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Spectrum of exciton states in monolayer transition metal dichalcogenides:
Angular momentum and Landau levels
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A four-band exciton Hamiltonian is constructed starting from the single-particle Dirac Hamiltonian for charge
carriers in monolayer transition metal dichalcogenides (TMDs). The angular part of the exciton wave function
can be separated from the radial part, in the case of zero center of mass momentum excitons, by exploiting
the eigenstates of the total exciton angular momentum operator with which the Hamiltonian commutes. We
explain why this approach fails for excitons with finite center of mass momentum or in the presence of a
perpendicular magnetic field and present an approximation to resolve this issue. We calculate the (binding)
energy and average interparticle distance of different excited exciton states in different TMDs and compare
these with results available in the literature. Remarkably, we find that the intervalley exciton ground state in the
∓K valley has angular momentum j = ±1, which is due to the pseudospin of the separate particles. The exciton
mass and the exciton Landau levels are calculated and we find that the degeneracy of exciton states with opposite
relative angular momentum is altered by a magnetic field.
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I. INTRODUCTION

Monolayer transition metal dichalcogenides (TMDs) such
as MoS2, MoSe2, WS2, WSe2, etc. [1–6], lack inversion sym-
metry, which leads to a large direct band gap in the low-energy
valleys at the corners of the hexagonal first Brillouin zone.
This allows for optical excitation of exciton states [7–11], i.e.,
bound systems of an electron and a hole. Monolayer TMDs
are strictly two-dimensional (2D) systems and as a result the
excitons in these systems are very tightly bound, i.e., they
have binding energies of the order of several hundreds of
meV, which is two orders of magnitude larger as compared
to excitons in conventional three dimensional semiconductors
[12–16].

In contrast to the (2D) hydrogen atom in which states
with the same principal quantum number but different angular
momentum are degenerate, nonlocal screening effects in 2D
TMDs lead to the breaking of this degeneracy. The higher
angular momentum states can not be observed by means of
one-photon transitions which are most commonly used in
experiments. Two-photon transitions can however give optical
access to these states, as was shown successfully for p states
[10,17]. Higher-order angular momentum states, such as d
states, have so far not been experimentally measured in 2D
TMDs. Even though these nonzero angular momentum states
are optically inactive, they do play an important role in exciton
relaxation and valley dynamics [18].

Studies of magnetic field effects on excitons in monolayer
TMDs have mostly focused on the valley Zeeman effect
[19–24], which originates mainly from the valley-contrasting
magnetic moments of the valence electrons around their
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atomic sites. On the other hand, there is little to no work done
on Landau quantization of exciton states in monolayer TMDs.

In the present paper, we present a model allowing to
calculate the (binding) energy, wave function, and average
interparticle distance of different angular momentum exciton
states in monolayer TMDs. We also calculate the exciton
Landau levels and show how the magnetic field affects the
degeneracy of the different states.

Our paper is organized as follows. In Sec. II, we present the
outline of the four-band model in which the exciton Hamilto-
nian and total angular momentum operator are constructed.
The eigenvalue equation of this Hamiltonian is readily solved
numerically for excitons with zero center of mass momentum
in Sec. III and a comparison with available experimental and
theoretical results is made. For excitons with nonzero center of
mass momentum, an approximation is needed in order to solve
this equation, as is shown in Sec. IV. In Sec. V, we calculate
the exciton Landau levels and in Sec. VI, we summarize the
main conclusions.

II. EXCITON HAMILTONIAN AND TOTAL
ANGULAR MOMENTUM

We start from the effective low-energy single-electron
Hamiltonian [25] in the basis Be = {|φe

c〉 , |φe
v〉} spanning the

2D Hilbert space He, with |φe
c〉 and |φe

v〉 the atomic orbital
states at the conduction- (c) and valence- (v) band edges,
respectively:

He
s,τ (k) = at (τkxσx + kyσy) + �

2
σz + λsτ

I2 − σz

2
, (1)

where σi (i = x, y, z) are Pauli matrices, I2 is the two by two
identity matrix, a the lattice constant, t the hopping parameter,
τ = ±1 the valley index, s = ±1 the spin index, � the band
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gap, and λ the spin-orbit coupling strength leading to a spin
splitting of 2λ at the valence-band edge. Since a hole with
wave vector k, spin s, and valley index τ can be described as
the absence of an electron with opposite wave vector, spin, and
valley index, the single-hole Hamiltonian can immediately be
obtained from the single-electron Hamiltonian and is given by
Hh

s,τ (k) = −He
−s,−τ (−k). The eigenstates of this Hamiltonian

span the 2D Hilbert space Hh
s,τ . The total exciton two-body

Hamiltonian acts on the product Hilbert space spanned by the
tensor products of the single-particle states at the band edges
[26], Bα = Be

se,τ e ⊗ Bh
sh,τ h , and is given by

H exc
α (ke, kh, reh) = He

se,τ e (ke) ⊗ I2 − I2 ⊗ He
−sh,−τ h (−kh)

−V (reh)I4, (2)

where α is a shorthand notation for se, τ e, sh, τ h and where
the electron-hole interaction potential is, due to nonlocal
screening effects, given by [27–29]

V (ri j ) = e2

4πκε0

π

2r0

[
H0

(
ri j

r0

)
− Y0

(
ri j

r0

)]
, (3)

with ri j = |ri − r j |, where Y0 and H0 are the Bessel function
of the second kind and the Struve function, respectively, with
κ = (εt + εb)/2, where εt (b) is the dielectric constant of the
environment above (below) the TMD monolayer, and with
r0 = χ2D/(2κ ) the screening length where χ2D is the 2D
polarizability of the TMD layer.

