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The generation of highly confined plasmons through far-field optical illumination appears to be impractical
for technological applications due to their large energy-momentum mismatch with external light. Electrical
generation of plasmons offers a possible solution to this problem, although its performance depends on a careful
choice of material and geometrical parameters. Here we theoretically investigate graphene-based structures and
show in particular the very different performances between (i) two layers of graphene separated by a dielectric
and (ii) metal/insulator/graphene sandwiches as generators of propagating plasmons assisted by inelastic
electron tunneling. For double-layer graphene, we study the dependence on the relative tilt angle between the two
sheets and show that the plasmon generation efficiency for 4◦ twist angle drops to ∼20% from its maximum for
perfect stacking. For metal/insulator/graphene sandwiches, the inelastic tunneling efficiency drops by several
orders of magnitude relative to double-layer graphene, regardless of doping level, metal/graphene separation,
choice of metal, and direction of tunneling (metal to or from graphene), a result that we attribute to the small
fraction of the surface-projected metal Brillouin zone covered by the graphene Dirac cone. Our results reveal
a reasonable tolerance to graphene lattice misalignment and a poor performance of structures involving metals,
thus supporting the use of double-layer graphene as an optimum choice for electrical plasmon generation in
tunneling devices.
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I. INTRODUCTION

Surface plasmons, the collective excitations of conduction
electrons at the surface of conducting materials, have been
the focus of intense research over the past decades because
of their ability to interact strongly with light, producing a
huge concentration of electromagnetic energy down to deep-
subwavelength regions, accompanied by strong enhancement
of the optical field intensity [1,2]. Plasmons are relatively
tolerant to defects in the fabrication of the structures support-
ing them, which commonly rely on colloid chemistry [3] and
lithography [4] techniques, with application to optical sensing
[5], photocatalysis [6], nonlinear optics [7], and optical signal
processing [8], among other feats. However, the strong spatial
confinement produced by optical plasmons has a negative side
effect: the coupling cross section from far-field radiation to
plasmons is small, typically comparable to or even smaller
than the lateral size of the supporting plasmonic nanostruc-
tures. Plasmon excitation with light is thus inefficient, which
represents a serious obstacle in the development of practical
applications. Various methods have been devised to solve
this problem, among them the use of funneling structures
that focus light down to the spatial extension of the plasmon
through the use of gratings [9,10] and tips [11–13]. Quantum
emitters have also been employed as a source of plasmons
[14], and although they can operate as a source of single
plasmons, their efficiency is also low.
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An alternative to the optical generation of plasmons is
provided by electron beams, which have been used in pio-
neering studies of surface plasmons, including their discov-
ery [15–17]. However, the production and control of elec-
tron beams are difficult to combine with integrated devices.
Electrons can also inelastically undergo tunneling between
neighboring conductors, losing energy that results in the
emission of light [18,19]. Recently, plasmon emission pro-
duced by inelastic tunneling has been explored in different
systems [20,21], and this mechanism has also been theoreti-
cally explored in sandwiches formed between graphene layers
[22–25], where it is found to be particularly efficient [24].

In this paper, we extend a previous work [24] and present
a comprehensive study of the plasmon-emission efficiency
associated with inelastic tunneling between two graphene
layers. Also, we compare the results with the emission in
metal/insulator/graphene (MIG) configurations. For double-
layer graphene (DLG), we assess the dependence of the
emission efficiency on the relative graphene twisting angle
and find a substantial reduction in the efficiency when the K
points in the two layers are misaligned by more than a few
degrees. For MIG configurations, we find plasmon generation
rates way below those of DLG.

II. SPECTRALLY RESOLVED INELASTIC
TUNNELING CURRENT

The large plasmon confinement and small thickness com-
pared with the light wavelength in the structures under consid-
eration allow us to work within the quasistatic limit. We thus
calculate the probability for an electron to inelastically tunnel
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between initial and final states ψi and ψ f while transferring
an amount of energy h̄ω to the materials (e.g., a plasmon) by
using the frequency-resolved screened interaction W (r, r′, ω),
which describes the potential created at r by a point charge
placed at r′ and oscillating with frequency ω. More precisely,
the probability can be written as [17,24]

�(ω) = 4
2e2

h̄

∑
i, f

∫
d3r

∫
d3r′ ψ†

i (r) · ψ f (r)ψ†
f (r′) · ψi(r′)

× Im{−W (r, r′, ω)}δ(ε f − εi + ω) fi(h̄εi )

× [1 − f f (h̄ε f )], (1)

where the leading factor of 4 accounts for spin and valley
degeneracies in graphene. This factor is the same for DLG and
MIG structures, as they involve at least one graphene layer.
Electrons undergo transitions from initial occupied states to
final empty states of energies h̄εi and h̄ε f , respectively. The
occupation of these levels follows the Fermi-Dirac distribu-
tions fi| f (h̄εi| f ) = 1/{1 + exp[(h̄εi| f − EF,i| f )/kBT ]}, where
EF,i and EF, f are the corresponding chemical potentials in
the emitting and receiving materials, referenced to a common
origin of energies. We work here in the T = 0 limit, for which
these distributions become step functions fi(h̄εi ) = �(EF,i −
h̄εi ) and 1 − f f (h̄ε f ) = �(h̄ε f − EF, f ) and the chemical po-
tentials reduce to the corresponding Fermi energies. For initial
or final states in graphene, we recast the sum over elec-
tron states as

∑
i| f → (2π )−2A

∫
d2Qi| f , while for metals it

becomes
∑

i| f → (2π )−3V
∫

d3ki| f , where A and V are the
corresponding normalization area and volume, respectively. In
the evaluation of Eq. (1), we separate the electron wave func-
tions into parallel and perpendicular components as ψ (r) =
ϕ‖(R)ϕ⊥(z), where R = (x, y) are in-plane coordinates. Fi-
nally, we present some results below for the loss probability
normalized per unit of film surface area J (ω) = �(ω)/A (i.e.,
the spectrally resolved inelastic tunneling current).

