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We study the semiclassical theory of wave packet dynamics in crystalline solids extended to include the
effects of a nonuniform electric field. In particular, we derive a correction to the semiclassical equations of
motion (EOMs) for the dynamics of the wave packet center that depends on the gradient of the electric field
and on the quantum metric (also called the Fubini-Study, Bures, or Bloch metric) on the Brillouin zone. We
show that the physical origin of this term is a contribution to the total energy of the wave packet that depends
on its electric quadrupole moment and on the electric-field gradient. We also derive an equation relating the
electric quadrupole moment of a sharply peaked wave packet to the quantum metric evaluated at the wave packet
center in reciprocal space. Finally, we explore the physical consequences of this correction to the semiclassical
EOMs. We show that in a metal with broken time-reversal and inversion symmetry, an electric-field gradient
can generate a longitudinal current which is linear in the electric-field gradient, and which depends on the
quantum metric at the Fermi surface. We then give two examples of concrete lattice models in which this effect
occurs. Our results show that nonuniform electric fields can be used to probe the quantum geometry of the
electronic bands in metals and open the door to further studies of the effects of nonuniform electric fields in
solids.
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Introduction. Electron wave packets in a solid placed in an
applied electric-field experience an anomalous contribution to
their velocity which has its origin in the Berry curvature of the
electronic bands. This anomalous velocity is responsible for
the quantized Hall conductivity of Chern insulators, and the
intrinsic contribution to the anomalous Hall effect in metals,
among other things, and these effects can all be understood
within a framework based on the semiclassical equations of
motion (EOMs) for electron wave packets in solids [1–8] (see
also the review [9]). Combining the semiclassical EOMs with
a Boltzmann equation approach to transport is particularly
useful in the search for novel physical consequences of band
geometry and topology [5,6,10–13].

One issue which is not addressed by the current semiclas-
sical framework is the effect of a nonuniform electric field on
wave packet motion. However, it is known that nonuniform
electric fields probe some of the most subtle and interesting
effects in condensed-matter systems, for example, the Hall
viscosity in quantum Hall systems [14,15] and electrical mul-
tipole moments in insulators [16–18]. In addition, it is likely
that nonuniform electric fields can have significant effects in
metals where the partially filled conduction band can respond
quickly to an applied field. These expectations motivate a
systematic study of the semiclassical EOMs in an expansion
in spatial derivatives of the external electric field.

In this Rapid Communication we initiate this study by
considering the semiclassical dynamics of electron wave
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packets in the presence of a constant electric-field gradient.
We derive a correction to the usual semiclassical EOM for the
time derivative of the wave packet center in real space. This
correction depends on the gradient of the electric field, and
on the quantum metric [19] on the Brillouin zone (BZ) for
the electronic band whose states are used in the construction
of the wave packet. The quantum metric (also called the
Fubini-Study metric, Bures metric, Bloch metric, etc.) has
previously been studied in the context of band theory and the
semiclassical EOMs in Refs. [20–36].

The correction to the semiclassical EOMs that we derive
depends on the derivative of the quantum metric. As a conse-
quence, we show that this correction does not affect transport
in insulators. On the other hand, we show one direct effect of
this correction on transport in metals where it can lead to a
longitudinal current proportional to the electric-field gradient
and to the quantum metric at the Fermi surface. Thus, our
result shows that the quantum geometry of bands in metals
can be probed by a transport experiment using a nonuniform
electric field. We now turn to an explanation of our results.

