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Crossover of correlation functions near a quantum impurity in a Tomonaga-Luttinger liquid
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An impurity in a Tomonaga-Luttinger liquid leads to a crossover between the short- and long-distance
regime which describes many physical phenomena. However, a calculation of the entire crossover of correlation
functions over different length scales has been difficult. We develop a powerful numerical method based on the
infinite density matrix renormalization group. By utilizing infinite boundary conditions we can obtain correlation
functions within a finite-size window that contains the impurity. For the S = 1/2 chain, we demonstrate that a full
crossover can be precisely obtained, and that their limiting behaviors show a good agreement with field-theory
predictions.
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In one-dimensional (1D) systems, even weak Coulomb
interactions have dramatic effects and the Fermi-liquid
theory describing their higher-dimensional counterparts
breaks down. This results in a Tomonaga-Luttinger liquid
(TLL) [1,2], which is simply a relativistic free boson field
theory. The TLL behaviors have been experimentally demon-
strated in carbon nanowires [3], allowing for further studies
of the electron transport in 1D quantum wires. On the theory
side, there exists a plethora of powerful analytical and numer-
ical methods available to study the behavior of 1D systems.
Analytical tools such as bosonization, conformal field theory
(CFT), and the renormalization group (RG) can be employed
to analyze the physical properties of TLL [2,4,5].

An important class of problems is the effects of a quantum
impurity on a TLL [6–16]. In the simplest setting, Kane and
Fisher have shown that a single quantum impurity affects
the transport property of the TLL in an essential way [6,7]:
When the interaction is attractive, the system renormalizes to
a fixed point corresponding to a single fully connected wire.
When the interaction is repulsive, however, the system renor-
malizes to two disconnected wires. An equivalent problem
was also studied in a context of quantum spin chains [17].
In terms of CFT, a RG fixed point of the impurity problem
is associated to a conformally invariant boundary condition
(CIBC) [18]. Thus the first question in the impurity problem
is the classification of CIBCs. While nontrivial CIBCs appear
in various settings [19,20], only the simple Dirichlet and
Neumann boundary conditions of the free boson field theory
are relevant for the original Kane-Fisher problem (a single
quantum impurity) in a spinless single-channel interacting
TLL. For each CIBC, correlation functions can be calculated
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with boundary CFT techniques. However, the system is renor-
malized to the low-energy/large-distance (infrared, IR) fixed
point only asymptotically. In order to describe various observ-
able properties, such as finite-temperature properties, we need
to describe the RG flow towards the IR fixed point, not just
the CIBC corresponding to the IR fixed point. The system
is often renormalized close to a high-energy/short-distance
(ultraviolet, UV) fixed point first, before flowing towards the
IR fixed point. In such a case, the finite-energy/finite-distance
properties can be described as a crossover between the UV
and IR fixed points. The crossover phenomena cannot be
dealt with boundary CFT techniques alone. In some cases, the
crossover of a physical quantity can be exactly obtained in
terms of an integrable boundary RG flow [21]. Nevertheless,
for more general quantities, and for other settings, a numerical
approach is indispensable to describe the crossover.

In general, it is difficult to simulate 1D (boundary) critical
systems, of which the TLL is an example, because large
system sizes are required to capture the asymptotic behavior.
Lo et al. [22] use a scale-invariant tensor network to directly
extract scaling operators and scaling dimensions for both bulk
and boundary CFTs. Although the method can successfully
describe the physics at the IR fixed point, it cannot probe
the UV to IR RG flow. Rahmani et al. [23,24] perform a
conformal mapping of the wire junction to a finite strip so that
a finite-size density matrix renormalization group (DMRG)
calculation can be carried out. However, an ad hoc mirror
boundary condition has to be added. Furthermore, conformal
mapping makes it necessary to use the chord distance, instead
of the direct site distance. It is therefore difficult to probe
short-distance and crossover behavior using this approach. An
improved numerical method is hence called for.

