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Machine learning algorithms provide a new perspective on the study of physical phenomena. In this Rapid
Communication, we explore the nature of quantum phase transitions using a multicolor convolutional neural
network (CNN) in combination with quantum Monte Carlo simulations. We propose a method that compresses
(d + 1)-dimensional space-time configurations to a manageable size and then use them as the input for a CNN.
We benchmark our approach on two models and show that both continuous and discontinuous quantum phase
transitions can be well detected and characterized. Moreover, we show that intermediate phases, which were not
trained, can also be identified using our approach.
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Machine learning, especially deep learning, has recently
shown to be a very powerful tool in the fields of image
classification, speech recognition, video activity recognition,
machine translation, game playing, and so on [1–3]. The basic
idea is to train a machine with large data sets such that it
can thereafter process and characterize new data. A typical
example is image recognition, where a large number of images
are used as the training set. During the training process, a
nonlinear variational function with images as the input and,
for example, the names of objects as the output is optimized
with respect to a cost function. Using this optimized function,
the machine can then recognize the objects in other testing
images by knowing their key features.

An important task in condensed matter physics is to char-
acterize different phases of matter and the transitions between
them [4,5]. Phases can, for example, be characterized by local
order parameters in Landau’s theory of spontaneous sym-
metry breaking [6], by topological invariants in topological
phases [7], or by their dynamical properties as in the many-
body localized phase [8]. The main difficulty of this approach
is to find characteristic and universal properties of a given
phase before we can identify it in a given physical system.
In contrast, machine learning techniques promise to classify
the phases automatically given a sufficiently large training set
is provided. The deep learning algorithm, which we use in this
Rapid Communication, is a method that is capable of learning
the key features of individual phases and classifying them
directly from “raw data” (e.g., the partition function or the
ground-state wave function). Machine learning is a powerful
tool compared to conventional approaches and has already
inspired physicists to come up with new methods to recognize
phases in various settings [9–27].

A natural way to use machine learning to identify different
phases of matter is with the aid of the Monte Carlo method
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[28]. By stochastically moving through configuration space
according to a partition function, a large number of samples
can be obtained and labeled by different phases. These can
then be fed into deep learning algorithms as training sets to
classify phases and also detect phase transitions [9–17]. Con-
sidering each sample as a snapshot photograph, the classical
phase classification is similar to image recognition.

Quantum Monte Carlo (QMC) methods operate in at least
(d + 1)-dimensional configuration spaces (the determinant
QMC needs more) [29], where d is the spatial dimension and
the extra dimension refers to the imaginary time β = 1/T (T
is the temperature) direction. To detect quantum phase tran-
sitions, thermal fluctuations have to be strongly suppressed
and thus sufficiently low temperatures have to be reached.
The resulting huge size of the configuration space, which is
proportional to Ldβ (commonly �100 GB [30]), is too large
to be squeezed into a machine learning algorithm. So far only
the high-temperature regime for small system sizes could be
studied by machine learning techniques using the full config-
uration space [18]. Instead, usually different kinds of indirect
data are used as the input, such as the entanglement spectrum
[19,22], Green’s functions [20,25], winding numbers [25], and
the like [21,23,24]. However, using preprocessed data may
cause important information to be ignored, which is contrary
to the original idea of machine learning—namely, finding
characterizing features by itself. Thus it is important to find
an efficient machine learning technique that allows one to
identify quantum phase transitions based on the unfiltered raw
data of QMC simulations.

In this Rapid Communication, we propose a systematic
way to compress the (d + 1)-dimensional configurations such
that they can be fed into multicolor conventional neural net-
works (CNNs). This approach is inspired by the similarity of
the data structure in QMC simulations to video data. First,
we investigate the efficiency of our approach by considering
the conventional quantum phase transition between the Mott
insulator and superfluid. We find that our algorithm correctly
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FIG. 1. The schematic plot of the data compression process and
the structure of the neural networks.

identifies it as a continuous quantum phase transition. Second,
we consider a more complex quantum phase transition where
an intermediate supersolid phase emerges. It turns out that our
algorithm detects this intermediate phase even though it was
not part of the training set. Moreover, we train a CNN to mea-
sure winding numbers and it turns out that these can be deter-
mined with high accuracy. This indicates that our compression
scheme can keep relevant information in the imaginary time,
although the compression ratio (uncompressed/compressed)
is more than 300.