III. GRAPHENE/hBN/GRAPHENE STRUCTURES:
DEPENDENCE ON DOPING LEVEL

We first discuss structures formed by two graphene layers
separated by a hexagonal boron nitride (hBN) film, assuming
perfect alignment between the two graphene reciprocal
crystal lattices. We introduced this system in a previous
publication [24], but here we study the dependence on the
doping level of the two graphene layers. The tunneling
structure is sketched in Fig. 1(a): a sandwich of two perfectly
stacked graphene layers, with different doping levels and
conductivities σ1 (bottom) and σ2 (top) and connected with
a bias voltage Vb, are separated by a distance d � 1 nm
(about three atomic layers of hBN), which is maintained
throughout this work. The first Brillouin zone of the graphene
reciprocal lattice is schematically plotted in Fig. 1(b). Around
the K point [K = (2π/3a) (1, 1/

√
3), where a = 1.42Å

is the nearest-neighbor C-C distance], the electronic band
structure is conical in Q [the two-dimensional (2D) wave
vector relative to K], and we can express the electron wave
functions as spinors with two components, each of them
associated with one of the two carbon atoms in the unit cell
[26]. This representation leads to a closed-form expression

for the graphene surface conductivity in the random-phase
approximation (RPA) [27,28], which we use throughout this
work with a phenomenological inelastic electron lifetime of
66 fs (10 meV energy width, or, equivalently, a moderate
mean free path of 66 nm for a Fermi velocity vF ≈ 106 m/s).

For the evaluation of Eq. (1), we incorporate the following
elements.

Screened interaction. We use an analytical expres-
sion for the screened interaction describing the graphene/
hBN/graphene sandwich, given in Appendix B, as a general-
ization of the results presented in Ref. [24] to an asymmetric
environment. This expression incorporates the anisotropy of
hBN through its parametrized dielectric function [29] for the
in- and out-of-plane directions, which accounts for optical
phonons in this material.

Parallel electron wave functions. We use a Dirac-
fermion description of the in-plane graphene electron wave
functions as

ϕ
‖
i| f (R) = 1√

2A
eiQi| f ·R

(
eiφi| f /2

e−iφi| f /2

)
eiK·R, (2)

where φi| f is the azimuthal angle of Qi| f and K is the wave
vector at the K point relative to the � point [see Fig. 1(b)]. We
disregard intervalley scattering, so each of the two inequiva-
lent K points in the first Brillouin zone produces an identical
contribution.

Perpendicular electron wave functions. We describe the
evolution of the electron along z through a one-dimensional
wave function trapped in the graphene layers by potential
wells, which are vertically offset due to Vb. Full details of this
wave function are given elsewhere for graphene [24], while
explicit expressions for metals are offered in Appendix A
by treating the surface in the one-electron step-potential
approximation.

The interaction between plasmons in the two neighboring
layers produces a characteristic hybridization scheme, leading
to two plasmon branches: optical and acoustic. Acoustic plas-
mons have lower energy, and their out-of-plane electric-field
profile looks symmetric. In contrast, optical plasmons possess
higher energy and antisymmetric field profiles, so they are
generally easier to excite and manipulate and therefore are
more suitable for photonic applications.

Tunneling requires Vb �= 0 and EF,1 �= EF,2. We take EF,1 >

EF,2 and hence favor tunneling from layer 1 (bottom) to
layer 2 (top). We explore the effect of varying the doping-level
difference between the two graphene layers by calculating
the spectrally resolved inelastic tunneling current shown in
Fig. 1(c), where we fix EF,2 = 0.3 eV and eVb = 1.2 eV. En-
ergy splitting due to phonons in the hBN film can be observed
at low-energy transfers (below 0.3 eV), losing strength as the
Fermi energy difference �EF = EF,1 − EF,2 decreases.

Acoustic plasmons become apparent for �EF > 0.2 eV.
These resonances have an average plasmon lifetime of ∼50–
70 fs [Fig. 1(f), blue dashed curve] and undergo a redshift
with increasing �EF [Fig. 1(f), blue solid curve]. In con-
trast, optical plasmons become more pronounced when EF,1 >