Setup. We study the dynamics of electrons of charge
Q = −e in a crystal and in the presence of a time-independent
electric field E(x). Let x̂μ, p̂ν, μ, ν = 1, . . . , D, denote the
position and momentum operators for a single electron in D
spatial dimensions, with [x̂μ, p̂ν] = ih̄δμ

ν . The single-particle
Hamiltonian is

Ĥ = Ĥ0 + Qϕ(x̂), (1)

where Ĥ0 is a Hamiltonian for an electron in a periodic poten-
tial V (x̂), for example, the standard nonrelativistic Hamilto-
nian Ĥ0 = 1

2m δμν p̂μ p̂ν + V (x̂) for particles of mass m. In fact,
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our only requirement for Ĥ0 is that it be subject to Bloch’s
theorem. The second term in Ĥ captures the coupling to the
electric field E(x), which is determined by the potential ϕ(x)
as Eμ(x) = − ∂ϕ(x)

∂xμ .
Bloch’s theorem implies that Ĥ0 has a basis of eigen-

states (“Bloch waves”) |ψn,q〉 which are labeled by a band
index n and a wave vector q (in the first BZ) and obey
Ĥ0|ψn,q〉 = En(q)|ψn,q〉, where En(q) are the energy eigenval-
ues. In addition, we can write |ψn,q〉 = eiqμ x̂μ |un,q〉 where the
function un,q(x) := 〈x|un,q〉 has the periodicity of the crystal
lattice. Note that the Bloch states are time independent since
we have made the simplifying assumption that our Hamil-
tonian is time independent. We normalize the Bloch states
so that 〈ψn,q|ψn′,q′ 〉 = δn,n′δ(D)(q − q′), which implies that
〈un,q|un′,q〉 = δn,n′ . Here, the the inner product of the |un,q〉
is defined as integration over the real-space unit cell times a
factor of (2π )D

vc
, where vc is the volume of the real-space unit

cell [37]. We also introduce a crystal momentum operator q̂μ

which is diagonal in the basis of Bloch states and satisfies
q̂μ|ψn,q〉 = qμ|ψn,q〉.

We are interested in the leading corrections to the semiclas-
sical EOMs due to a nonzero electric-field gradient, and so we
choose a potential of the form ϕ(x) = −E (0)

μ xμ − 1
2 E (0)

μν xμxν ,
where E (0)

μ and E (0)
μν (with E (0)

μν = E (0)
νμ ) are two sets of constant

parameters. The components of the electric field are then
Eμ(x) = E (0)

μ + E (0)
μν xν . We see that E (0)

μ specify the uniform
part of the electric field, while E (0)

μν specify the electric-field
gradient.

Wave packets and their first moments. We study the time
evolution (using the full Hamiltonian Ĥ ) of a wave packet
|�(t )〉 constructed from the Bloch states |ψn,q〉. We assume
that the wave packet is constructed from states within a single
band, and so we drop the band index n from the notation. We
define this wave packet state as |�(t )〉 = ∫

dDq a(q, t )|ψq〉,
where a(q, t ) is a complex amplitude which must satisfy
the normalization condition

∫
dDq |a(q, t )|2 = 1 (q integrals

run over the first BZ). By plugging into the Schrödinger
equation ih̄ d

dt |�(t )〉 = Ĥ |�(t )〉, one can show that a(q, t )
satisfies

ih̄ȧ(q, t ) = a(q, t )E (q) + Q
∫

dDq′ a(q′, t )〈ψq|ϕ(x̂)|ψq′ 〉,
(2)

where the dot denotes a time derivative.
The semiclassical EOMs for wave packet dynamics in

solids can be derived by studying the dynamics of the
first moments X μ(t ) and Kμ(t ) of the wave packet in po-
sition and reciprocal space, respectively. These are defined
by X μ(t ) = 〈�(t )|x̂μ|�(t )〉 and Kμ(t ) = 〈�(t )|q̂μ|�(t )〉 =∫

dDq qμ|a(q, t )|2. We derive the semiclassical EOMs for
X μ(t ) and Kμ(t ) by first computing the exact expressions
for Ẋ μ(t ) and K̇μ(t ), and then truncating these expressions
using the assumption that the wave packet is sharply peaked
about the locations X μ(t ) and Kμ(t ) in position and reciprocal
space. To derive the equations for Ẋ μ(t ) and K̇μ(t ) we simply
differentiate the expressions for X μ(t ) and Kμ(t ) with respect
to time, and then we substitute in for ȧ(q, t ) and ȧ(q, t ) using
Eq. (2) and its complex conjugate.