The exciton Hamiltonian is constructed in the basis Bexc =
{|φe

c〉 ⊗ |φh
c 〉 , |φe

c〉 ⊗ |φh
v 〉 , |φe

v〉 ⊗ |φh
c 〉 , |φe

v〉 ⊗ |φh
v 〉} and is

given by

H exc
α (ke, kh, reh) =

⎛
⎜⎜⎜⎝

−V (reh) at
( − τ hkh

x − ikh
y

)
at

(
τ eke

x − ike
y

)
0

at
( − τ hkh

x + ikh
y

)
� − λshτ h − V (reh) 0 at

(
τ eke

x − ike
y

)
at

(
τ eke

x + ike
y

)
0 −� + λseτ e − V (reh) at

( − τ hkh
x − ikh

y

)
0 at

(
τ eke

x + ike
y

)
at

( − τ hkh
x + ikh

y

)
λ(seτ e − shτ h) − V (reh)

⎞
⎟⎟⎟⎠, (4)

where the interaction term has now been added. The indices
in α define whether the exciton is an A exciton or B exciton
(excitons composed of a hole in the top or bottom spin-split
valence band, respectively) and whether it is an intravalley
or intervalley exciton, as illustrated in Fig. 1. The eigenvalue
problem for this Hamiltonian,

H exc
α (ke, kh, reh)

∣∣�exc
α

〉 = E exc
α (ke, kh)

∣∣�exc
α

〉
, (5)

defines the exciton energy E exc
α (ke, kh), from which

the binding energy can be calculated through E exc
b,α =

� − λshτ h − E exc
α , and the exciton eigenstate |�exc

α 〉 =
(|φe,h

c,c 〉 , |φe,h
c,v〉 , |φe,h

v,c〉 , |φe,h
v,v〉)

T
, where the subscript α and the

superscript exc have been dropped on the right-hand side for
notational clarity. Due to the presence of the V (|re − rh|)I4

term, the Hamiltonian does not commute with ke nor with
kh. This means that the components of the single-particle
wave vectors are not good quantum numbers and should be
replaced by their corresponding differential operators when

FIG. 1. Schematic representation of the low-energy band struc-
ture of 2D TMDs and different kinds of excitons. Blue and red
bands are spin up and spin down bands, respectively. The open and
closed circles indicate holes and electrons, respectively. The blue
solid ellipse and the red dotted ellipse indicate intravalley A excitons
in the K and K ′ valley, respectively. The red dashed ellipse indicates
an intravalley B exciton in the K valley. The large purple dot-dashed
ellipse indicates an intervalley A exciton.

solving the eigenvalue problem in the position representation.
However, if we transform the single-particle coordinates to
center of mass and relative coordinates,

R = re + rh

2
, r = re − rh, K = ke + kh, k = ke − kh

2
,

(6)

the interaction term becomes V (r)I4. As a consequence, the
Hamiltonian does not commute with the relative wave vector
k but does commute with the center of mass momentum
K. Therefore K is a conserved quantity and its components
are good quantum numbers. Note that we have written the
above definitions as a function of the single-particle momenta
k which are relative with respect to the valley momentum
τD, i.e., qi = ki − τ iDi with qi the absolute momentum in
the Brillouin zone. This means that in our coordinates the
center of mass momentum of an intervalley exciton can still
be zero, i.e., when both the electron and hole are located
at their respective band extrema, even though the absolute
center of mass momentum is ±2K (or ∓K when reduced to
the first Brillouin zone). At this point the exciton eigenvalue
equation contains two variables, i.e., the two components
of the relative position vector. We can try to separate these
two components, in polar coordinates, by exploiting the fact
that the single-electron Hamiltonian (1) commutes with the
angular momentum operator

1

h̄
Je

z,τe
(ke) = (

xeke
y − yeke

x

)
I2 + τe

2
σz = 1

i

∂

∂ϕe
I2 + τe

2
σz,

(7)

where the first and second terms correspond to the contri-
butions from the orbital angular momentum and the pseu-
dospin, respectively. Using (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
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FIG. 2. Intravalley (τe = −τh = 1, left) and intervalley (τe = τh = −1, right) exciton energy levels for MoS2 suspended in vacuum (a) and
placed on a SiO2 substrate (εb = 3.8) (b) for K = 0. The results of the present work (P. W.) are compared with results of the literature (Lit.)
from Ref. [30] (a) and Ref. [31] (b). Our results are labeled on the figure according to n[L] j , where [L] represents s, p, d depending on
the orbital angular momentum of the dominant component of the wave function, with s, p, and d excitons indicated in blue, red, and black,
respectively. No labeling was given in Ref. [31] for intervalley excitons. Exciton states with negative orbital angular momentum are indicated
with dashed lines. When two states with opposite orbital angular momentum are degenerate only the solid line is shown. B exciton states are
indicated with the letter B. To facilitate comparison, the energy levels are uniformly shifted downwards in energy such that the ground state
(which can be either intravalley or intervalley) has zero energy.

and ∂ϕeV (reh) = −∂ϕhV (reh) it can be shown that the total
exciton angular momentum operator

1

h̄
Jexc

z,τe,τh
= 1

h̄
Je

z,τe
(ke) ⊗ I2 + I2 ⊗ 1

h̄
Je

z,−τh
(kh)

= (xky − ykx + XKy − Y Kx )I4

+ 1

2
diag(τe − τh, τe + τh,−τe − τh,−τe + τh)

(8)

commutes with the exciton Hamiltonian (4). Note that the
separate electron, hole, relative, and center of mass angular
momentum operators all do not commute with the exci-
ton Hamiltonian. In the single-band Schrödinger-like model,
which is often used in the literature, the latter two an-
gular momentum operators do commute with the exciton
Hamiltonian, but this is prevented in the multiband Dirac
model due to the coupling between the momentum and the
pseudospin.