In order to simulate quantum systems, QMC algorithms
usually sample the partition function based on an expansion
ansatz. For example, in the stochastic series expansion (SEE)
for a Hamiltonian of the form H = ∑

b Hb (with Hb defined
on the bonds), the partition function is expanded as

Z =
∑

α

∞∑

n=0

∑

Sn

(−β )n

n!
〈α|

n∏

i=1

Hbi |α〉, (1)

where |α〉 is the basis in the occupation number representa-
tions and Sn = {b1, b2, . . . , bn} is the operator-index sequence
[31–34]. Then we can define a discrete imaginary time τ

such that the state after τ steps propagation is |α(τ )〉 =∏τ
i=1 Hbi |α〉. Thus, as shown in Fig. 1, each term in Eq. (1) can

be represented as a (d + 1)-dimensional configuration (here,
d = 2) in which each slice in imaginary time is |α(τ )〉.

While the diagonal order (e.g., density waves) can be
directly detected by the density distribution in each slice
|α(τ )〉, off-diagonal order (e.g., superfluid order or boson
condensation) is characterized by a change between slices.
Thus the machine learning algorithm should not only consider
the information of the density distribution at a given time but
also the dynamical properties. Each time slice in configuration
space can be seen as one frame in a video. To reduce the data
size, we can directly borrow the spirit of video compression:
The raw data of a video contains a large number of frames. A
compressed video keeps only the first frame and successively
the difference between frames. In our problem, we also keep
the first time slice |α(0)〉 = |α〉. Then, as shown in Fig. 1, we
divide the whole configuration space into N parts with equal
distance in the imaginary time, and only store the difference
between the slices at the beginning and end of each part. In
this way, the size of the input data is manageable. Although
it is a lossy compression, we will demonstrate later on that a
proper choice of compression strength will keep the relevant
information.

After compression, the reduced data will be used to train
a deep learning model for classification. The structure we
used is demonstrated in Fig. 1. The model has N + 1 input
channels, which are called color channels. The N + 1 ma-
trices obtained by compressing the QMC data are fed into
these channels one by one in sequence. Then, the data in all
channels are loaded into a CNN. Two standard CNN layers are
used in this work. After that, two fully connected layers are
followed before it is fed into the final output layer with two
neurons. The number of output neurons here is determined
by the number m of different phase labels of the input data.
Their values, denoted as Pi with i = 1, 2, . . . , m, correspond
to the probability of the ith quantum phase, respectively, and∑m

i=1 Pi = 1. In this work, we use two classes of data as the
input and thus m = 2.

First, we consider a continuous quantum phase transition
between a Mott insulator and superfluid phase of the Bose-
Hubbard model on the triangular lattice. The Hamiltonian
reads

H = −t
∑

〈i, j〉
(b†

i b j + H.c.) + U

2

∑

i

ni(ni − 1), (2)

where b†
i (bi) is the creation (annihilation) operator a boson,

〈i, j〉 represent the nearest-neighbor sites, t is the hopping
strength, and U describes the on-site repulsion. This model
is relevant in the context of ultracold atoms on a triangular
optical lattice [35]. At small |t/U | and commensurate filling,
the system is in a Mott-insulating phase with a finite energy
gap. When sufficiently increasing |t/U |, quantum fluctuations
yield a phase transition into a gapless superfluid phase. The
phase transition belongs to a three-dimensional (3D) XY-type
universality class [36], and the critical point at filling 〈n〉 = 1
is approximately tc/U ≈ 0.0378 [37].

Using QMC, we produce 20 000 samples for each t/U
in the region t/U = [0.0300, 0.0450] with a step δ(t/U ) =
0.0002, and the length of the imaginary time is around
5 × 104. After compressing these samples with different N
(which reflect the compression strength), we separate the
samples at each point into two sets. One set is used for
training, and the other is used for testing. The samples
in the training data set are collected deep within the two
phases, t/U = [0.0300, 0.0330] for the Mott-insulator phase
and [0.0420, 0.0450] for the superfluid phase, while the test-
ing data set contains the samples from the whole region
including the phase transition point. When the prediction error
on the training set is converged, the testing data set is used
to produce predictions in the whole region. The probabilities
of the superfluid phase Psf are shown in Fig. 2 for different
N and t/U . The steepness of the curve near the transition
is an indicator of the quality of the prediction. We can see
that the lines become steeper with increasing N of the input
data, and also the lines in each region are closer to the perfect
prediction values 0 or 1. Moreover, if we check the variances
of the predictions, they also become smaller with increasing
N , as shown in the inset of Fig. 2. This means that enlarging
N will improve the accuracy of the predictions—this is indeed
expected as a larger N implies less compression and more
accurate data to process. Note that the Mott-insulating and
superfluid phases are distinguished by the superfluid density,
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FIG. 2. Probabilities of the superfluid phase Psf for the Bose-
Hubbard model on the triangular lattice with different values of N
and t/U at β = 100 and L = 12. Inset: The corresponding variances
of the predictions.

which can be directly related to the winding of configuration
space in the imaginary time direction. Extracting this winding
requires knowledge about the imaginary time direction and
cannot be extracted from a single time slice. Moreover, we
find that all the curves approximately cross at the critical
point, and N = 64 is nearly converged.

