field (B) dependence of the longitudinal resistance
(Rxx) at a front gate voltage VFG = 0 V, measured using differ-
ent pairs of voltage probes on the lower edge of the sample. At
|B| � 4 T, we observe normal behavior—Shubnikov–de Haas
oscillations and a well-developed QH effect at a Landau-level
filling factor ν = 4—for all configurations (ν = nh/eB with
e the elementary charge and h Planck’s constant). In contrast,
anomalous behavior is seen at |B| > 4 T, where the QH effects
expected at ν = 3 and 2 are not fully developed or com-
pletely missing, as seen by the nonvanishing Rxx. Interestingly,

the values of the finite Rxx at ν = 3 and 2 systematically
depend on the field direction and probe position. At ν =
2, Rxx measured with the lower-right probes (Ra) is much
higher for B < 0 than for B > 0. Opposite behavior is seen
for Rxx measured with the lower-left probes (Rc), which is
much higher for B > 0. The lower-middle probes (Rb) give
intermediate values nearly symmetric for both field directions.
Although not shown, measurements using the probes on the
upper edge confirm similar behavior, but with the probe-
position dependence 180◦ rotated around the sample normal.
(Additional measurements with Iin = 100 nA confirmed that
there was no significant current dependence.) We show below
that this chiral breakdown behavior of the QH effect can
be explained by the Landauer-Büttiker model that takes into
account the scattering between forward and counterflowing
edge channels.

We demonstrate the existence of counterflowing charge
current using the three-terminal measurements as illustrated
in Fig. 2(a), which in turn allowed us to directly determine the
number of counterflowing modes (NC) and their transmission
probability (TC) for individual edges. In order to examine the
Ledge dependence of TC, we used sample B with varying Ledge

(=30−280 μm). A magnetic field was applied in the direction
so that the chirality of the edge channels was clockwise.
With this three-terminal setup, we detected charge current
Icntr at the probe located on the upstream of the electrode
from which Iin (∼10 nA) was driven, in addition to normal
forward current Ifwd measured on its downstream. To check
the conduction through the bulk, we also monitored current
Iopp on the opposite side of the Hall bar. In the QH regime,
where the current cannot flow through the bulk, the chirality
requires Ifwd = Iin and Icntr = 0. As shown in Fig. 2(b), we
observe that this holds only at B = 2–4 T. At B > 4 T, Ifwd

is seen to be noticeably lower than Iin at fields where Iopp

is vanishing, accompanied by a significant increase in Icntr.
This observation of upstream charge current in the QH regime
provides direct evidence for the existence of counterflowing
edge channels.

Using the voltage Vin applied to drive Iin and measured
currents Ifwd and Icntr in the QH regime, we define the
conductance in the forward and counterflow directions as
g(i)

F = (Ifwd/Vin)/G0 and g(i−1)
C = (Icntr/Vin)/G0 for the edges

on the downstream and upstream labeled i and i − 1, re-
spectively, in units of conductance quantum G0 = e2/h. In
the Landauer-Büttiker model [3,27], gC can be expressed as
g(i−1)

C = NCT (i−1)
C , where T (i−1)

C is the transmission probability
of the counterflowing mode of the edge on the upstream la-
beled i − 1. Note that there are ν + NC forward edge channels
in the presence of NC counterflowing edge channels. Detailed
balance requires g(i)

F = ν + g(i)
C for each edge [31]. In what

follows, we therefore show only results for gC. We repeated
similar three-terminal measurements using the same sample
while sequentially changing the injector and detector contacts,
which allowed us to evaluate gC for different edges. Fig-
ure 2(c) shows gC for different Ledge, obtained while sweeping
VFG at a fixed magnetic field of 6 T. The top axis shows the
bulk filling factor determined from the low-field Shubnikov–
de Haas oscillations and Hall measurements at each VFG. We
note that gC oscillates with VFG, but with the positions of the
minima shifted from the bulk integer filling to lower VFG [32].
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FIG. 2. (a) Schematic of the three-terminal measurement detecting upstream counterflowing current Icntr in addition to normal forward
current Ifwd (shown by the blue and red arrows, respectively). Current Iopp at the opposite side of the Hall bar was also monitored as a measure
of bulk conduction. (b) Magnetic field dependence of Ifwd, Icntr, and Iopp, measured in sample B at VFG = 0 V using the configuration shown
in (a). (c) VFG dependence of the normalized counterflow conductance gC (∝Icntr) for different edge length (Ledge) at B = 6 T (see main text
for details). The top axis indicates the bulk filling factor estimated from the low-field Shubnikov–de Haas oscillations and Hall measurements
at each VFG. (d) Ledge dependence of NCTC (=gC) for ν = 1–4 extracted from the data in (c). Solid lines are fitting using a single exponential
function.