III. EXACT SOLUTION FOR K = 0 EXCITONS

Let us first consider the simplest case in which K = 0, i.e.,
excitons with no translational kinetic energy. The center of
mass orbital angular momentum now vanishes and as a result
the eigenvalues of the exciton angular momentum operator (8)
are all nondegenerate and the eigenstates are eigenstates of the
exciton Hamiltonian (4) as well. This allows us to write the
exciton wave function as

�exc
α (r) =

⎛
⎜⎜⎜⎜⎜⎝

φe,h
c,c (r)ei( j− 1

2 (τe−τh ))ϕ

iφe,h
c,v (r)ei( j− 1

2 (τe+τh ))ϕ

iφe,h
v,c (r)ei( j+ 1

2 (τe+τh ))ϕ

φe,h
v,v (r)ei( j+ 1

2 (τe−τh ))ϕ

⎞
⎟⎟⎟⎟⎟⎠

, (9)

with j the angular quantum number (which needs to be an
integer in order to satisfy single valuedness of the wave
function) and where the diagonal nature of the exciton angular
momentum operator allowed us to include separate prefactors
(in this case a factor i in the second and third component)
for our convenience. Using the above ansatz and transforming
to relative coordinates, the exciton eigenvalue problem (5) in
position representation becomes

τh
(

∂
∂r − τh

r

(
j − 1

2τ+
eh

))
φe,h

c,v (r) + τe
(

∂
∂r + τe

r

(
j + 1

2τ+
eh

))
φe,h

v,c (r) = 1
at

(
E exc

α + V (r)
)
φe,h

c,c (r)

τh
(

∂
∂r + τh

r

(
j − 1

2τ−
eh

))
φe,h

c,c (r) + τe
(

∂
∂r + τe

r

(
j + 1

2τ−
eh

))
φe,h

v,v (r) = − 1
at

(
E exc

α + V (r) − � + λshτ h
)
φe,h

c,v (r)

τe
(

∂
∂r − τe

r

(
j − 1

2τ−
eh

))
φe,h

c,c (r) + τh
(

∂
∂r − τh

r

(
j + 1

2τ−
eh

))
φe,h

v,v (r) = − 1
at

(
E exc

α + V (r) + � − λseτ e
)
φe,h

v,c (r)

τe
(

∂
∂r − τe

r

(
j − 1

2τ+
eh

))
φe,h

c,v (r) + τh
(

∂
∂r + τh

r

(
j + 1

2τ+
eh

))
φe,h

v,c (r) = 1
at

(
E exc

α + V (r) − λ(seτ e − shτ h)
)
φe,h

v,v (r)

, (10)

which we solve numerically “exact” using the finite element
method with τ±

eh = τe ± τh. In the remainder of this work,
we will only consider optically created charge carriers, i.e.,
seτ e = shτ h = 1 (−1) for A (B) excitons.

The results for the exciton energy levels of MoS2 are
shown in Fig. 2. We see that the energy difference between
the energy levels is larger when the material is suspended
in vacuum as compared to when it is placed on a substrate,

which is due to the stronger interactions in the former case.
We compare our results with those of Refs. [30,31], which
use a first principles and a tight binding formulation of the
Bethe-Salpeter equation approach, respectively, and indeed
confirm that E2p < E2s, which was also experimentally found
in Ref. [17] for WS2. Furthermore, we find that E3d < E3p <

E3s, which was previously theoretically predicted in Ref. [17]
for WS2.
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Intravalley K = 0 excitons with angular momenta ± j are
degenerate, which is in agreement with Ref. [30] but not with
Ref. [31]. This degeneracy is broken for intervalley excitons,
again in agreement with Ref. [30], but is restored when taking
opposite intervalley excitons into account, i.e., (τ, j) and
(−τ,− j) excitons are degenerate. This may suggest that the
(non)degeneracy between the states with opposite j arises
from the coupling between the exciton angular momentum
and the exciton Berry curvature. The single-particle Berry
curvature is opposite in the conduction and valence band, as
well as in the two valleys [25]. This means that the total Berry
curvature for intravalley excitons is zero and therefore it can
not couple with the exciton angular momentum. For interval-
ley excitons, however, the total Berry curvature is nonzero and
opposite for the two opposite intervalley excitons. This causes
a valley-opposing splitting between intervalley excitons with
opposite j, which explains the degeneracy between (τ, j) and
(−τ,− j) exciton states. The nondegeneracy between opposite
j intravalley excitons found in Ref. [31] could be explained by
many-body Berry curvature effects [32], which are not taken
into account in the present work.

Our results for MoS2 show that the lowest energy in-
travalley exciton has slightly lower energy than the lowest
energy intervalley exciton, which again agrees with Ref. [30]
but not with Ref. [31]. However, whether the intravalley or
intervalley exciton has lowest energy will also depend on the
effect of exchange interactions. We do not take this effect into
account and can therefore not give a definite answer on which
type of exciton has the lowest ground-state energy. However,
the exact strength of the exchange interactions is difficult to
predict and therefore even when including this effect it is
still practically impossible to estimate which exciton has the
lowest ground-state energy [31].