The above example shows that the deep learning model
can well predict the quantum phases and related continuous
phase transition. However, the quantum phase transition could
also be first order or an intermediate phase could emerge
between two phases. A question we address now is whether
deep learning can predict the existence of the intermediate
phase without “knowing” it. For this we consider an extended
hard-core Bose-Hubbard model on the triangular lattice,

H = −t
∑

〈i j〉
(b†

i b j + H.c.) + V
∑

〈i j〉
nin j + μ

∑

i

ni, (3)

where V denotes the repulsive interaction between nearest-
neighbor sites, hard core implies that only occupancies ni =
0, 1 are allowed, and μ is the chemical potential. The phase di-
agram is shown in Fig. 3(a). The solid phase breaks the trans-
lational symmetry and the superfluid phase breaks the U(1)
symmetry. Interesting, there is an intermediate supersolid
phase which breaks both symmetries [38–47]. The triangular
lattice is composed of three sublattices. The solid phase can be
viewed as two sublattices being fully occupied and the other
one is empty. A qualitative picture of the supersolid phase
is a doped solid with holes that can move on a honeycomb
sublattice [38].

Following the same strategy as above, we collect the sam-
ples deep in phases from regions marked with color blocks
in Fig. 3(a), and the length of the imaginary time is around
7 × 104. After data compression, we feed them into the deep
learning model for training. Next, we run the prediction in the
whole parameter region. As shown in the inset of Fig. 3(b),
a first-order phase transition is clearly reflected by the sud-
den jump of the prediction of the probabilities of the solid
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FIG. 3. (a) Phase diagram of the extended hard-core Bose-
Hubbard model on the triangular lattice (with size L × L, L = 12)
calculated by QMC [38]. The red and blue rectangles are the re-
gions which we use as the training set. (b) The predictions of the
probabilities of the solid phase with different N on the trajectory
along the black dashed line in (a). The inset is the predictions
of the probabilities of the solid phase during the first-order phase
transition along the trajectory marked with the black line [μ/V = 4.5
and t/V ∈ [0.186, 0.196] with step δ(t/V ) = 0.002] at the top right
corner in (a). (c1)–(c4) Predicted phase diagrams with N = 32, 64,
128, and 256, respectively.

phase. Because of the large difference between the solid and
superfluid phase, even small N can present the discontinuity
of the phase transition. In order to check the behavior of
the deep learning model to the “unknown” supersolid phase,
we choose the “L” shape trajectory, going from μ/U = 4.5
to 3.0 with fixed t/U = 0.08, and then going from t/U =
0.08 to 0.20 with fixed μ/U = 3.0. The predictions of the
probabilities of the solid phase Ps are plotted in Fig. 3(b) (the
probability of the superfluid phase is Psf = 1 − Ps). In contrast
to the continuous quantum phase transition, decreasing the
compression rate makes the curve more smooth. In other
words, the deep learning model becomes more “confused”
in the supersolid phase when taking into account more data.
If we label the region with Ps ∈ (0, 1) as the intermediate
region, from the predictions on the whole phase diagram in
Figs. 3(c1)–3(c4) with N = 32, 64, 128, and 256, we can
find the intermediate region approaches the real boundary of
the supersolid phase. The neural network has been trained to
recognize the superfluid and solid phase. When it faces the
coexisting order in the intermediate phase, the different con-
tributions from the supersolid will intensify the corresponding
output neurons such that the prediction value is neither zero
nor one. As a complementary test, we performed simulations
with three output neurons—including one additional neuron
to learn the intermediate phase. Using an enlarged training set,
we find a phase diagram identical to the one identified by the
“confusion” approach discussed above (see the Appendix for
details).

In brief, the relation between the prediction of probability
and compression strength can be used to distinguish the direct
quantum phase transition and intermediate phases. The reason
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FIG. 4. The predictions of the winding numbers W 2 by the
regression method with N = 8 and 64. The black dots with dashed
lines are the exact numbers of W 2. The error bars denote the standard
deviations of the predictions on the test set. Inset: The mean of the
absolute difference between the labels and the predictions vs 1/N .

such a compression can keep the key information in imaginary
time is its equivalence to high-frequency truncation. When we
increase the value of N , more details about the short distance
in the imaginary time will be captured, implying that higher-
frequency information will be included. Considering that low
frequencies are usually more relevant at low energies, such a
compression method has substantial advantages for studying
the quantum phase transition.