2EF,2; they experience a milder redshift with increasing �EF

[Fig. 1(f), green solid curve], and their lifetime rapidly in-
creases from ∼10 to ∼80 fs [Fig. 1(f), green dashed curve].
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FIG. 1. Plasmon generation in double-layer graphene: dependence on doping level. (a) Asymmetrically doped double-layer graphene
(DLG; upper layer at Fermi energy EF,2 = 0.3 eV, fixed in this figure, and lower layer at varying EF,1) with an intercalated hBN film (d = 1 nm
thickness, corresponding to about three atomic layers) and gated with a bias voltage Vb = 1.2 eV. (b) High-symmetry points in the graphene
reciprocal lattice. (c)–(e) Spectrally resolved inelastic tunneling current for different values of EF,1 when both graphene sheets have electron
doping (see insets). We show the separate contributions of (c) conduction-to-conduction and (d) valence-to-conduction transitions, as well as
(e) the sum of these two. Optical and acoustic plasmons are marked with labels in (c), while lower-energy, sharp features are associated with
the excitation of hBN optical phonons. (f) Fermi energy dependence for the energies (left axis, solid curves) and lifetimes (right axis, dashed
curves) of the optical (green curves) and acoustic (blue curves) plasmon modes in the DLG structure. (g) Dependence of the total inelastic
tunneling current (black curve) on EF,1, along with the partial contributions of the optical (green curve) and acoustic (blue curve) plasmons.
(h)–(j) Spectrally resolved inelastic tunneling current for EF,1 = 0.9 eV with different types of doping: (h) electron-hole, (i) hole-electron, and
(j) hole-hole. Possible transitions between the valence and conduction bands of the two graphene sheets are indicated by arrows in the insets.
The contribution of conduction-to-conduction tunneling under electron-electron doping is shown for reference [dashed curves, taken from (c)].

We quantify the fraction of the total inelastic current
invested in exciting plasmons by comparing the area under
the whole spectrum in Fig. 1(g) for different values of EF,1

[Fig. 1(g), black curve] to the area under either the optical
(green curve) or acoustic (blue curve) plasmon regions. The
average generation efficiency for the selected values of Vb and
EF,2 lies in the ∼20%–60% range for optical plasmons and is
<1% for acoustic modes.

IV. GRAPHENE/hBN/GRAPHENE STRUCTURES:
DEPENDENCE ON THE TWIST ANGLE

In practical devices, the alignment of the two graphene
layers can be a challenge, so we examine the effect of a
finite twist angle between their respective lattices. Rotations
in real space result in rotations around the � point in mo-
mentum space. In Fig. 2(a) we depict two reciprocal lattices
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FIG. 2. Plasmon generation in double-layer graphene: dependence on tilt angle. (a) First Brillouin zones of two graphene layers tilted by
an angle θ (5◦ in this plot), along with their respective Fermi surfaces (circular cross sections of their respective Dirac cones; we plot only
one per layer) for Fermi energies EF,1 = 1 eV and EF,2 = 0.5 eV. (b) Spectrally resolved inelastic tunneling current for different tilt angles and
the following choice of parameters: eVb = 1.2 eV, EF,1 = 1 eV, EF,2 = 0.5 eV, and d = 1 nm [see Fig. 1(a)]. Optical and acoustic plasmons
are marked with labels, while lower-energy, sharp features are associated with the excitation of hBN optical phonons. (c) Decay of the partial
contribution of optical-plasmon excitation to the inelastic current at h̄ω ≈ 0.61 eV as a function of tilt angle.

corresponding to the bottom (1, black) and top (2, red) layers
for a finite rotation angle θ . The circles surrounding their
respective K points represent the projections of their Fermi
surfaces on 2D momentum space for Fermi energies EF,1 =
1 eV and EF,2 = 0.5 eV. Inelastic tunneling requires the two
circles to be either overlapping or closer to each other than the
plasmon momentum, which is small compared with the Fermi
momenta (kF = EF/h̄vF, i.e., the radii of the plotted circles),
leading to a cutoff angle ∼10◦.

We introduce the twist angle θ in our formalism through
the electron wave function of the final states, so that we
maintain the initial states as in Eq. (2) with K = Ki but write
the final wave function as

ϕ
‖
f (R) = 1√

2A
eiQ f ·R

(
ei(φ f −θ )/2

e−i(φ f −θ )/2

)
eiK f ·R. (3)

Notice that Ki and K f are the K points corresponding to the
centers of the circles in Fig. 2(a). The spinor product in Eq. (1)
involving the parallel wave functions thus becomes

ϕ
‖
i

†
(R) · ϕ

‖
f (R)ϕ‖

f

†
(R′) · ϕ

‖
i (R′)

= 1

2A2
ei(K f −Ki+Q f −Qi )·(R−R′ ) [1 + cos(φi − φ f + θ )],

with K f − Ki = (2π/3a) (cos θ − sin θ/
√

3 − 1, sin θ +
cos θ/

√
3 − 1/

√
3). Introducing this expression together with

the parallel-wave-vector decomposition of W [Eq. (B1)] into
Eq. (1) and performing the R and R′ integrals, we find the
condition k‖ + K f − Ki + Q f − Qi = 0, which guarantees
momentum conservation. We find it convenient to separate
the contributions of the perpendicular wave functions as

I1(k‖, ω) = −
∫

dz
∫

dz′ ϕ⊥
i

†
(z)ϕ⊥

f (z)ϕ⊥
f

†
(z′)ϕ⊥

i (z′)

× Im{W (k‖, z, z′, ω)},
where ϕ⊥

i| f are solutions corresponding to the two quantum
wells that we use to model the graphene layers [24]. Putting
these elements together and considering the initial electron to
tunnel from the conduction band of layer 1, we can write from