Our most remarkable result is the ordering of the interval-
ley exciton energy levels with different j, with as most striking
example the fact that we find that the ground state has angular
momentum j = −1. The reason for this is related to the orbital
angular momenta of the different components of the total exci-
ton wave function. The second component, which corresponds
to an exciton consisting of an electron in the conduction band
and a hole in the valence band, is the most dominant one.
As can be seen from Eq. (9), the dominant component of an
intravalley exciton (τe = −τh) with total angular momentum
j also has orbital angular momentum j. For an intervalley ex-
citon (τe = τh = τ ), however, the dominant component of an
exciton with angular momentum j has orbital angular momen-
tum j − τ . Therefore the total wave function of an intervalley
exciton with angular momentum j = τ resembles that of an
s-like state and thus has the lowest energy. Looking at Eq. (8),
this remarkable result can be interpreted as the exciton having
approximately zero orbital angular momentum (and hence an
s-like wave function, even though this is not a good quantum
number) but nonzero contribution from the pseudospin of
the electron and hole, which cancels for intravalley excitons
but adds up for intervalley excitons. This is why we have
labeled the energy levels in Fig. 2 according to the orbital
angular momentum of the dominant component of the exciton
wave function. In the remainder of the text, the subscript j in
these labels will be omitted for intravalley excitons, as in this
case the total angular momentum and the approximate orbital

TABLE I. Binding energy (meV) for different K = 0 intravalley
exciton states in different TMDs for different substrates. We used
εb = 3.8 and εt = 1 for SiO2 with vacuum above the TMD and εb =
εt = 4.4 for encapsulating hBN.

Substrate 1s 2p 2s 3d 3p 3s

MoS2 vacuum 539 321 262 212 190 163
SiO2 308 139 107 73 65 54
hBN 183 61 46 26 25 20

MoSe2 vacuum 472 291 241 199 179 154
SiO2 280 135 104 74 66 55
hBN 172 63 48 28 26 22

WS2 vacuum 506 283 226 176 157 132
SiO2 272 110 83 52 48 39
hBN 152 44 34 17 17 14

WSe2 vacuum 458 265 214 170 152 129
SiO2 254 108 82 54 49 40
hBN 146 45 34 19 18 15

angular momentum are equal. The authors of Ref. [30] find
that the intervalley exciton ground state is a 1s state, although
the origin of their angular momentum labeling is not entirely
clear, whereas in Ref. [31] no statement is made about the
angular momentum of the intervalley exciton states.

In Table I, we give the binding energy of different exciton
states in different TMDs, for which we used the parameters
given in Table III of Ref. [33]. The results show that, for
all exciton states, the binding energy is largest in MoS2 and
smallest in WSe2. Remarkably, the binding energy is larger in
MoSe2 than in WS2 for all states except for the ground state.
The presence of a substrate significantly decreases the exciton
binding energy. Results from the literature are summarized
in Table II. In the case of MoS2, for which the results from
the literature are theoretical, the agreement with our results is
good, differing at most 17%. In the case of WS2 and WSe2

experimental results are available (except for the 2s, 3d , and
3s states of Ref. [17] which are theoretical) and the agreement
with our results is less satisfactory, differing at least 15% and
at most a factor 9 (with the 3s state of Ref. [34]). The results of
Refs. [17],[34] in particular are remarkable. For the 1s state,
they obtain binding energies which are significantly larger
than the range of commonly accepted theoretical ground-state
exciton binding energies in vacuum, even though in both
works a SiO2 substrate is used which should reduce the

TABLE II. Binding energy (meV) for different K = 0 intravalley
exciton states in different TMDs for different substrates as found in
the literature. Results for MoS2 are theoretical, whereas the results
for WS2 and WSe2 are experimental.

Substrate Ref. 1s 2p 2s 3d 3p 3s

MoS2 vacuum [30] 614 395 315 - - -
SiO2 [31] 301 150(-)/125(+) 99 - - -

WS2 SiO2 [11] 320 - 156 - - 96
SiO2 [17] 621 423 314 266 205 136

WSe2 SiO2 [10] 364 - 199 - - 133
SiO2 [34] 650 500 500 - 370 370
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TABLE III. Average interparticle distance (nm) for different K =
0 intravalley exciton states in different TMDs for different substrates.
We used εb = 3.8 and εt = 1 for SiO2 with vacuum above the TMD
and εb = εt = 4.4 for encapsulating hBN.

Substrate 1s 2p 2s 3d 3p 3s

MoS2 vVacuum 1.00 2.05 2.97 3.43 4.39 5.53
SiO2 1.11 2.57 3.86 4.87 6.31 8.09
hBN 1.27 3.47 5.22 7.49 9.52 11.99

MoSe2 vacuum 1.04 2.11 3.05 3.48 4.46 5.59
SiO2 1.14 2.57 3.83 4.71 6.12 7.83
hBN 1.28 3.32 5.02 6.92 8.85 11.27

WS2 vacuum 1.23 2.56 3.75 4.42 5.69 7.21
SiO2 1.41 3.43 5.18 6.87 8.84 11.32
hBN 1.66 4.93 7.36 11.33 14.05 17.52

WSe2 vacuum 1.27 2.62 3.82 4.45 5.72 7.23
SiO2 1.43 3.40 5.12 6.62 8.56 10.97
hBN 1.66 4.73 7.11 10.58 13.24 16.65

binding energy. However, we see that the difference in energy
between the 1s and 2s states found in Ref. [34] is 13% smaller
than our result, whereas the result found in Ref. [17] is 38%
larger than our result. This may indicate that in Ref. [34] the
band gap is overestimated, which was already suggested in
the manuscript itself, whereas in Ref. [17] the sample may
have been locally detached from the substrate. Another pos-
sible explanation for the discrepancy between these results
and our results is substrate surface roughness, which can
influence experimental measurements but is very difficult to
model theoretically.