In this Rapid Communication, we present a numerical
method based on an infinite DMRG (iDMRG) scheme that
allows us to directly simulate the junction of semi-infinite
TLL wires via the infinite boundary condition (IBC) and study
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FIG. 1. (a) Sketch of the junction with a link of strength t .
(b) iMPS diagram for |�〉G,2L

junc . (c) MPO diagram for H2L
junc.

the crossover from the impurity site to the long length scale.
We are able to obtain various correlation functions which are
in agreement, at both the short and long length scales, with
those obtained by the boundary perturbation theory based on
bosonization [25–29].

We start from two semi-infinite wires of spinless electrons,
which are connected by a link of strength t to form the
junction as sketched in Fig. 1(a). Using the Jordan-Wigner
transformation, the wire and the link Hamiltonians can be
written in terms of S = 1/2 operators as

Hwires =
∑

i ∈ Z� + 1/2

−(S+
±iS

−
±(i+1) + H.c.) + V Sz

±iS
z
±(i+1),

(1)

where i is a positive half-integer and

Hlink = −t (S+
−1/2S−

1/2 + S−
−1/2S+

1/2), (2)

while the junction Hamiltonian is Hjunc = Hwires + Hlink. We
also define a bulk Hamiltonian as

Hbulk =
∑

i∈Z+1/2

−(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + V Sz
i Sz

i+1. (3)

It differs from a t = 1 junction only by the interaction across
the junction: V Sz

−1/2Sz
1/2. The semi-infinite wires and the

bulk wire are both described by the TLL theory with the
Luttinger parameter g = π/[2 arccos(−V/2)]. We will con-
sider three interwire correlation functions: 〈S+

−iS
−
i 〉, 〈Sz

−iS
z
i 〉,

and 〈J−i−1/2Ji+1/2〉. Here, the current operator is defined as
Ji+1/2 ≡ −i(S+

i S−
i+1 − S−

i S+
i+1).

To find the ground state of Hjunc, we start from Hbulk and
assume its ground state is a translationally invariant infinite
matrix product state (iMPS),

|�〉G
bulk =

∑
{si}

· · · λ�si−1λ�siλ�si+1λ�si+2 · · · |s〉

=
∑

si

· · · Asi−1 AsiλBsi Bsi+1 · · · |s〉, (4)

where |s〉 = | . . . si−1, si, si+1, si+2 . . . 〉 and si are the local
spin bases. Furthermore, �s = � are site-independent d ×
D × D tensors and λ is a D × D diagonal matrix, where d = 2

is the dimension of the local Hilbert space on a single site and
D is the virtual bond dimension. The second line corresponds
to the mixed canonical form with As = A = λ� and Bs = B =
�λ. Here, A and B satisfy the left and right canonical form
constraints, respectively. They can be obtained by optimizing
|�〉G

bulk with Hbulk via conventional iDMRG algorithms. Due
to the presence of the impurity, the translational invariance
is broken and |�〉G

bulk is not a good ansatz for the ground
state of Hjunc. However, since Hjunc differs from Hbulk only at
the impurity sites, we expect that far away from these sites
the ground states of Hjunc and Hbulk should resemble each
other locally. We hence assume that there is a finite window
of size 2L with sites i ∈ [−L + 1

2 , . . . , L − 1
2 ] within which

the ground states of Hjunc and Hbulk differ, while outside this
window they are described by the same matrices. This leads
to the following iMPS ansatz for the ground state of Hjunc ,

|�〉G,2L
junc =

∑
si

· · · As−L̃−1 ][Ms−L̃ · · · MsL̃ ][BsL̃+1 · · · |s〉, (5)

where L̃ = L − 1/2 as sketched in Fig. 1(b). Here, L is an
adjustable parameter that can be easily enlarged, and the
M matrices are optimized with an effective Hamiltonian as
described below.