Eq. (1) the spectrally resolved tunneling current density

J (ω) = �(ω)

A
= e2

4π4

∫
d2Qi

∫
d2k‖ I1(k‖, ω)

× δ(h̄vFQ f − h̄vFQi + EF,1 − EF,2 − eVb + h̄ω)

× [1 + cos(φi − φ′
f − θ )]�(EF,1 − h̄vFQi )

×�(h̄vFQ f − EF,2), (4)

where G‖ = K f − Ki + k‖, φ′
f = tan−1[(Qyi − G‖y)/(Qxi −

G‖x )], and Q f = |Qi − G‖|. We note that the Dirac δ function
ensures energy conservation in Eq. (4), limiting the spec-
tral range to −vFG‖ + (eVb + EF,2 − EF,1)/h̄ < ω < vFG‖ +
(eVb + EF,2 − EF,1)/h̄. For θ = 0 (no twist), this expression
reduces to that of Ref. [24], where, incidentally, the Fermi
energies within the delta function were absorbed in Vb and
a spurious factor of 2π was accidentally introduced in the
numerical results.

We represent in Fig. 2(b) the tunneling current obtained
from Eq. (4) for different rotation angles when fixing the bias
voltage to Vb = 1.2 eV and the Fermi energies to EF,1 = 1 eV
and EF,2 = 0.5 eV. When plotting the maximum of J (ω) asso-
ciated with the optical plasmon (h̄ω

opt
p � 0.61 eV), we find a

sharp decay with increasing twist angle [Fig. 2(c)], although
we still maintain ∼20% of the maximum value for θ = 4◦,
further indicating a reasonable tolerance of this type of device
against unintended misalignments below the 1◦ level.

So far, we have considered electron doping in both of the
graphene layers. We can straightforwardly repeat the above
analysis to find expressions that apply to situations in which
one or both of the graphene layers is doped with holes.
Furthermore, for sufficiently high Vb, electrons can tunnel
from the valence band of layer 1 even when both layers have
electron doping, which leads to an additional term in the
integrand of Eq. (4); although we give the resulting expression
below these lines, we do not consider such high voltages in
this study. We find

J (ω) = e2

4π4

∫
d2Qi

∫
d2k‖I1(k‖, ω)�(Qi, k‖, ω),
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where

�(Qi, k‖, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(h̄vFQ f − h̄vFQi + EF,1 − EF,2 − eVb + h̄ω)C+ �(EF,1 − h̄vFQi ) �(h̄vFQ f − EF,2)
+ δ(h̄vFQ f + h̄vFQi + EF,1 − EF,2 − eVb + h̄ω)C− �(h̄vFQ f − EF,2) (e-e doping),

δ(−h̄vFQ f − h̄vFQi + EF,1 + EF,2 − eVb + h̄ω)C− �(EF,1 − h̄vFQi ) �(EF,2 − h̄vFQ f )
+ δ(h̄vFQ f − h̄vFQi + EF,1 + EF,2 − eVb + h̄ω)C+ �(EF,1 − h̄vFQi )
+ δ(−h̄vFQ f + h̄vFQi + EF,1 + EF,2 − eVb + h̄ω)C+ �(EF,2 − h̄vFQ f )
+ δ(h̄vFQ f + h̄vFQi + EF,1 + EF,2 − eVb + h̄ω)C− (e-h doping),

δ(h̄vFQ f + h̄vFQi − EF,1 − EF,2 − eVb + h̄ω)C− �(h̄vFQi − EF,1) �(h̄vFQ f − EF,2) (h-e doping),

δ(−h̄vFQ f + vFQi − EF,1 + EF,2 − eVb + h̄ω)C+ �(h̄vFQi − EF,1) �(EF,2 − h̄vFQ f )
+ δ(h̄vFQ f + h̄vFQi − EF,1 + EF,2 − eVb + h̄ω)C− �(h̄vFQi − EF,1) (h-h doping),

with C± = 1 ± cos(φi − φ′
f − θ ). The sign in C± (i.e., + for

valence-to-valence or conduction-to-conduction transitions,
and – otherwise) originates in the change of the sign of one
of the components of the spinor in Eqs. (2) and (3) needed
to describe Dirac fermions in the lower Dirac cone instead
of the upper one [26]. The labels e (electron) and h (hole)
indicate the type of doping in the first and second layers,
respectively, and several δ functions appear in each expression
depending on whether the electron originates in the valence
or conduction bands (for electron doping in layer 1) or just
in the valence band (for hole doping in layer 1), and whether

the electron tunnels to the valence or conduction bands (for
hole doping in layer 2) or just to the conduction band (for
electron doping in layer 2). We define EF,1 and EF,2 as positive
quantities, although it is understood that they represent a
lowering of the Fermi energy relative to the Dirac point when
doping with holes.