In Table III, we give the average interparticle distance of
different exciton states in different TMDs, which are calcu-
lated from

〈
rα

eh

〉 = 2π

∫ ∞

0
r2Cα

eh(r)dr, (11)

where the electron-hole correlation function is defined as

Cα
eh(r) = 〈

�exc
α

∣∣δ(re − rh − r)
∣∣�exc

α

〉
. (12)

The average interparticle distances show the opposite behav-
ior as compared to the binding energies, as can be expected.
We see that the average interparticle distance is mostly de-
termined by the type of transition metal in the TMD, while
changing the chalcogen atom between S and Se has very
little influence on the interparticle distance. Furthermore, in
vacuum, the average interparticle distance in MoS2 (WS2) is
slightly smaller than that in MoSe2 (WSe2) for all states, while
in the presence of a substrate this behavior holds for the lowest
states, whereas for higher excited states the opposite is true.

IV. APPROXIMATE SOLUTION FOR K �= 0 EXCITONS

When K �= 0, the center of mass orbital angular momentum
R × h̄K can be nonzero and the eigenvalues of the total
exciton angular momentum operator are in general given
by the sum of the relative and center of mass quantum
numbers j = jr + jR, both of which are integers, meaning
that these eigenvalues are all infinitely degenerate and that
the eigenstates are not necessarily eigenstates of the exciton
Hamiltonian. In order to find the common eigenstates of the
angular momentum and the Hamiltonian, the latter would
have to be diagonalized in the infinite dimensional subspace
spanned by all the angular momentum eigenstates correspond-
ing to a given eigenvalue j. This is practically impossible and
as such this prevents us from separating the angular problem
from the radial one. Since the momentum-pseudospin cou-
pling lies at the heart of this problem, this can be resolved
by decoupling the exciton eigenvalue equation to a single
equation following a procedure analogous to earlier works
[35–38], which gives

(
− 2a2t2

E exc
α + V (r)

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2
− K2

4

)
− V (r) + � − λshτ h − a2t2

(
∂

∂r

1

E exc
α + V (r)

){
2

∂

∂r
+ i

τe + τh

r

∂

∂ϕ

+ δτ h,−τ eτ h[Ky cos(ϕ) − Kx sin(ϕ)]

})
φe,h

c,v (r, ϕ) = E exc
α φe,h

c,v (r, ϕ). (13)

In this approximate decoupling, the kinetic energy of the
particles is assumed to be small compared to the band gap
and the total exciton energy, which is a good approximation
for 2D TMDs. The disadvantages of using this equation are
the fact that it needs to be solved self-consistently and that the
other three components of the exciton wave function still need
to be calculated explicitly after solving this equation, whereas
a numerical solution of the coupled set of equations (10)
immediately yields all four components. The last two terms
in this equation, which only appear for intravalley excitons
and not for intervalley ones, still prevent us from separating
the angular and the radial part. In principle, we could treat
these terms within perturbation theory. In such a case, the
angular part of the zeroth order wave function is simply given
by exp(i jϕ) with j an integer quantum number. This implies

that these terms give no contribution in first order perturbation
theory, whereas in second order perturbation theory they only
couple states whose angular momentum quantum numbers
differ by ±1. We can therefore assume that the total contri-
bution of these two terms will be negligibly small and we
will neglect them in the remainder of our calculations and thus
assume the angular part of the wave function to be given by
exp(i jϕ).

Using the above equation for a K = 0 intravalley exciton in
MoS2 suspended in vacuum, we find a binding energy of 556,
274, and 330 meV for the 1s, 2s, and 2p states, respectively.
As a comparison, using equation (10) we find 539, 262, and
321 meV, respectively, which amounts to a difference of 3%–
4% between the results of the two equations. The four com-
ponents of the 1s-state exciton wave function obtained by the
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FIG. 3. Different components (β = c, γ = v: blue curve, β = c,
γ = c and β = v, γ = v: red curve, β = v, γ = c: black curve)
of the K = 0 intravalley 1s-state wave function for excitons in
MoS2 suspended in vacuum obtained from Eq. (13) (solid) and
Eq. (10) (dashed). The blue and black curves are s-like and have zero
pseudospin, the red curves are p-like and have pseudospin ±1. The
total angular momentum of this state is j = 0. The inset shows the
corresponding total radial probability distribution for the two cases.

two different methods are shown in Fig. 3. It is clear that the
second component of the exciton wave function (blue curves),
which represents the contribution of an exciton composed of
an electron in the conduction band and a hole in the valence
band, is significantly larger than the other three components.
This component as well as the third component (black curves)
show s-like behavior, whereas the first and fourth component
(red curves) show p-like behavior. This is in agreement with
Eq. (9), in which for j = 0 and τ e = −τ h = 1 the second and
third component have zero orbital angular momentum and
the first (fourth) component has orbital angular momentum
−1 (1). The largest difference between the two methods is
found in the second component (the blue curves in Fig. 3)
for small r. The wave function obtained from Eq. (10) has
a maximum at small nonzero r while the solution obtained
from Eq. (13) has its maximum in the origin. This additional
curvature of the wave function for the former leads to a higher
energy and as such a lower binding energy, in agreement
with the values mentioned above. The total radial probability
distributions as obtained from the two equations are in good
agreement, with the probability distribution obtained from
Eq. (10) being slightly more spread out, which is in agreement
with the lower binding energy which was found using this
equation.