As Fig. 2(c) shows, gC decreases with increasing Ledge for
all VFG. In the following, we restrict our analysis to the gC

values at integer bulk filling [shown by symbols in Fig. 2(c)],
where we confirmed the absence of bulk conduction. In
Fig. 2(d), we plot NCTC (=gC) at 6 T as a function of Ledge for
ν = 1–4. The data were then fitted with a single exponential
function NCTC = A exp(−Ledge/λeq) using A and λeq as fitting
parameters. As TC → 1 is expected for Ledge → 0, we see that
A = NC. We therefore use 〈NC〉 instead of A to represent the
effective number of counterflowing modes deduced from the
fitting. For ν = 4, we obtain 〈NC〉 = 1.67 and λeq = 70 μm at
B = 6 T.

We performed similar measurements and analysis for a
range of magnetic fields (B = 4–8 T). The results are sum-
marized in Fig. 3, where λeq and 〈NC〉 obtained for ν = 1–4
are plotted as a function of VFG. For all ν, λeq monotonically
increases with increasing VFG [Fig. 3(a)] and hence B (inset)
[33]. This suggests that the distance between the forward
and counterflowing edge channels increases with B, which
reduces the scattering between them. At high fields, λeq for
ν = 3 and 4 reaches ∼200 μm, the value reported in Ref. [27].
Interestingly, 〈NC〉 increases with VFG and peaks out below 1
for ν = 1 and 3, whereas it exceeds 1 and then levels off below
2 for ν = 2 and 4 [Fig. 3(b)] [34].

To gain insight into the B dependence of λeq and the
even-odd behavior of 〈NC〉, we simulated the density profile
near the mesa edge by solving the Poisson equation self-
consistently within the semiclassical approach taking only
Landau quantization into account [35]. In Fig. 4, we compare
the density profiles for ν = 3 [Fig. 4(a)] and 4 [Fig. 4(b)]
at the same bulk density of 3.65 × 1015 m−2. In both cases,
density increases toward the edge, where it drops sharply to
zero. Notably, density varies in a stepwise manner due to
the formation of compressible and incompressible strips [19].

As the charge equilibration between adjacent edge channels
occurs via scattering across the incompressible strip between
them [28,36], its width is the important parameter determining
the scattering rate. The width is determined by the density
gradient at B = 0 and the Landau-level energy separation
at the strip [19], the latter being the cyclotron and Zeeman
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energy for even and odd local filling (νlocal), respectively. Our
simulations reveal an important role played by the innermost
incompressible strip with even νlocal. For odd bulk filling ν =
3, the one with νlocal = 4 is the widest [Fig. 4(a)], reflecting
the small density gradient (at B = 0) and the large cyclotron
gap, which then isolates one inner counterflowing channel
from all other channels. The outer counterflowing channels
are very close to the forward channels and easily equilibrated
with them. This explains why only one counterflowing mode
can transmit for odd ν. In contrast, for ν = 4, the innermost
incompressible strip has νlocal = 5, so that it is much narrower,
reflecting the small Zeeman gap. Consequently, the widest
incompressible strip develops at νlocal = 6 [Fig. 4(b)], which
isolates two inner counterflowing channels, allowing more
than one counterflowing mode to transmit. The B dependence
of λeq can be understood in terms of the incompressible-strip
width, which we discuss later in detail.

Now we discuss the probe-position and field-direction
dependence of the QH effect breakdown presented in Fig. 1.
Using the Landauer-Büttiker model, we calculate Rxx as a
function of TC for the configuration shown in Fig. 5(a).
The current-voltage relation can be expressed as �I = G0M�V ,
where �I = (. . . , Ii, . . . )T and �V = (. . . ,Vi, . . . )T with Ii (Vi)
the current (voltage) of the ith contact (i = 1–10) [28]. M is a
matrix with nonzero elements given by

Mi,i = (ν + NC)T (i)
F + NCT (i−1)

C ,

Mi,i+1 = −NCT (i)
C ,

Mi,i−1 = −(ν + NC)T (i−1)
F

(i mod 10), where T (i)
F is the transmission probability of the

forward mode on the ith edge. Scattering between forward and
counterflowing modes is described by the detailed balance as
(ν + NC)(1 − T (i)

F ) = NC(1 − T (i)
C ). Since all the edges have

the same length in the present case, we assume that they share
the same TC and TF values. We then solved the above equations
with I1 = Iin, I6 = −Iin, and V6 = 0.