In Figs. 1(d) and 1(h)–1(j) we show results for two per-
fectly stacked graphene layers with different types of doping.
Arrows in the insets indicate the different tunneling channels.
Additionally, we compare the results to a reference spectrally
resolved tunneling probability associated with conduction-to-

FIG. 3. Plasmon generation in metal/insulator/graphene tunneling structures. (a) Projection of the Fermi surface on the space of wave
vectors parallel to the graphene plane for Al (gray), Au (red), and Cu (violet), along with the first Brillouin zone of graphene and its Fermi
surface for E gr

F = 1 eV doping (orange circle). (b) Scheme of the Al/Al2O3/graphene structure gated to a bias voltage Vb. The thickness of
the oxide layer is d = 1 nm. The tunneling current goes from Al to graphene. (c) Scheme of the Au/hBN/graphene structure gated to a bias
voltage Vb. The thickness of the hBN layers is also d = 1 nm (about three atomic layers). The tunneling current goes from graphene to Au.
(d) Plasmon dispersion relation given by the poles of the screened potential for the Al/Al2O3/graphene structure (1 eV doping, tunneling from
aluminum to graphene) when the metal is assumed to respond as a perfect conductor [see Eq. (9)]. (e) Same as (d) with Au instead of Al, hBN
instead of Al2O3, and electrons tunneling from graphene to the metal [see Eq. (10)].
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conduction transitions in two electron-doped graphene layers,
which we conclude, in fact, to be the most effective con-
figuration to generate plasmons under the conditions of the
figure.

V. PLASMON GENERATION IN
METAL/INSULATOR/GRAPHENE TUNNELING

STRUCTURES

We now compare the performance of DLG and MIG
structures. In the latter, one of the graphene layers is
substituted by a semi-inifinite metal medium. When the
tunneling electrons go from the metal to the graphene sheet,
not all metals can comply with momentum conservation. In
Fig. 3(a) we represent the surface projection of the Fermi
spheres (assuming for simplicity an independent-electron
description of the metal Fermi sea) of different plasmonic
metals (Au, Cu, and Al) compared with the first Brillouin
zone of graphene, where we further show the graphene Fermi
surface for a doping level Egr

F = 1 eV. When comparing
the Fermi wave vectors of these metals (kAu

F = 12.1 nm−1,
kAg

F = 12.0 nm−1, kCu
F = 13.6 nm−1, kAl

F = 17.5 nm−1) with
the wave vector at the graphene K point (K = 17.0 nm−1),
considering the small radius of the graphene Fermi circle
(kgr

F = Egr
F /h̄vF = 1.52 nm−1), we find that only the Al Fermi

sea overlaps the graphene Dirac cone, so this is the only
one among the good plasmonic metals in which electrons
can tunnel to graphene (without the mediation of phonons
or defects). Then, it is reasonable to consider the structure
represented in Fig. 3(b), consisting of a graphene layer on top
of an aluminum surface coated with a 1-nm layer of oxide
(Al/Al2O3/graphene). A gate voltage is then introduced to
make metal electrons tunnel into the doped graphene sheet
and excite plasmons in the MIG structure.

In contrast, when electrons tunnel from graphene to the
metal, the situation is reversed, so it is favorable to have

the occupied Dirac-cone region outside the projected metal
Fermi sea. This situation is encountered with different choices
of metal, in particular with gold, separated from graphene
by three atomic layers of hBN, as depicted in Fig. 3(c)
(Au/hBN/graphene).

For simplicity, we calculate the screened interaction (see
Appendix B) assimilating the metal to a perfect electric
conductor (|ε| → ∞ is a good approximation for Au and Al
within the plasmonic energy range under consideration). We
further approximate the response of aluminum oxide by using
a constant isotropic permittivity εAl2O3 = 3 (the measured
permittivity [30] varies by only ∼4% within the energy range
under consideration). Finally, we use the RPA conductivity for
graphene [27,28] (see Sec. III) and the anisotropic permittivity
described in Appendix B for hBN [29].

We calculate the spectrally resolved tunneling probability
using Eq. (1) and the formalism described in Sec. II, with
the metal wave functions (either as initial or final states,
depending on the configuration) described as

ψi| f (r) = ϕ⊥
i| f (z, ki| f z )

1√
A

eik‖
i| f ·R.

The perpendicular component of these wave functions de-
pends on the incident wave vector along z (i.e., ki| f z) ac-
cording to the explicit expressions derived in Appendix A
under the assumption of a step potential to represent the
metal/insulator interface.

As graphene has two sublattices, a small phase difference
eik‖

i ·a has to be introduced to account for the coupling to the
metal wave functions, where a = ax̂ is the C-C bond vector.
Additionally, depending on the applied bias, the graphene
doping level, and the type of doping (i.e., electrons or holes),
only one of the two graphene Dirac cones can be engaged in
the tunneling process. Taking these elements into account, the
expression for the inelastic tunneling current calculated from
Eq. (1) needs to be specified for each of the following MIG
configurations:

(i) Al → Al2O3 → electron-doped graphene [see Fig. 4(a)],

J (ω) = e2

2π4

∫
d2Q f

∫
d3ki I2(k‖, kiz, ω) �

(
EAl

F − h̄2k2
i /2me

)
[1 + cos(φ f + k‖

i · a)]

× δ
(
h̄vFQ f − eVb − Egr

F − h̄2k2
i /2me + EAl

F + h̄ω
)

�
(
h̄vFQ f − Egr

F

)
, (5)

(ii) Al → Al2O3 → hole-doped graphene [see Fig. 4(e)],

J (ω) = e2

2π4

∫
d2Q f

∫
d3ki I2(k‖, kiz, ω) �

(
EAl

F − h̄2k2
i /2me

)

× {
δ
( − h̄vFQ f − eVb + Egr

F − h̄2k2
i /2me + EAl

F + h̄ω
)