The exciton energy shows parabolic dependence as a func-
tion of the center of mass momentum at low energy. From
the curvature, we obtain the total exciton mass through the

expression

M = h̄2

m0

(
∂2E exc

α (K )

∂K2

∣∣∣∣
K=0

)−1

, (14)

with m0 the free electron mass. We find M = 1.14m0, 1.24m0,
0.70m0, and 0.77m0 for 1s-state excitons in, respectively,
MoS2, MoSe2, WS2, and WSe2 suspended in vacuum. This is
in good agreement with the values derived from the literature
[39] for equal electron and hole masses, i.e., M = 2me/h, for
which we find, respectively, M = 1.00m0, 1.08m0, 0.64m0,
and 0.68m0, which is 9%–13% smaller than our calculated ex-
citon masses. The effective mass of the single-particle energy
spectrum of Eq. (1) is given by m = h̄2(� − λ)/(2a2t2), from
which we find exciton masses of, respectively, M = 0.97m0,
1.09m0, 0.62m0, and 0.68m0, which is 11%–15% smaller
than our calculated exciton masses. Furthermore, we find that
these values differ very little for higher excited exciton states
(which have slightly smaller masses, e.g., M = 1.12m0 and
M = 1.09m0 for the 2p and 2s states in MoS2, respectively)
and that there is also a very weak dependence on the substrate
dielectric constant (decreasing mass as a function of the
dielectric constant, e.g., M = 1.09m0 for the 1s-state exciton
in MoS2 on a SiO2 substrate).

The exchange interactions couple the intravalley exciton
bands originating from direct transitions in the K and K ′
valley and as such lead to a splitting of these originally
degenerate bands into a parabolic lower band a linear upper
band [30,31]. This leads to a correction on the total exciton
mass of the lower parabolic band, which is the ground state.
Using the effective model and the parameters given in Eq. (12)
of Ref. [30], we find a correction factor of 1.26 for the total
exciton mass for MoS2 suspended in vacuum. The presence
of a substrate will reduce this correction factor. Similar results
are expected for other TMDs.

V. EXCITON LANDAU LEVELS

In the presence of a perpendicular magnetic field, the
wave vectors are replaced by � = k − qA/h̄ where A is the
vector potential giving rise to the magnetic field B = ∇ × A.
Here, we choose to work in the symmetric gauge A =
(−By/2, Bx/2, 0)T . As a result, the components of the center
of mass momentum are no longer good quantum numbers and
we will again need to decouple the exciton eigenvalue equa-
tion in order to separate the angular part from the radial part,
even though the total exciton angular momentum operator (8)
still commutes with the (magnetic) Hamiltonian. Furthermore,
we also need to take into account the spin Zeeman effect
and the Zeeman effect due to the orbital angular momentum
m of the single-particle states around their atomic sites, i.e.,
m = 0 and m = 2τ for conduction- and valence-band states,
respectively. Eventually we find

{
− 2a2t2

g
(
r, E exc

α

)
[

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2
r

+ 1

4

∂2

∂R2
+ 1

4

1

R

∂

∂R
+ 1

4

1

R2

∂2

∂ϕ2
R

− 1

16l4
B

(r2 + 4R2) + i

2l2
B

(
∂

∂ϕr
+ ∂

∂ϕR

)

− τ e + τ h

2l2
B

]
− a2t2

(
∂

∂r

1

g
(
r, E exc

α

)
)(

2
∂

∂r
+ i

τe + τh

r

∂

∂ϕr
− (τ e + τ h)

r

4l2
B

+ δτ h,−τ eτ h

[
cos(ϕR − ϕr )

R

l2
B

− i sin(ϕR − ϕr )
∂

∂R
− cos(ϕR − ϕr )

i

R

∂

∂ϕR

])
− V (r) + � − λshτ h

}
φe,h

c,v (r, R, ϕr, ϕR) = E exc
α φe,h

c,v (r, R, ϕr, ϕR), (15)
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FIG. 4. Six lowest Landau levels of the intravalley (τe =−τh =1)
2p (a) and 3d (b) states for excitons in MoS2 suspended in vacuum.
Solid blue (red dashed) lines indicate positive (negative) relative
angular momentum states.

with lB = √
h̄/(eB) the magnetic length and g(r, E exc

α ) =
E exc

α + V (r) − (se + sh)μBB − 2τ hμBB with μB the Bohr
magneton. We used the same assumptions and approximations
to arrive at this equation as we did to obtain Eq. (13). There
are now three terms which only appear for intravalley excitons
and not for intervalley ones and which prevent the equation
from being separable into an angular and a radial part. These
terms are small because they are related to magnetic field
effects and we can again argue that they can be neglected
because they will only contribute in second-order perturbation
theory, where they now only couple states whose relative
(center of mass) angular momentum quantum numbers differ
by ±1 (∓1). We will therefore assume that the angular part
of the wave function is given by exp(i jrϕr + i jRϕR). Further-
more, we can now also distinguish the terms (i.e., the last
two on the first line of the equation) corresponding to the
magnetic angular momentum and the Zeeman effect related
to the intrinsic magnetic moment of the individual Bloch
particles [40,41]. The Landau levels for the exciton 2p and 3d
states of MoS2 are shown in Fig. 4. The Landau levels show
a linear behavior as a function of the magnetic field strength
and we find that they correspond qualitatively to the Landau
levels of a 2D charged Schrödinger particle, i.e., [42]