Last, we try to directly check to which extent the winding
in imaginary time can be extracted. In QMC, the bosons can
form a net current flowing around the periodic system in real
space. Due to the periodic boundary condition in imaginary
time (trace of a partition function), such a current can only
wind around the system an integer number of times in the real
direction. This integer number is called the “winding number.”
This quantity represents nonlocal properties of the quantum
system and is proportional to the superfluid density [48].

In order to count the winding number using deep learning
techniques, the neural network with one output neuron is
used. We then randomly select the samples with small wind-
ing numbers from the samples of the previously discussed
Bose-Hubbard model and divide them into a new training
and testing set. Meanwhile, the labels are changed into the
square sum of the winding numbers in the x and y directions
W 2 = W 2

x + W 2
y . After training with a regression algorithm,

the output values of the testing set are the predicted winding
numbers W 2. The results with N = 8 and 64 are shown in
Fig. 4 and the black dots with a dashed line denote the exact
values of W 2. Clearly, the predictions with less compression,
i.e., N = 64, are closer to the exact values compared to high
compression with N = 8. In addition, we also plot the average
absolute difference |�| between the predictions and exact
values versus 1/N in the inset of Fig. 4, and it tends to zero

when decreasing the compression strength. The winding num-
ber prediction gives another strong verification that the data
compression and deep learning model can not only catch the
long-range correlation, but also even the winding in imaginary
time.

In conclusion, we proposed a systematic way of generating
and compressing training samples to be used for machine
learning in combination with quantum Monte Carlo meth-
ods. The neural networks for deep learning are composed of
multicolor CNNs followed by fully connected neuron layers.
By implementing this method for two types of Bose-Hubbard
models on the triangular lattice, we found a qualitatively
distinct behavior for the different cases: (1) For a first-order
phase transition, the machine learning model can well predict
the quantum phases even for strong compression, and (2)
for the continuous case, the prediction of the probability of
one phase becomes steeper when decreasing the compression
strength; (3) if an intermediate phase exists, the prediction
shows the opposite behavior, i.e., the slope becomes more
gradual when decreasing the compression strength. We also
tested the winding number predictions with a regression algo-
rithm, and its high accuracy suggests that our method obtains
relevant information about the topological properties in the
imaginary time direction. We argue that such a deep learning
method recognizes quantum phase transitions well because
the compression scheme only removes the high-frequency
part. Our ab initio approach for deep learning of quantum
phase transitions could also be extended to other world-line-
based quantum Monte Carlo simulations, and will be helpful
for detecting unknown phases where a proper order parameter
is unknown (e.g., spin liquids or many-body localization).
Moreover, it may shed light on the “prediction” of supervised
machine learning.

Note added. Recently, we became aware of a related work
[49] which shows that supervised machine learning can be
used to detect novel phases that have not been trained in the
context of many-body localization.
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APPENDIX: PREDICTION OF THE INTERMEDIATE
SUPERSOLID PHASE

In this Appendix, we explain the details about the cal-
culations which give the probability of the supersolid phase
of the extended hard-core Bose-Hubbard model on the trian-
gular lattice. From the results of the main text, we get the
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FIG. 5. (a) The probabilities of the solid (blue solid line), super-
fluid (red dotted line), and supersolid (green dashed line) phases on
the trajectory along the black dashed line in Fig. 3(a) of the main
text, with N = 64. (b) The phase diagram with colors denoting the
probability of the supersolid phase Pss.

signature of the intermediate supersolid phase by inspecting
the dependence of predictions on the compression ratio of
the input data. The structure of the neural network is fixed
when we train it, so if the training set has only two classes
of data from two phases, the two output neurons could only

give the probabilities of these two phases. Therefore, it is
almost impossible to predict the existence of a third class
which has no samples in the training set. For example, a
neural network could not recognize a picture of a monkey,
if it is trained by only pictures of cats and dogs. Owing to the
tuning parameter N in our proposal, the existence of the third
phase could be observed. However, the direct probability of
the third phase could not be given in such a fixed structure.
To prove the existence of the intermediate supersolid phase,
we could collect the data for this phase in the region we
inspected before (the data in region t/V ∈ [0.080, 0.098] and
μ/V ∈ [3.00, 3.20] are used), and add them to the training
data, too. A third label is given to them to distinguish from the
other two phases. Now the number of the output neurons is
three, and the probability of the supersolid phase Pss could
be obtained directly. In Fig. 5(a), the predictions of these
three phases on the trajectory along the black dashed line in
Fig. 3(a) of the main text are given. It shows clearly that there
are three phases separated by two phase transition points. The
region of the supersolid phase is given in Fig. 5(b), with the
color denoting the probability of the supersolid phase.
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