
PHYSICAL REVIEW B 99, 115436 (2019)

Enhanced superradiance of quantum sources near nanoscaled media

A. Sivan* and M. Orenstein
Faculty of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

(Received 12 October 2018; published 26 March 2019)

We develop a rigorous theory for nanophotonic cooperative spontaneous emission of an ensemble of quantum
emitters near matter, which also incorporates absorption. Such theory is highly requested since one should
expect that in the field of nanophotonics the close-by emitters will emit cooperatively simultaneously with
strong interaction with the exotic metamaterial complex dielectric function. The closed-form model developed
here considers the buildup both of interemitter correlation over time through emitter transitions via the mutual
field and of geometry-induced spatial correlation. The presence of matter alters the local density of states
(LDOS), resulting in modified decay rate and emission intensity for the entire ensemble relative to values of
spontaneous emission in free space. The superradiant total emission is separable into a quantum-mechanical
time-dependent part and a classical space-dependent part, both being functions of the LDOS. Two distinct
radiative emitter–far-field coupling mechanisms, which together account for the superradiant emission, are
obtained—the coupling of every individual emitter with the far field and the coupling of emitter pairs to the far
field. The calculations for superradiating emitters near silver and near-zero epsilon (NZE) materials were per-
formed with the following results: the silver sphere augments the superradiant far-field intensity and rate by up to
400 and 1000%, respectively, while the NZE sphere enhances the far-field intensity and rate of the superradiance
by approximately 1400 and 400%, respectively.
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I. INTRODUCTION

The area of nanoplasmonics is a field that has under-
gone a substantial advancement in recent years, following
the development of theoretical concepts with far-reaching
applications in many applied fields of knowledge including
communications, energy, and biomedicine. One central con-
cept paramount to the realization of this area is that of the
controlled emission and absorption of visible and infrared
light from and to quantum structures on the nanometric scale.
A fine manipulation of the emissions and absorptions of
light in volumes much smaller than the characteristic dimen-
sions of light itself will enable the manufacturing and en-
hancement of optical sources, optical antennas, photovoltaic
cells, and many more photonic devices. Such manipulation
requires control over the coupling of visible or IR photons
to a more localized manifestation of energy in adequate
frequencies.

One possible physical mechanism that has been at the
center of intensive research over the past years is the coupling
of the photons to a collective localized movement of electrons
on the surface of a conducting material, conveniently named
“surface plasmons.” This coupling essentially enables the
photons which are characterized by a volume of ∼λ3, with λ

being the wavelength of the photon, to effectively exchange
energy with electrons confined to a much smaller volume
unlimited by the diffraction of light by converting a portion
of the energy stored in the photons as electromagnetic fields
into kinetic energy of the collection of free electrons in the
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material. This conversion into electron kinetic energy in a
nonideal material inevitably introduces a substantial decay
due to resistive mechanisms, which seems to render this
coupling less viable for practical purposes [1].

However, as it turns out, some effects predicted by quan-
tum electrodynamics (QED), and more specifically cavity
QED, could be employed to overcome this limitation. It was
first proposed in the 1940’s by Purcell [2] that the rate and
the amplitude of a spontaneously emitting source can be
altered by changing the environment in which the source is
situated, as this environment governs the number of allowed
modes into which photons can be emitted. Consequently, the
environment alters the probabilities of modes of photons to
occupy some volume in space, which directly affects their
rates of spontaneous emission. Engineering of materials to
tailor the local density of states (LDOS) in order to enhance
or supress spontaneous emission rates in optical devices has
been the topic of recent research [3,4].

A different effect that was studied by Dicke [5] suggests
that when many identical sources are located close to one
another with respect to the wavelengths of their emitted pho-
tons they interact with each other through the local photonic
field so that every source affects the rates of emission of
the others. As was shown in Dicke’s works, this results in a
collective spontaneous emission which is characterized by a
very intense and very fast emission, in comparison to what
would have been observed had each source radiated indepen-
dently of the others. This collective phenomenon, known as
“superradiance,” essentially results in radiation intensity that
peaks at I ∝ N2 for N spontaneously decaying emitters rather
than the classical I ∝ N for independent emitters, over a time
period N times shorter.
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Harnessing the superradiance phenomenon, along with
Purcell’s effect, could in theory overcome inherent losses in
the photon-plasmon coupling and facilitate the realization of
photonic devices in the deep subwavelength. In this paper we
shall investigate the behavior of many emitters coupled to one
another in the presence of exotic dielectric nanostructures,
including material loss, and analyze the effect of matter
mediating on multiple quantum photon sources.