After a tedious but straightforward calculation, we find that
the equation for Ẋ μ(t ) takes the form

Ẋ μ(t ) = 1

h̄

〈
∂E (q̂)

∂qμ

〉
t

− 1

h̄
QE (0)

ν 〈	μν (q̂)〉t

− 1

2h̄
QE (0)

νλ 〈{x̂λ,	μν (q̂)}〉t − 1

2h̄
QE (0)

νλ

〈∂gνλ(q̂)

∂qμ

〉
t
,

(3)

where 〈·〉t denotes an expectation value in the state |�(t )〉,
and {·, ·} denotes an anticommutator (third term on the right-
hand side). In this equation 	μν (q) is the Berry curvature,
which is expressed in terms of the Berry connection Aμ(q) =
i〈uq| ∂uq

∂qμ
〉 as 	μν (q) = ∂Aν (q)

∂qμ
− ∂Aμ(q)

∂qν
. The quantity gμν (q) is

the quantum metric on the BZ, and is defined as

gμν (q)= 1

2

(〈
∂uq

∂qμ

∣∣∣∣∂uq

∂qν

〉
−

〈
∂uq

∂qμ

∣∣∣∣uq

〉〈
uq

∣∣∣∣∂uq

∂qν

〉
+(μ ↔ ν)

)
.

(4)

Both 	μν (q) and gμν (q) are invariant under a gauge transfor-
mation |uq〉 → e−i f (q)|uq〉 for any function f (q). The equa-
tion for K̇μ(t ) is much simpler, and it takes the form

K̇μ(t ) = 1

h̄
QEμ(X(t )), (5)

where Eμ(X(t )) = E (0)
μ + E (0)

μν X ν (t ) is the electric field at the
location of the first moment X μ(t ).

To derive these equations, it is necessary to use ex-
plicit expressions for the matrix elements 〈ψq|x̂μ|ψq′ 〉 and
〈ψq|x̂μx̂ν |ψq′ 〉 of the position operator in the Bloch states. We
record these expressions in Eqs. (3) and (4) of the Supple-
mental Material [38]. In the derivation we also used several
integrations by parts in integrals over the BZ, and we ne-
glected boundary terms. If the amplitudes a(q, t ) or the Berry
connection Aμ(q) are not single valued, then there could be
some interesting, subtle additions to these modified EOMs.
In the Supplemental Material we show that by a suitable
choice of gauge for the Bloch states |ψq〉, we can make a(q, t )
single valued for all t . In that case the only possible source of
boundary corrections is the Berry connection. Here we assume
that no boundary corrections arise, and we leave a detailed
discussion of any alternatives to future work.

To obtain the semiclassical EOMs for X μ(t ) and Kμ(t ) we
make the substitutions x̂μ → X μ(t ) and q̂μ → Kμ(t ) in all
expectation values in Eqs. (3) and (5). Our result, which is
one of the main results of this Rapid Communication, is that
the semiclassical EOMs take the form

Ẋ μ = 1

h̄

∂E (K)

∂Kμ

− 	μν (K)K̇ν − 1

2h̄
QE (0)

νλ

∂gνλ(K)

∂Kμ

, (6a)

K̇μ = 1

h̄
QEμ(X), (6b)

where we also used the second equation to rewrite part
of the Ẋ μ(t ) equation in terms of K̇μ(t ). The main differ-
ence compared to the usual semiclassical EOMs is the term
− 1

2h̄ QE (0)
νλ

∂gνλ(K)
∂Kμ

. This new term depends on the gradient of

the electric field, since it depends on E (0)
νλ but not E (0)

μ , and it
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also probes the geometry of the band structure since it involves
the quantum metric gνλ(K).