The TC dependence of Rxx calculated for ν = 2 and 3 is
shown in Fig. 5(b). For these calculations, we took NC = 1, for

TC
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(b) Rxx calculated as a function of TC for ν = 2 (upper panel) and
3 (lower panel). Rxx values for different probes, Rα = Vα/Iin (α =
a, . . . , f), are shown. Circles are experimental data in Fig. 1, plotted
vs TC calculated using the λeq values in Fig. 3(a). Open circles are
data for B < 0, which are included by using the relation Ra(−B) =
Rc(B).

comparison with the experiment at VFG = 0 V [Fig. 3(b)]. The
experimental data taken from Fig. 1 are plotted in Fig. 5(b)
against TC[=exp(−Ledge/λeq)] calculated using λeq for ν = 2
and 3 at VFG = 0 V [Fig. 3(a)]. Since the model predicts
Ra(−B) = Rc(B), we included in Fig. 5(b) the data for B < 0
using this relation. The calculation reproduces the experi-
mentally observed probe-position dependence, Ra < Rb < Rc

for B > 0, including the quantitative values. We note that at
VFG = 0 V the equilibration lengths for ν = 2 and 3 (λeq ∼ 70
and 50 μm, respectively) are comparable to Ledge (=60 μm).
Hence, the counterflowing mode, being not fully equilibrated
with the forward mode, carries charge to the electrode on
the upstream and destroys the QH effect. In contrast, λeq =
13 μm for ν = 4 at VFG = 0 V is much shorter than Ledge,
implying a nearly full equilibration [37]. This explains why
the ν = 4 QH effect is well developed at VFG = 0 V, despite
the presence of the counterflowing edge channels.

The probe-position and field-direction dependence can be
understood intuitively by considering hot spots [38,39]. In the
absence of counterflowing modes, the chemical potential of
a forward mode just follows that of the current terminal on
its upstream. Consequently, all the applied bias between the
source and drain contacts is concentrated at the two corners
where the forward mode meets the source and drain contacts
(“hot spots”) [Fig. 5(a)]. In contrast, the chemical potential
of the counterflowing mode follows primarily that of the
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electrode on its immediate downstream. Therefore, the largest
chemical potential difference between the forward mode and
counterflowing one occurs near the immediate upstream of the
hot spots, yielding the chiral QH breakdown behavior.

We now turn to the B dependence of λeq. As shown in
Fig. 3(a), λeq increases exponentially with B for both even
and odd ν, with nearly the same slope. The inter-edge-channel
scattering rate is governed by the wave function overlap
between the states involved, which scales as ∝(d/�B)−2,
where d is the inter-edge distance and �B = √

h/2πeB is the
magnetic length. If d is given by the width of the innermost
incompressible strip with even νlocal, it is proportional to the
square root of the cyclotron energy [19] and hence scales
as

√
B. Since d/�B ∝ B in this case, one expects λ−1

eq ∝
exp[−(B/B0)2], with B0 a constant [40]. The experimentally
observed dependence, λ−1

eq ∝ exp(−B/B0), is different [41],
suggesting the relevance of multiple scattering with impurities
[42].

Several differences between our results and the previous
ones reported for InAs [27] and graphene [28] are worth not-
ing. In Ref. [27], (i) NC was nonzero only for VFG � −0.4 V,
and (ii) NC increased linearly up to 6 with decreasing VFG. In
our experiment, 〈NC〉 does not show a monotonic VFG depen-
dence, being nonzero for both VFG < 0 and VFG > 0, with the
maximum value peaked out below 2. The chemical properties
of the edge [26] and the relative distances of the bulk and
edge to the gate [43] may partly account for these differences.
However, as our simulations show, the outer counterflowing

channels are spatially very close to the forward channels,
making it rather unlikely for many of them to transmit [44].
In Ref. [28], despite significant charge accumulation at the
edges, QH effects were observed, but at gate voltages shifted
from the integer bulk filling. In the edge-state picture, the
transport quantization was explained as resulting from strong
scattering between forward and counterflowing channels (i.e.,
short λeq) and their isolation from the conductive bulk by
the incompressible strip [45]. The microscopic structure of
the edge states is nontrivial also in this case, which must be
taken into account when making a superconducting junction
[46,47].

In summary, we investigated counterflow edge transport
in InAs quantum wells in the QH regime and clarified how
it equibrates or manifests as a transport anomaly depending
on the magnetic field, filling factor, and contact configura-
tion. Our results suggest that counterflowing edge channels
can exist in various systems with a sharp edge potential.
Thus, even in the integer QH regime, the microscopic struc-
ture of the edge states and hence the transport phenom-
ena therein can be more complex than naively expected
from the bulk-edge correspondence and should be carefully
studied.
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