Starting from Hbulk in the form of matrix product operators
(MPOs) [30],

Hbulk = · · ·W−L− 1
2
W−L+ 1

2
· · ·W− 1

2
W1

2
· · ·WL− 1

2
WL+ 1

2
· · · ,

(6)

where the Wi = W is site independent. The effective Hamilto-
nian of the finite window reads

H2L
junc = W̃LW−L+ 1

2
· · ·W̃− 1

2
W1

2
· · ·WL− 1

2
W̃R, (7)

as sketched in Fig. 1(c). Here,W−1/2 is replaced by W̃−1/2

to represent Hlink. Furthermore, the left and right IBCs,
W̃L and W̃R, are constructed from the left and right
dominant eigenvectors of the generalized transfer matrices
TL = ∑

ss′ 〈s|W |s′〉As′†As and TR = ∑
ss′ 〈s|W |s′〉Bs′

Bs†, re-
spectively [31]. Here, the IBCs are used to represent the semi-
infinite extensions of the bulk system to the left and right. In
this way, we reduce an infinite-size problem to an effective
finite-size one [32]. Once H2L

junc is obtained, one can use con-
ventional finite-size MPS/DMRG algorithms to optimize the
M matrices. Also, with the left- and right-canonical conditions
satisfied by the A and B matrices, correlation functions within
the window can be calculated using only the M matrices.

When g > 1, at the IR limit the system is renormalized
to a single wire with the same Luttinger parameter. For a
weaker link (smaller t), we expect that it would take a longer
distance for the system to heal from the perturbation due to the
impurity. Figure 2 shows 〈S+

−iS
−
i 〉, 〈Sz

−iS
z
i 〉, and 〈J−i−1/2Ji+1/2〉

correlation functions for junctions with g = 1.5 and various
t’s and the bulk wire. We observe that at the IR limit all
correlation functions merge into their bulk counterparts. This
confirms that asymptotically the system is renormalized to a
single defect-free wire.

When g < 1, in contrast, we expect that in the IR limit the
system is renormalized into two disconnected semi-infinite
wires. For nonzero t , we still expect the correlation functions
to decay as a power law, but with exponents that are larger than
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FIG. 2. 〈S+
−iS

−
i 〉, 〈Sz

−iS
z
i 〉, and 〈J−i−1/2Ji+1/2〉 correlation functions

for g = 1.5. Data for the bulk and junctions with t = 0.1, 0.3, and 0.8
are plotted. Solid lines are power-law fittings to the bulk data with
bulk exponents from bosonization (cf. Table I).

the bulk counterparts. In Fig. 3, we plot the same correlation
functions for g = 0.6 and t = 0.1 and 0.01 and the bulk wire.
A scaling prefactor of t−1 or t−2 is included to collapse the
curves with different t’s. It is clear that the correlators in the
IR limit decay faster than their bulk counterparts, supporting
the picture that at the IR limit the system is renormalized into
broken wires.

To further understand the behavior of these correlation
functions in both the UV and the IR limits, we use bound-
ary perturbation theory to determine the exponents of the
power laws. To the leading order, we derive the exponents of
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FIG. 3. Rescaled 〈S+
−iS

−
i 〉, 〈Sz

−iS
z
i 〉, and 〈J−i−1/2Ji+1/2〉 correlation

functions for g = 0.6. Data for the bulk and junctions with t = 0.1
and 0.01 are plotted. Solid (dotted) lines are power-law fittings
to the long- (short-) distance data with IR (UV) exponents from
bosonization, except that for 〈S+

−iS
−
i 〉 at the IR limit the prefactor

C0 = 1.330 from bosonization is used [32] (cf. Table I).

the uniform and staggered part of the correlation functions,
respectively. In the bosonization framework, the system is
described by the TLL with the Lagrangian density

L = 1

2πg
(∂μφ)2. (8)

In the leading orders, the spin and current operators are
expressed as [2,33,34]

S−
j ∼ e−iθ

∞∑
n=0

[b2n cos (4nφ) + (−1) jb2n+1 sin [2(2n + 1)φ]],

(9)

Sz
j ∼ − 1

π

∂φ

∂x
+

∞∑
n=0

(−1) ja2n+1 sin [2(2n + 1)φ], (10)

Jj = i(S+
j+1S−

j − S+
j S−

j+1) ∼ gv

π

∂θ

∂x
, (11)

where an and bn are constants. Here, θ is the dual field of
φ defined by θ ≡ 1

g (φL − φR), where φ = φL(z̄) + φR(z) is
the chiral decomposition into left/right movers with z = x +
iτ = x − t and z̄ = x − iτ . While the constants an and bn are
nonuniversal, a few of them are determined exactly for the
XXZ chain from the Bethe ansatz solution [35].