Interpretation. We now show that the new term in Eq. (6)
arises from an electric-field-induced correction to the energy
of the wave packet. In the absence of an electric field we have
〈�(t )|Ĥ0|�(t )〉 = ∫

dDq|a(q, t )|2E (q) ≈ E (K), where K(t )
is the wave packet center. In the presence of the electric field,
we show in the Supplemental Material that the wave packet
energy takes the form

〈�(t )|Ĥ |�(t )〉 ≈ E (K) − QE (0)
μ X μ

− 1
2 QE (0)

μν (X μX ν + gμν (K)) (7)

≡ Eeff (X, K). (8)

As a result, the corrected semiclassical EOM for Ẋ μ(t ) can be
rewritten as

Ẋ μ = 1

h̄

∂Eeff (X, K)

∂Kμ

− 	μν (K)K̇ν . (9)

We can also rewrite the equation for K̇μ(t ) as K̇μ =
− 1

h̄
∂Eeff (X,K)

∂X μ .
In this form, the correction to the Ẋ μ(t ) and K̇μ(t ) equa-

tions closely resembles a similar correction which occurs for
electrons in a magnetic field. In that case the correction to the
wave packet energy arises from the magnetic moment of the
wave packet [6]. In the present case of a nonuniform electric
field, the corrections to the energy depend on the dipole
moment X μ(t ) of the wave packet (the term proportional to
E (0)

μ ), and on the quadrupole moment of the wave packet
(the term proportional to E (0)

μν ). Indeed, in the Supplemental
Material we show that for a wave packet |�(t )〉 sharply peaked
at position K in reciprocal space, the quadrupole moment is
given by

〈�(t )|x̂μx̂ν |�(t )〉 ≈ X μX ν + gμν (K). (10)

The correction due to the dipole moment is already present
in the case of a uniform electric field, and it does not alter
the semiclassical EOMs. On the other hand, the correction
proportional to the quadrupole moment is only present in a
nonuniform field, and it does alter the semiclassical EOMs.
We also note that to find the gμν (K) term in Eeff (X, K), we
need to expand Q〈�(t )|ϕ(x̂)|�(t )〉 to second order about the
wave packet center in real space, and so this term cannot be
found using the first-order expansion of Ref. [7].

Physical consequences. We now discuss the physical
consequences of the new term in Eq. (6) for transport in
solids. Within the semiclassical approach, the current den-
sity jμ(r) at position r in the material is given by jμ(r) =
Q

∫
dDX dDK

(2π )D f (X, K, t )Ẋ μδ(D)(X − r), where f (X, K, t ) is
the nonequilibrium distribution function which specifies the
occupation, at time t , of the volume element dDX dDK

(2π )D

at position (X, K) in phase space. The full distribution
function can be obtained by solving the Boltzmann equa-
tion. In the relaxation-time approximation, with relaxation
time τ, f (X, K, t ) takes the form of a power series in τ ,
f (X, K, t ) = f0(K) + O(τ ), where f0(K) is the equilibrium
distribution function specifying the occupied states in recip-
rocal space at temperature T [5,6,10–13]. In what follows,
we will be interested in the currents which come from this

zeroth-order contribution, which captures the intrinsic part of
the linear response of the system to the applied electric field.
The zeroth-order contribution to the current is then jμ0 (r) =
Q

∫
dDK

(2π )D f0(K)Ẋ μ|X=r. In D = 2, for example, jμ0 (r) contains
the intrinsic contribution to the anomalous Hall effect. Using
Eq. (6), we find that jμ0 (r) contains the additional term

jμgeom.(r) = −Q2

2h̄

∫
dDK

(2π )D
f0(K)E (0)

νλ

∂gνλ(K)

∂Kμ

, (11)

which involves the electric-field gradient and the quantum
metric. We will refer to jμgeom. as the geometric current.