E 	
(

nR + jR + | jR|
2

+ 1

2

)
h̄ωc, (16)

with nR the (positive integer) principal center of mass quan-
tum number, jR the center of mass angular momentum, and

FIG. 5. Dominant component of the intravalley (τe = −τh = 1)
2p-state wave function for the degenerate states with ( jr, jR ) = (1, 0)
(a) and ( jr, jR ) = (−1, 1) (b) for excitons in MoS2 suspended in
vacuum in the presence of a magnetic field of B = 50 T.

with ωc = 2eB/M the center of mass cyclotron frequency,
meaning that for each nR the corresponding Landau levels are
infinitely degenerate for all jR � 0 and that the states defined
by (nR, jR) and (nR + 1, jR − 1) are degenerate for jR > 0.
Note that some of the lowest Landau levels decrease as a
function of the magnetic field, which is a consequence of the
Zeeman effect due to the orbital angular momentum of the
single-particle states around their atomic sites. Furthermore
we find that the magnetic field breaks the degeneracy between
states with opposite relative angular momentum ± jr , which is
to be expected. However, there is still a degree of degeneracy
in the relative angular momentum quantum number in the
sense that Landau level number k of the state with relative
angular momentum jr is degenerate with Landau level number
k + jr of the state with opposite relative angular momentum
− jr . As a result, only the lowest | jr | Landau levels of the state
with negative relative angular momentum are nondegenerate
with the Landau levels of the state with opposite relative
angular momentum. This is a remarkable result since it is not
immediately clear from Eq. (15) that this should be the case.
The exciton wave functions of two degenerate states of which
both the relative and the center of mass angular momentum
quantum numbers are different are shown in Fig. 5. The wave
function in Fig. 5(a) shows s-like behavior as a function of
the center of mass coordinate whereas the wave function in
Fig. 5(b) shows p-like behavior. Both wave functions show p-
like behavior as a function of the relative coordinate. This also
shows that, even for a high magnetic field strength of 50 T, the
exciton wave functions are more localized as function of the
relative coordinate as compared to the center of mass coordi-
nate. Note that the exchange interactions for p and d states
are expected to be negligible since these are proportional with
the value of the exciton wave function squared in the relative
coordinate origin [31]. Therefore it is to be expected that the
inclusion of exchange interaction effects would have little to
no effect on the results presented in this section. For s states,
the slopes of the Landau levels are altered by the inverse of the
correction factor discussed at the end of the previous section.

In principle, it should be possible to measure these exciton
Landau levels experimentally by means of photoluminescence
experiments. However, due to the small energy separation
between the different Landau levels, high magnetic field
strengths, high laser powers, and low temperatures would be
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needed to try and resolve the different states. Landau level-like
features were found in Ref. [24], although the origin of these
features was not discussed.

VI. SUMMARY AND CONCLUSION

Different excited intra- and intervalley exciton states in
different monolayer TMDs were investigated. We started from
the single-particle Dirac Hamiltonian to construct a four-
band exciton Hamiltonian and we solved the corresponding
eigenvalue equation using the finite element method. We
constructed the total exciton angular momentum operator and
showed how its eigenstates can be exploited to decouple the
angular part from the radial part in the exciton Hamiltonian
eigenvalue equation. We calculated the exciton energy levels
and found that intravalley exciton states with larger angular
momentum have lower energy, i.e., E2p < E2s, E3d < E3p <

E3s, ..., which agrees with earlier theoretical and experimental
findings. For intervalley excitons in the ∓K valley, we found
that the ground state has angular momentum j = ±1, which
is due to the contribution from the pseudospin of the electron
and hole, which cancels for intravalley excitons but not for
intervalley excitons. We also calculated the exciton binding

energy and average interparticle distance for different combi-
nations of excited states, TMDs, and substrates.

Furthermore, we explained why this method of separation
of variables fails in the case of finite exciton center of mass
momentum or in the presence of a perpendicular magnetic
field. However, we showed that it is still possible to approxi-
mately separate the variables in these cases and demonstrated
good agreement with the nonapproximate method in the limit
of zero center of mass momentum. By calculating the exciton
energy as a function of the center of mass momentum, we
obtained the exciton mass.

Finally, we calculated the exciton Landau levels and found
that they correspond qualitatively to those of a 2D charged
Schrödinger particle. Furthermore, the perpendicular mag-
netic field breaks the degeneracy between states with opposite
relative angular momentum but this degeneracy is partly re-
stored when taking into account states with higher center of
mass angular momentum.
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and A. Imamoğlu, Nat. Phys. 11, 141 (2015).

[23] G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko,
E. Palleau, X. Marie, and B. Urbaszek, 2D Mater. 2, 034002
(2015).

[24] G. Plechinger, P. Nagler, A. Arora, A. G. del Águilla, M. V.
Ballottin, T. Frank, P. Steinleitner, M. Gmitra, J. Fabian,
P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn,
Nano Lett. 16, 7899 (2016).