[1 − cos(φ f + k‖
i · a)]�

(
Egr

F − h̄vFQ f
)

+ δ
(
h̄vFQ f − eVb + Egr

F − h̄2k2
i /2me + EAl

F + h̄ω
)
[1 + cos(φ f + k‖

i · a)]
}
, (6)

(iii) electron-doped graphene → hBN → Au [see Fig. 4(f)],

J (ω)= e2

2π4

∫
d2Qi

∫
d3k f I3(k‖, k f z, ω) �

(
h̄2k2

f /2me−EAu
F

)

× {
δ
( − h̄vFQi − eVb + Egr

F + h̄2k2
f /2me − EAu

F + h̄ω
)
[1 + cos(φi + k‖

f · a)] �(Egr
F − h̄vFQi )

+ δ
(
h̄vFQi − eVb + Egr

F + h̄2k2
f /2me − EAu

F + h̄ω
)
[1 − cos(φi + k‖

f · a)]
}
, (7)
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FIG. 4. Overview of plasmon generation via electron tunneling in MIG structures. (a) Energy bands to scale for the Al/Al2O3/graphene
sandwich when graphene is electron doped to E gr

F = 1 eV. This Fermi energy is shared by the other configurations shown in this figure.
(b), (c) Spectrally resolved inelastic tunneling current for different bias voltages for the system of (a): (b) total current and (c) plasmon-
excitation contribution [using Eq. (11)]. The value of eVb for each curve coincides with its spectral cutoff energy h̄ω. (d) Dependence of the total
inelastic tunneling current (black) and partial plasmon contribution (red) on bias voltage after frequency integration of Eq. (5) for the system
of (a). (e)–(g) Inelastic tunneling currents equivalent to those in (d) for the configurations shown in the lower insets: (e) Al/Al2O3/hole-doped
graphene, (f) Au/hBN/electron-doped graphene, and (g) Au/hBN/hole-doped graphene, as obtained from the frequency integrals of Eqs. (6),
(7), and (8), respectively. The graphene work function is �gr = 4.7 eV, and we choose a bias eVb = 0.7 eV in the sketches.

and (iv) hole-doped graphene → hBN → Au [see Fig. 4(g)],

J (ω) = e2

2π4

∫
d2Qi

∫
d3k f I3(k‖, k f z, ω) �

(
h̄2k2

f /2me − EAu
F

)
[1 − cos(φi + k‖

f · a)]

× δ
(
h̄vFQi − eVb − Egr

F + h̄2k2
f /2me − EAu

F + h̄ω
)

�
(
h̄vFQi − Egr

F

)
, (8)

where the arrows indicate the direction of electron tunneling,
the parallel wave vector transfer is k‖ = K + Qi| f − k‖

f |i, and
we have defined

I2(k‖, kiz, ω) = −
∫

dz
∫

dz′ ϕ⊥
i

†
(z, kiz )ϕ⊥

f (z)ϕ⊥
f

†
(z′)

×ϕ⊥
i (z′, kiz ) Im{W (k‖, z, z′, ω)} (9)

for metal → graphene tunneling and

I3(k‖, k f z, ω) = −
∫

dz
∫

dz′ ϕ⊥
i

†
(z)ϕ⊥

f (z, k f z )ϕ⊥
f

†
(z′, k f z )

×ϕ⊥
i (z′) Im{W (k‖, z, z′, ω)} (10)

for graphene → metal. We note that energy conservation
can be fulfilled only for energies h̄ω < eVb in all of these
structures.

The contour plots in Figs. 3(d) and 3(e) portray
Eqs. (9) and (10) for fixed values of kiz and k f z in the

Al/Al2O3/graphene and Au/hBN/graphene structures, re-
spectively, with a graphene Fermi energy fixed to Egr

F = 1 eV.
They clearly reveal a plasmon mode arising from the poles
of the screened potential W . Additionally, Fig. 3(e) shows
low-energy features associated with hBN phonons in the
Au/hBN/graphene structure.

In order to quantify the amount of inelastic current as-
sociated with plasmon generation, we separate the screened
interaction W = W dir + W ref into the sum of the exter-
nal (W dir) and reflected (W ref) components (see Appendix
B). Plasmons arise from the poles of W ref, originating
in a denominator of the form η(k‖) = 1 + 4π iσk‖/ω +
ε̃2 + e2qd (ε̃2 − 1 − 4π i σk‖/ω), where ε̃2 = √

ε2xε2z, q =
k‖

√
ε2x/ε2z, ε2x and ε2z are the permittivities of the insula-

tor (Al2O3 or hBN) along the in-plane (x) and out-of-plane
(z) directions, and σ is the graphene conductivity. We now
isolate this pole and write W ref = η−1W̃ ref. In the vicinity
of the plasmon pole k‖ = kp, we can Taylor expand η(k‖) =

115438-7
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η′(kp)(k‖ − kp) to first order and approximate the plasmon
contribution to Eqs. (9) and (10) as

Ipl
2 (k‖, kiz, ω) = −

∫
dz

∫
dz′ ϕ⊥

i
†
(z, kiz )ϕ⊥

f (z)ϕ⊥
f

†
(z′)

×ϕ⊥
i (z′, kiz )Im

{
W̃ (k‖, z, z′, ω)

η′(kp)(k‖ − kp)

}
, (11)

Ipl
3 (k‖, k f z, ω) = −

∫
dz

∫
dz′ ϕ⊥

i
†
(z)ϕ⊥

f (z, k f z )ϕ⊥
f

†
(z′, k f z )

×ϕ⊥
i (z′)Im

{
W̃ (k‖, z, z′, ω)

η′(kp)(k‖ − kp)

}
. (12)

By using either Eqs. (9) and (10) or Eqs. (11) and (12) in
Eqs. (5)–(8), we obtain the total spectrally resolved inelastic
tunneling current J (ω) or the contribution arising from plas-
mon generation Jpl(ω), respectively.