The geometric current is easiest to understand in the case
of a metal in D = 1 dimension (so μ, ν = 1 in all equations).
Recall that we considered wave packets constructed from
states in a single band. We assume a partial filling of this
band such that the Fermi level EF crosses the band at the set
of wave numbers {kI,+, kI,−}I∈{1,...,nF } for some integer nF (so
2nF is the total number of Fermi points). Our notation means
that ∂E (K1 )

∂K1
is positive at a + Fermi point and negative at a

− Fermi point (we assume that EF is chosen so that there is
no Fermi point where ∂E (K1 )

∂K1
vanishes). At temperature T = 0

the distribution function f0(K1) is equal to 1 if E (K1) � EF

and zero otherwise. After an integration by parts, and using
∂ f0(K1 )

∂K1
= ∑nF

I=1 [δ(K1 − KI,−) − δ(K1 − KI,+)], we find that
(h = 2π h̄)

j1
geom. = −1

2

Q2

h
E (0)

11

nF∑
I=1

[g11(KI,+) − g11(KI,−)], (12)

which is nonzero if the sum does not equal zero.
Next, we consider a similar example for a metal in D =

2. To illustrate the nontrivial response we compute j1
geom. as

an example. We again consider a single band and we assume
the Fermi surface consists of a single closed contour C. For
simplicity, we assume further that the parts of C to the left and
right of the K2 axis can be specified by single-valued functions
hL(K2), hR(K2), such that K1 = hL(K2) defines the part of C
to the left of the K2 axis, and K1 = hR(K2) defines the part
to the right [note that for a generic C the functions hR/L (K2)
would not be single valued]. Let K2,+ > 0 and K2,− < 0 be
the two points where C intersects the K2 axis. This situation
is illustrated in Fig. 1. At T = 0 the distribution function for
this metal is f0(K) = 1 for K inside C, and zero otherwise. We
then have ∂ f0(K)

∂K1
= δ(K1 − hL(K2)) − δ(K1 − hR(K2)), and so

j1
geom. = −Q2

2h

E (0)
νλ

2π

(∫ K2,+

K2,−
dK2 gνλ(K)

∣∣∣∣
K1=hR (K2 )

−
∫ K2,+

K2,−
dK2 gνλ(K)

∣∣∣∣
K1=hL (K2 )

)
. (13)

Since j1
geom. involves an integral of gμν (K) only on C, we see

that this current is a Fermi surface property, like the intrinsic
contribution to the anomalous Hall effect [8], and it vanishes
in insulators [which have a full band, f0(K) = 1 ∀ K].

Symmetry analysis. In systems with time-reversal sym-
metry we have E (K) = E (−K) and gμν (K) = gμν (−K), and
identical conditions hold in the case of inversion symmetry.
These conditions imply that jμgeom. = 0. To prove this we
use these conditions to first replace gμν (K) in Eq. (11) with
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FIG. 1. A Fermi surface C (red contour), whose segments to
the left and right of the K2 axis are defined by the relations K1 =
hL (K2), K1 = hR(K2), respectively, where hR/L (K2) are single-valued
functions of K2.

gμν (−K). Next, we use the fact that f0(K) = f0(−K) if f0(K)
is a function of E (K) only (as it would be in thermal equi-
librium or at T = 0). Finally, we change integration variables
from K to −K to find that time-reversal or inversion symmetry
imply that jμgeom. = − jμgeom., and so jμgeom. = 0. Therefore we
must break these symmetries to obtain jμgeom. �= 0.