[25] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[26] J. Sabio, F. Sols, and F. Guinea, Phys. Rev. B 81, 045428
(2010).

115439-8

https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/nnano.2012.95
https://doi.org/10.1038/nnano.2012.95
https://doi.org/10.1038/nnano.2012.95
https://doi.org/10.1038/nnano.2012.95
https://doi.org/10.1038/ncomms1882
https://doi.org/10.1038/ncomms1882
https://doi.org/10.1038/ncomms1882
https://doi.org/10.1038/ncomms1882
https://doi.org/10.1038/ncomms2498
https://doi.org/10.1038/ncomms2498
https://doi.org/10.1038/ncomms2498
https://doi.org/10.1038/ncomms2498
https://doi.org/10.1063/1.3636402
https://doi.org/10.1063/1.3636402
https://doi.org/10.1063/1.3636402
https://doi.org/10.1063/1.3636402
https://doi.org/10.1103/PhysRevB.86.081301
https://doi.org/10.1103/PhysRevB.86.081301
https://doi.org/10.1103/PhysRevB.86.081301
https://doi.org/10.1103/PhysRevB.86.081301
https://doi.org/10.1038/nmat3505
https://doi.org/10.1038/nmat3505
https://doi.org/10.1038/nmat3505
https://doi.org/10.1038/nmat3505
https://doi.org/10.1103/PhysRevLett.113.026803
https://doi.org/10.1103/PhysRevLett.113.026803
https://doi.org/10.1103/PhysRevLett.113.026803
https://doi.org/10.1103/PhysRevLett.113.026803
https://doi.org/10.1103/PhysRevLett.113.076802
https://doi.org/10.1103/PhysRevLett.113.076802
https://doi.org/10.1103/PhysRevLett.113.076802
https://doi.org/10.1103/PhysRevLett.113.076802
https://doi.org/10.1103/PhysRev.108.1384
https://doi.org/10.1103/PhysRev.108.1384
https://doi.org/10.1103/PhysRev.108.1384
https://doi.org/10.1103/PhysRev.108.1384
https://doi.org/10.1070/PU1985v028n09ABEH003990
https://doi.org/10.1070/PU1985v028n09ABEH003990
https://doi.org/10.1070/PU1985v028n09ABEH003990
https://doi.org/10.1070/PU1985v028n09ABEH003990
https://doi.org/10.1103/PhysRevB.59.2927
https://doi.org/10.1103/PhysRevB.59.2927
https://doi.org/10.1103/PhysRevB.59.2927
https://doi.org/10.1103/PhysRevB.59.2927
https://doi.org/10.1103/PhysRevB.61.13873
https://doi.org/10.1103/PhysRevB.61.13873
https://doi.org/10.1103/PhysRevB.61.13873
https://doi.org/10.1103/PhysRevB.61.13873
https://doi.org/10.1002/1521-396X(200003)178:1<513::AID-PSSA513>3.0.CO;2-1
https://doi.org/10.1002/1521-396X(200003)178:1<513::AID-PSSA513>3.0.CO;2-1
https://doi.org/10.1002/1521-396X(200003)178:1<513::AID-PSSA513>3.0.CO;2-1
https://doi.org/10.1002/1521-396X(200003)178:1<513::AID-PSSA513>3.0.CO;2-1
https://doi.org/10.1103/PhysRevB.63.115302
https://doi.org/10.1103/PhysRevB.63.115302
https://doi.org/10.1103/PhysRevB.63.115302
https://doi.org/10.1103/PhysRevB.63.115302
https://doi.org/10.1038/nature13734
https://doi.org/10.1038/nature13734
https://doi.org/10.1038/nature13734
https://doi.org/10.1038/nature13734
https://doi.org/10.1038/s41598-018-25906-7
https://doi.org/10.1038/s41598-018-25906-7
https://doi.org/10.1038/s41598-018-25906-7
https://doi.org/10.1038/s41598-018-25906-7
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3203
https://doi.org/10.1088/2053-1583/2/3/034002
https://doi.org/10.1088/2053-1583/2/3/034002
https://doi.org/10.1088/2053-1583/2/3/034002
https://doi.org/10.1088/2053-1583/2/3/034002
https://doi.org/10.1021/acs.nanolett.6b04171
https://doi.org/10.1021/acs.nanolett.6b04171
https://doi.org/10.1021/acs.nanolett.6b04171
https://doi.org/10.1021/acs.nanolett.6b04171
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevB.81.045428
https://doi.org/10.1103/PhysRevB.81.045428
https://doi.org/10.1103/PhysRevB.81.045428
https://doi.org/10.1103/PhysRevB.81.045428


SPECTRUM OF EXCITON STATES IN MONOLAYER TRANSITION METAL PHYSICAL REVIEW B 99, 115439 (2019)

[27] A. V. Chaplik and M. V. Entin, Zh. Eksp. Teor. Fiz. 61, 2496
(1971).

[28] L. V. Keldysh, JETP Lett. 29, 658 (1979).
[29] P. Cudazzo, I. V. Tokatly, and A. Rubio, Phys. Rev. B 84,

085406 (2011).
[30] D. Y. Qiu, T. Cao, and S. G. Louie, Phys. Rev. Lett. 115, 176801

(2015).
[31] F. Wu, F. Qu, and A. H. MacDonald, Phys. Rev. B 91, 075310

(2015).
[32] A. Srivastava and A. Imamoğlu, Phys. Rev. Lett. 115, 166802
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