We show the calculated spectrally resolved currents J (ω)
and Jpl(ω) in Figs. 4(b) and 4(c) for Al → Al2O3 → electron-
doped graphene inelastic tunneling with a bias voltage in the
0.1 eV < eVb < 1.2 eV range and Egr

F = 1 eV. A significant
spectral broadening in the total current [Fig. 4(b)] originates
in the availability of multiple inelastic channels associated,
for example, with electron-hole pair generation in the metal.
Indeed, plasmons make a relatively moderate contribution
[see Fig. 4(c)], as we conclude by comparing the total to
the plasmon-based ω-integrated inelastic currents [Fig. 4(d)].
The plasmon generation efficiency (number of plasmons per
tunneling electron, obtained from the ratio Jpl/J) varies from
< 10−6 for Vb < 0.3 eV to 0.1 for voltages close to 1.2 eV,
where the plasmon generation rate is ∼10−2 nm−2 s−1.
Figures 4(e)–4(g) represent the total and plasmon-based in-
elastic currents for the configurations depicted below the
graphs, from which we conclude that Al → Al2O3 → hole-
doped graphene exhibits better performance, with plas-
mon generation rates approaching ∼1 nm−2 s−1, while for
Au/hBN/graphene structures the currents are 7 orders of
magnitude smaller. Overall, comparing the performance of
these MIG systems to DLG, we find the latter to be much
more efficient, with inelastic currents reaching 108 nm−2 s−1

(see Fig. 1 and Ref. [24]).

VI. CONCLUSIONS

Our simulations reveal the suitability of DLG heterostruc-
tures as plasmon sources even under moderately unfavorable
conditions produced by a finite twist angle between the two
graphene sheets, with >70% efficiency for a twist angle as
large as 4◦. Additionally, we find the relation EF,1 = 2EF,2

between the Fermi energies of the two layers to be an optimum
choice to maximize the plasmon emission rate of both acoustic
and optical plasmons, although the efficiency is still in the
> 10% range for order-unity variations in the Fermi energies.
Furthermore, our study of MIG structures leads to efficiencies
that are orders of magnitude lower than DLG.

From an intuitive viewpoint, these conclusions can be
understood using the following argument. We are trying to
project electrons from one electrode into the other, which
requires conservation of parallel momentum, differing by just
the plasmon momentum, which is small compared with the

size of the Brillouin zone. For DLG, the matching is most
efficient with perfect alignment, involving large overlaps of
their respective Dirac cones, while the tolerance against twist-
ing mentioned above can be roughly quantified by the angle
required to produce total mismatch between the Dirac cones,
of the order of a few degrees for doping levels of 0.5–1 eV.
Unfortunately, when one of the electrodes is a metal, although
the conduction electron density at the surface is two to three
orders of magnitude larger than that of charge carriers in
graphene, they are distributed over a larger momentum-space
region, rendering the overlap with the Dirac cone smaller; this
effect, together with a weaker plasmon strength in MIG com-
pared with DLG, results in much poorer plasmon generation
rates.

In conclusion, DLG offers an optimum choice for the elec-
trical generation of plasmons based upon inelastic electron
tunneling, which is moderately robust against twisting of the
layers (i.e., misalignment of their respective K points in the
first Brillouin zone) and takes place for broad ranges of doping
(i.e., it is also tolerant with respect to variations in doping).
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APPENDIX A: ELECTRON WAVE FUNCTIONS IN
METAL/INSULATOR INTERFACES

We approximate the electron wave functions in the metal
along the z direction as those of a quantum step poten-
tial, assuming the configuration shown in the scheme in
Fig. 5 (metal for z < 0 and insulator for z > 0). The Fermi
energies of the metals here considered are EAl

F = 11.7 eV
and EAu

F = 5.53 eV, referred to the bottom of the conduc-
tion band. The parameter EC accounts for the energy jump
of the insulators, for which we take EAl2O3

C = 3.5 eV [31]
and EhBN

C = 2.6 eV (i.e., half of their band gap energies,
under the assumption that their Fermi levels are in the
center of the gap, aligned with that of the metal). More-
over, T1 and R1 are the transmission and reflection coef-
ficients at the interface, respectively. By solving the time-

FIG. 5. Configuration with metal for z < 0 and an insulator for
z > 0.
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FIG. 6. Multilayer structure with the permittivities ε1|2|3 and
surface conductivities σ1|2.

independent Schrödinger equation (−h̄2/2me )d2ϕ⊥(z)/dz2 +
V (z)ϕ⊥(z) = Eϕ⊥(z) with V (z) = −V0θ (−z) and V0 = EC +
EF, an electron incident on the interface from the metal side
with energy in the insulator gap has the wave function

ϕ⊥
i (z, kiz ) =

⎧⎨
⎩

1√
2π

(eikizz + R1e−ikizz ), z < 0,

1√
2π

T1e−k2z, z > 0,

where kiz is the electron wave vector along the interface
normal on the metal side, k2 =

√
2meV0/h̄2 − k2

iz,
R1 = (kiz − ik2)/(kiz + ik2), and T1 = 2kiz/(kiz + ik2).
These wave functions satisfy the orthonormality condition∫

dz ϕ⊥
i (z, kiz )ϕ⊥

i
†
(z, k′

iz ) = δ(kiz − k′
iz ). For simplicity, we

assume the electron effective mass to be the same as the free
electron mass.