Examples in D = 1 and D = 2. We now discuss two
examples of lattice models of metals in D = 1 and D = 2
which yield a nonzero geometric current. We present the
detailed results for the geometric current in these models in
the Supplemental Material. In D = 1 we consider the two-
band model with Bloch Hamiltonian

H1D(k) = A sin(k)I + sin(k)σ x + [m + 1 − cos(k)]σ z ,

(14)
where I is the 2 × 2 identity matrix and σ x,y,z are the Pauli
matrices. In D = 2 we consider the two-band model with
Bloch Hamiltonian

H2D(k) = A sin(k1)I + sin(k1)σ x + sin(k2)σ y

+ [m + 2 − cos(k1) − cos(k2)]σ z. (15)

In both cases we choose the parameters m and A so that there
is an energy gap between the two bands of the model. We then
fill the lower band and partially fill the upper band to a Fermi
energy EF to obtain a model of a metal. In the Supplemental
Material we show that under these conditions, and when the
parameter A �= 0, both of these models display a nontrivial
geometric current in the presence of a nonuniform electric
field in the X 1 direction (i.e., E (0)

11 �= 0). In both cases the
condition A �= 0 is required to break inversion and/or time-
reversal symmetry, which then allows for a nonzero jμgeom.

according to our previous discussion.
Discussion. A natural question to ask is how one can

distinguish the geometric current of Eq. (12) from a more
typical longitudinal current of the Drude form. The Drude
contribution has the form

j1
Drude(r1) = τ

Q2

h
E1(r1)

nF∑
I=1

[v(kI,+) − v(kI,−)], (16)

where τ is the relaxation time and v(k) = ∂E (k)
∂k . To distinguish

this from Eq. (12) we choose an electric field which is a pure
gradient around an origin, E1(r1) = E (0)

11 r1. We then compute
the average of the current over a spatial region centered at
that origin, r1 ∈ [− L

2 , L
2 ]. We find that

∫ L/2
−L/2 dr1 j1

Drude(r1) =
0, while

∫ L/2

−L/2
dr1 j1

geom.(r
1)=−LQ2E (0)

11

2h

nF∑
I=1

[g11(KI,+)−g11(KI,−)].

(17)
Thus, a spatial average of the current about the origin can
distinguish between these two kinds of responses when the
electric field is a pure gradient [“pure” refers to the fact that
E1(0) = 0 and E1(r1) is linear near r1 = 0].

Equation (17) shows that information about the quantum
metric at the Fermi points can be extracted from a transport
experiment using an electric field which is a pure gradient. By
averaging the current over a spatial region which is symmetric
about the origin, any Drude contribution to the current will
be canceled. Then, since L (the length of the spatial region),
Q, E (0)

11 , and h are known to the experimenter, the signed
sum

∑nF
I=1[g11(KI,+) − g11(KI,−)] can be extracted from this

transport data.
A second natural question concerns the conditions under

which the electric-field gradient term is expected to sig-
nificantly alter the semiclassical dynamics. After all, if the
electric field varies slowly over the width of the wave packet,
then it should be reasonable to neglect the gradient term.
To understand the relevant scales we use Eq. (10), which
implies that the squared spread 〈�(t )|x̂μx̂ν |�(t )〉 − X μX ν of
a wave packet sharply peaked at K in reciprocal space is
equal to gμν (K). For simplicity, consider the case of D = 1.
Then the width of the wave packet is

√
g11(K) and so the

change of the electric field over the width of the wave packet
is 
E1 ≈ E (0)

11

√
g11(K). If 
E1 � E (0)

1 (the uniform part of
the electric field), then we can neglect the gradient term. On
the other hand, we must include this gradient term if 
E1 is
comparable to or larger than E (0)