The geometry is a half plane with the interaction on the
line x = 0. In the limit t = 0, the system is two decoupled
half chains. We can then introduce the link Eq. (2) between
the two decoupled chains as a perturbation. Let us consider
the correlation function 〈S+

−iS
−
i 〉, across the link. Obviously

it vanishes when t = 0. In the first order of t , the correlation
function is given as

t
∫

dτ

[
1

2

〈
S+

−i(0)S−
− 1

2
(τ )

〉
0

〈
S+

1
2

(τ )S−
i (0)

〉
0

]
, (12)

where 〈 〉0 represents the ground-state expectation value in the
decoupled chains with open boundary conditions.

In terms of the field theory, the open boundary condition
corresponds to the Dirichlet boundary condition on φ. Thus
the correlation functions in the decoupled chain can be calcu-
lated using Eq. (9), as discussed in Refs. [32,34],

〈S+
−iS

−
i 〉 = t

[
C0r−( 3

2g −1) + C′
0(−1)rr−( 3

2g +2g−1) + · · · ], (13)

where i ∈ Z� + 1
2 , r = 2i, and C0,C′

0 are constants. The
prefactor C0 is given as

C0 = 1

2v
b0

2(b0 + 2−gb1 − 2−4gb2 − 2−9gb3 · · · )2

× 25/(2g)−1

√
π�

(
1
g − 1

2

)
�

(
1
g

) . (14)

It should be noted that the prefactor C0 has contributions from
all bn’s, in contrast to the bulk correlation function. However,
terminating the sum at the first few terms would give a good
approximation. The values of b0 and b1 are known exactly for
the XXZ chain, and b2 can be estimated by a fitting of the
correlation functions in the open chain. We thus estimated C0

using Eq. (14) including up to b2 [32]. Similarly, we find〈
Sz

−iS
z
i

〉 = t2
[
C0r−( 2

g ) + C′
0(−1)rr−(2g+ 2

g −2)]
, (15)
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TABLE I. Dominant exponents for each correlation function.

g > 1 g < 1

Bulk IR IR UV Bulk IR IR UV

〈S+
−iS

−
i 〉 1

2g
1
2g

3
2g − 1 1

2g
3
2g − 1 1

2g

〈Sz
−iS

z
i 〉 2 2 2

g 2g 2g + 2
g − 2 2g

〈J−i−1/2Ji+1/2〉 2 2 2
g 2 2

g 2

where r = 2i and

〈J−i−1/2Ji+1/2〉 = t2C0r− 2
g , (16)

where r = 2i + 1. Unfortunately, the prefactors of these lead-
ing terms at O(t2) cannot be determined analytically.

These results in the lowest order of the perturbation theory
describe the IR behavior for g < 1 and the UV behavior
for g > 1. We find that for g > 1, the uniform part always
dominates and the UV exponents are 3/2g − 1, 2/g, and
2/g, respectively. In contrast, for g < 1 the staggered part of
the 〈Sz

−iS
z
i 〉 becomes dominant and the IR exponents become

3/2g − 1, 2g + 2/g − 2, and 2/g, respectively.
The case of a weak barrier (small 1 − t), on the other hand,

corresponds to the free boundary condition. For this case we
regard the junction as a defect in CFT with

Hbarrier = (1 − t )(S+
−1/2S−

1/2 + S−
−1/2S+

1/2) − V Sz
−1/2Sz

1/2.