APPENDIX B: SCREENED INTERACTION POTENTIAL

Because of the 2D translational invariance of the system,
we can write the screened interaction as

W (r, r′, ω) =
∫

d2k‖
(2π )2

eik‖·(R−R′ ) W (k‖, z, z′, ω) (B1)

in terms of its parallel wave-vector components. We consider
a multilayer structure with the permittivities ε1|2|3 and surface
conductivities σ1|2 as defined by the scheme in Fig. 6. This
structure can describe the two configurations considered in
this work: MIG (with one of the σ j conductivities set to zero)
and DLG. An expression for W was presented in a previous
work [24] for a symmetric environment (ε1 = ε3 = 1), which
we generalize here for the asymmetric configuration sketched
above. Using the methods explained in that work, we separate

W (k‖, z, z′, ω) = W dir (k‖, z, z′, ω) + W ref (k‖, z, z′, ω)

into direct and surface-reflection contributions, where

W dir (k‖, z, z′, ω) = 2π

k‖
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1/ε1)e−k‖|z−z′ |, z, z′ < 0,

(1/ε3)e−k‖|z−z′ |, z, z′ > d,

(1/ε̃2)e−q|z−z′ |, 0 < z, z′ < d,

0, otherwise,

and

W ref (k‖, z, z′, ω) = (2π/k‖)

1 − A′
1A′

2e−2qd

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1/ε3)ek‖(2d−z−z′ )[A2 + A′
1(A2 + B′

2) e−2qd ], d < z, d < z′,
(1/ε3)B2 ek‖(d−z)[e−q(d−z′ ) + A′

1 e−q(d+z′ )], d < z, 0 < z′ < d,

(ε̃2/ε1ε3)B1B2 ek‖(d−z+z′ )e−qd , d < z, z′ < 0,

(1/ε3)B2 ek‖(d−z′ )[e−q(d−z) + A′
1 e−q(d+z)], 0 < z < d, d < z′,

(1/ε̃2){A′
1 e−q(z+z′ ) + A′

2 e−q(2d−z−z′ )

+A′
1A′

2[e−q(2d+z−z′ ) + e−q(2d−z+z′ )]}, 0 < z < d, 0 < z′ < d,

(1/ε1)B1 ek‖z′
[e−qz + A′

2 e−q(2d−z)], 0 < z < d, z′ < 0,

(ε̃2/ε1ε3)B1B2 ek‖(d+z−z′ )e−qd , z < 0, d < z′,
(1/ε1)B1 ek‖z[e−qz′ + A′

2 e−q(2d−z′ )], z < 0, 0 < z′ < d,

(1/ε1)ek‖(z+z′ )[A1 + A′
2(A1 + B′

1) e−2qd ], z < 0, z′ < 0.

If the material 2 is isotropic, we have q = k‖ and ε̃2 = ε2. This expression is also applicable when the material in medium 2 is
anisotropic (e.g., hBN) by defining ε̃2 = √

ε2xε2z as the geometrical average of the in-plane (x) and out-of-plane (z) permittivities,
with the square root chosen to yield a positive imaginary part. Also, q = k‖

√
ε2x/ε2z (with Re{q} > 0) is the effective out-of-

plane wave vector in that medium, and we have defined the coefficients

B1 = 2ε1/(ε1 + ε̃2 + β1), B′
1 = (ε̃2/ε1)B1, B2 = 2ε3/(ε3 + ε̃2 + β2),

B′
2 = (ε̃2/ε3)B2, Aj = Bj − 1, A′

j = B′
j − 1, β j = 4π ik‖σ j/ω

for j = 1, 2. In this work, we approximate the permittivity of alumina as a constant value ε̃2 = εAl2O3 = 3, and we use the
perfect-conductor limit for metals (|ε1| → ∞). We describe the graphene conductivity in the RPA [27,28], and we use the
expression [29]

ε2�(ω) ≈ ε∞,� +
∑
i=1,2

s2
�i/

[
ω2

�i − ω(ω + iγ�i)
]
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for the permittivity of hBN, where ε∞,z = 4.10, sz1 = 70.8 meV, ωz1 = 97.1 meV, γz1 = 0.99 meV, sz2 = 126 meV, ωz2 =
187 meV, and γz2 = 9.92 meV for the z component (� = z) and ε∞,x = 4.95, sx1 = 232 meV, ωx1 = 170 meV, γx1 = 3.6 meV,
sx2 = 43.5 meV, ωx2 = 95.1 meV, and γx2 = 4.3 meV for the x component (� = x). The latter incorporates hBN phonons as
Lorentzian terms.
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