1 .
Conclusion. In this Rapid Communication we extended

the semiclassical theory of electron wave packet motion in
solids to incorporate the effects of a nonuniform electric field.
In particular, we systematically calculated corrections to the
semiclassical EOMs in an expansion in derivatives of the
electric field, and we obtained the correction proportional
to the first derivative of the electric field. Our main result,
shown in Eqs. (6), is a correction to the semiclassical EOM
for the wave packet center in real space which depends on
the electric-field gradient, and on the quantum metric gμν (q)
on the BZ. We then gave a physical interpretation of this new
term as arising from the energy associated with the electric
quadrupole moment of the wave packet in the presence of
the nonuniform electric field. We also showed that this cor-
rection to the semiclassical EOMs does not affect transport
in insulators, but does lead to a nontrivial transport signature
in metals with broken time-reversal and inversion symmetry.
Specifically, we showed that in such metals an electric-field
gradient can generate a longitudinal current which is propor-
tional to the electric-field gradient and to the quantum metric
at the Fermi surface. Since the current depends only on the
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quantum metric at the Fermi surface, we expect that it will be
robust to the inclusion of interaction or disorder effects, as in
the case of the anomalous Hall effect in metals [8].

We envision at least two possible directions for future
work. The first would be to understand the corrections to the
semiclassical EOMs (6) which involve higher derivatives of
the electric field. The correction proportional to the second
derivative would be particularly interesting as it should allow
for a derivation of an analog of the formula of Hoyos and Son
[14], which relates the finite wave vector Hall conductivity
of a quantum Hall system to the Hall viscosity, but in the
context of Chern insulators (where there is no magnetic field)
instead of Landau levels. A second direction would be to
derive semiclassical EOMs for the higher moments of the

wave packet, for example, the second moments X μν (t ) :=
〈�(t )|x̂μx̂ν |�(t )〉 and Kμν (t ) := 〈�(t )|q̂μq̂ν |�(t )〉 in position
and reciprocal space, respectively. In particular, it would be
interesting to understand how these second moments respond
to nonuniform electric fields. We leave these topics for future
work.

Note added. Recently, we became aware of Ref. [39],
which obtained many of the same results as part of a study
of nonreciprocal directional dichroism in crystalline solids.

Acknowledgments. We thank A. Alexandradinata for a
useful conversation. M.F.L. acknowledges the support of the
Kadanoff Center for Theoretical Physics at the University of
Chicago. T.L.H. thanks the US National Science Foundation
under Grant No. DMR 1351895-CAR for support.

[1] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).
[2] W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
[3] J. M. Luttinger, Phys. Rev. 112, 739 (1958).
[4] E. Adams and E. Blount, J. Phys. Chem. Solids 10, 286 (1959).
[5] M.-C. Chang and Q. Niu, Phys. Rev. Lett. 75, 1348 (1995).
[6] M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996).
[7] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
[8] F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[9] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[10] J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805

(2010).
[11] J. Orenstein and J. E. Moore, Phys. Rev. B 87, 165110 (2013).
[12] S. Zhong, J. Orenstein, and J. E. Moore, Phys. Rev. Lett. 115,

117403 (2015).
[13] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).
[14] C. Hoyos and D. T. Son, Phys. Rev. Lett. 108, 066805 (2012).
[15] B. Bradlyn, M. Goldstein, and N. Read, Phys. Rev. B 86,

245309 (2012).
[16] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science

357, 61 (2017).
[17] W. A. Wheeler, L. K. Wagner, and T. L. Hughes,

arXiv:1812.06990.
[18] B. Kang, K. Shiozaki, and G. Y. Cho, arXiv:1812.06999.
[19] J. P. Provost and G. Vallee, Commun. Math. Phys. 76, 289

(1980).
[20] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847

(1997).
[21] S. Matsuura and S. Ryu, Phys. Rev. B 82, 245113 (2010).
[22] T. Neupert, C. Chamon, and C. Mudry, Phys. Rev. B 87, 245103

(2013).

[23] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Phys. Rev. B
88, 064304 (2013).

[24] M. Legner and T. Neupert, Phys. Rev. B 88, 115114 (2013).
[25] Y.-Q. Ma, Phys. Rev. E 90, 042133 (2014).
[26] Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 112, 166601

(2014).
[27] Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. B 91, 214405

(2015).
[28] A. Srivastava and A. Imamoğlu, Phys. Rev. Lett. 115, 166802
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