(17)

We evaluate this defect by using the operator product ex-
pansion for CFT. By the usual perturbation theory, we
find

〈S+
−iS

−
i 〉 = C0r− 1

2g + C′
0(−1)rr− 1

2g +2g
, (18)〈

Sz
−iS

z
i

〉 = C0r−2 + C′
0r−2g, (19)

where i ∈ Z� + 1
2 and r = 2i, and

〈J−i−1/2Ji+1/2〉 = C0r−2, (20)

where r = 2i + 1. These results describe the IR behavior for
g > 1 and the UV behavior for g < 1. We find that for g > 1,
the uniform part always dominates and the IR exponents
are 1/2g, 2, and 2, respectively. In contrast, for g < 1 the
staggered part of the 〈Sz

−iS
z
i 〉 dominates and the UV exponents

are 1/2g, 2g, and 2. These results also describe the IR behavior
for a single bulk TLL wire. In Table I, we summarize the
dominant exponent for each correlation function [32].

We now compare the numerical results against these power
laws. Figure 2 shows the fit of the bulk correlation functions
to Eqs. (18)–(20) for the case of an attractive interaction
g = 1.5. The numerical results confirm that in the IR limit
all correlation functions decay with the corresponding bulk
exponents. Also, we see that for smaller t , it takes a longer
distance for the system to reach the IR limit, indicating it
needs more steps to renormalize away the impurity.

In Fig. 3 we compare the numerical results against the
bosonization results for the case of a repulsive interaction
g = 0.6. At the IR limit the system is renormalized into two
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FIG. 4. Rescaled 〈S+
−iS

−
i 〉, 〈Sz

−iS
z
i 〉, and 〈J−i−1/2Ji+1/2〉 correlation

functions for g = 1.2. Data for junctions with t = 0.1, 0.01, and
0.001 are plotted. Solid (dotted) lines are power-law fittings to the
long- (short-) distance data with IR (UV) exponents from bosoniza-
tion, except that for 〈S+

−iS
−
i 〉 at the UV limit the prefactor C0 = 0.701

from bosonization is used [32] (cf. Table I).

disconnected semi-infinite wires, which corresponds to the
Dirichlet boundary condition. Very small values of t = 0.1
and 0.01 are used to probe the IR behavior. We observe that
the crossover of the correlation functions is consistent with
the field theoretical prediction as in Table I. Remarkably, the
prefactor C0 of the 〈S+S−〉 correlation function in the IR
regime agrees very well with the bosonization prediction [32].
This demonstrates the accuracy of the present method ap-
plied to long-distance correlation functions of the impurity
problem.

On the other hand, while small 1 − t is assumed in the
derivation of Eqs. (18)–(20), the exponents describe well the
numerical results at short distances even when t is small.
Moreover, the same scaling prefactors also result in a data
collapse at short distances. Interestingly, this indicates that
near the junction, the system does not know which fixed point
it should renormalize into, and the correlation in the short
distance resembles that in the bulk, scaled with the junction
strength t .

Finally, we analyze the UV behavior for the case of g > 1.
Figure 4 plots rescaled correlation functions for the case of
g = 1.2 and various extremely small t’s in order to expose
the UV regime. In this limit, we are able to fit the numerical
results to the boundary perturbation theory results with the
Dirichlet boundary condition before crossing over to the long-
distance behavior. Both the exponents and scaling prefactor
agree well. In Fig. 4 we also show the power-law fitting in the
IR limit and the crossover from UV to IR exponents is clearly
observed.

In summary, we present a robust and powerful numerical
method to study a junction between two quantum wires.
This method allows one to study numerically the crossover
of correlation functions near a quantum impurity between
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the short- and long-distance regimes, as demonstrated by the
perfect fit of the UV and IR behaviors between the numerical
and bosonization results. This may lead to further explorations
of the crossover behavior from UV to IR [36]. We also
emphasize that this method is also applicable to a more gen-
eral class of interesting problems, such as the Y junction for
TLL leads [20,23,24], TLL leads with different Luttinger pa-
rameters [37], and junctions with spin-1/2 interacting fermion
leads [38].
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