While earlier work analyzing cooperative emission near a
plasmonic nanoparticle incorporated a semiclassical descrip-
tion of the sources and emission process [6], we focus our
paper on a fully quantum-mechanical system as we aim to
analyze the effect of matter on the cascaded state transitions
of an excited ensemble of emitters. We will investigate the
behavior of a system composed of multiple quantum emitters,
each described as a two-level system (TLS), set symmet-
rically around spherical nanoparticles of varying materials
and sizes. We will focus on metallic silver and near-zero
epsilon (NZE) metamaterial spheres, but the model developed
here will hold to any material described by a macroscopic
dielectric function. Additionally, the treatment of the system
will be fully quantum mechanical. It is worth noting that the
collective spontaneous emission phenomenon was extensively
studied in the past several decades by many authors [7–10].
As it turns out, the term “superradiance” may refer to several
closely related phenomena, some of which may be also treated
classically, that differ mainly in the assumed form of excita-
tion and representation of the sources. In the literature, there
is in general some ambiguity as to the exact nomenclature
and definition for these different phenomena, and thus it is
important to note that in this paper we will refer the term
“superradiance” to the phenomenon of collective spontaneous
emission of a completely excited, but not initially correlated,
sample of quantum emitters expressed in the Dicke basis.

The paper is organized as follows. Section II introduces the
theoretical background necessary for the construction of our
quantum description of the system. In Sec. III, the theoretical
foundation of quantum mechanics in the presence of losses
is reviewed. From that, the dynamics of the system are de-
veloped, and we obtain the expression for the total radiated
energy. Section IV presents our calculation results for silver
and NZE spheres, and discussion thereon. Final remarks and
conclusions are presented in Sec. V.

II. THEORETICAL BACKGROUND

QED in the presence of lossy media

Consider a system consisting of multiple two-level emitters
embedded in a lossless dielectric, near a lossy nanostruc-
ture. The concept of material losses, as appears in classical
mechanics, is strange to the quantum-mechanical approach.
Dissipation of energy in classical mechanics is employed
by unidirectional conversion of energy from one form to
another—usually heat, that is irreversible, and one is not faced
with any mathematical or conceptual problems when one
employs it. However, when approaching the problem from a
quantum-mechanical point of view it is no longer possible to
simply “lose” energy to some statistical irreversible mecha-
nism; the quantum-mechanical system has to be described as a

closed system, wherein energy quanta can be transferred from
one object to another according to specific “rules.”

To incorporate losses into this quantum-mechanical de-
scription, we adopt in this paper the Huttner-Barnett quan-
tization scheme [11]. The entire space is thus described by
three distinct kinds of quantum harmonic oscillators: The first
describes photons as in a free-space radiation field; the second
describes the bulk—a continuum of degrees of freedom, act-
ing as a coupled reservoir that acts as an object into which the
energy quanta flow; and the third is a N harmonic oscillator
field describing the medium’s polarization. The photonic and
the polarization fields are coupled to one another. Addition-
ally, these polarization oscillators are coupled to the reservoir,
in a manner such that energy quanta may flow from them into
the bulk, but not the other way around. In this way, the effect
of absorption in the material is achieved.

In a system consisting of radiation, matter (which can
be further decomposed to the medium polarization and the
reservoir), and the interactions between them, we follow the
derivation of Refs. [11–15] and others in defining the Hamil-
tonian of the system as

Ĥ =
∫

d3k
∫

dωh̄ωĈ†(ω, k)Ĉ(ω, k). (1)

The vector field operators Ĉ(ω, k) account for the bulk,
polarization, and vacuum radiation fields of frequency ω and
wave vector k combined, and are de facto the creation and
annihilation operators for an “effective vacuum,” also referred
to as the “environment” throughout this paper, describing
the entire space. These operators satisfy the commutation
relations

[Ĉ(ω, k), Ĉ†(ω′, k′)] = δ(ω − ω′)δ(k − k′), (2)

with δ being Dirac’s delta distribution. Defining the spatial
Fourier transform of Ĉ(ω, k),

f̂ (r, ω) = 1

(2π )3/2

∫ ∞

−∞
d3k

2∑
λ=1

eλ(k)Ĉλ(k, ω)eik·r (3)

where eλ are the polarization unit vectors and f̂ (r, ω) satisfy

[f̂ (r, ω), f̂†(r′, ω′)] = δ(r − r′)δ(ω − ω′), (4)

we can write the inhomogeneous wave equation for the elec-
tric field [16]:

∇ × ∇ × Ê(r, ω) − ω2

c2
ε(ω)Ê(r, ω)

= i
ω2

c2

√
h̄

πε0
Im[ε(ω)]f̂ (r, ω). (5)

Here ε0 is the vacuum permittivity and ε(ω) is the dielectric
function of the material, c is the speed of light in vacuum, h̄ is
the reduced Planck constant, and ω is the angular frequency.
The operator f̂ (r, ω) acts as the stochastic noise source term,
as per the dissipation fluctuation theorem [17]. To obtain a
closed-form expression for the electric-field operator from this
differential equation, we will use the definition of the Green’s
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function for the wave equation:

∇ × ∇ × G(r, r′, ω) − ω2

c2
ε(r, ω)G(r, r′, ω)

= Iδ(r − r′). (6)

By multiplication of the Green’s function (6) by
i(ω2h̄/c2πε0)

√
Im[ε(ω)]f̂ (r, ω) and by integration over the

entire space, one obtains

Ê(r, ω) = i

√
h̄

πε0

ω2

c2

∫
d3r′√Im[ε(r′, ω)]

× G(r, r′, ω)f̂ (r′, ω). (7)

This vector operator depends on macroscopic electromag-
netic properties of the material through the imaginary part
of its dielectric function, as well as on the geometry of
the medium through the Green’s dyadic. The environment
operator f̂ (r, ω) is the dynamical variable that will dictate
the evolution of the electric field. From (4), it is clear that
Ê(r, ω) obeys time-independent commutation relations and
thus this quantization scheme is consistent. Moreover, this
result is consistent with the dissipation-fluctuation theorem,
as

〈0|Ê(r, ω)Ê†(r′, ω′)|0〉 = h̄

πε0

ω2

c2
Im[G(r, r′, ω)]δ(ω − ω′).

(8)

Note that for r = r′ and under integration along the pos-
itive ω axis (8) is a restatement of Fermi’s “golden rule.” In
other words, the quantized electric-field operator is directly
related to the LDOS, which is proportional to the decay
rate of quantum systems in a given environment, and so one
should be able to formulate the entire dynamics of a decaying
quantum system in a general medium from knowledge of only
the electric field.

III. DYNAMICS OF THE SYSTEM

A. The total Hamiltonian

Having developed a theory for the Hamiltonian operator
governing the radiation and material absorption in Sec. II,
we now proceed to construct the Hamiltonian operator of
a system containing N identical TLSs acting as emitters in
the vicinity of absorbing material. Throughout this paper, the
TLSs are described as dipoles.

Define the total Hamiltonian:

Ĥtot = ĤF + ĤQ + ĤQF . (9)

Here ĤF , ĤQ, and ĤQF are the energy operators for the
environment, the emitters, and the emitter-field interaction,
respectively. The environment operator is composed of the
“effective vacuum” vector operators developed in Sec. II,

ĤF =
∫

d3r
∫ ∞

0
dωh̄ωf̂†(r, ω)f̂ (r, ω), (10)

to which we add N identical emitters, each characterized by
a dipole vector d and an energy gap h̄ωQ . Here the collection
of emitters is approximated as independent dipoles, whereas
in the Dicke model the constraint on the sample to be much

smaller than the emitted wavelength resulted in all dipoles of
moment strength d behaving as a single dipole of moment
strength Nd . The emitter part of the Hamiltonian is simply

ĤQ = 1

2

N∑
i=1

h̄ωQ(|e〉i〈e|i − |g〉i〈g|i ) = 1

2

N∑
i=1

h̄ωQσ̂ z
i , (11)

where |e〉i and |g〉i stand for the excited and ground states of
the TLS, respectively, for the ith emitter and σ z

i is Pauli’s z
matrix for the ith emitter.

For the interaction part, we generalize the derivation of
Ref. [12] for the case of any number of emitters. The cal-
culation is given in the Appendix, throughout which we
make the rotating wave approximation (RWA) for the emitter-
environment system, thereby considering only near-resonant
and weak emitter-field interaction. The resulting interaction
Hamiltonian is

ĤQF = −
N∑

i=1

di[σ
†
i Ê (+)(rQ,i ) + σiÊ (−)(rQ,i )], (12)

where rQ,i is the position of the ith emitter, approximated
as a point dipole, σi and σ

†
i are Pauli’s matrices for the ith

emitter, and the vector field operators Ê (+)(r) and Ê (−)(r) are
defined in the Appendix. Lastly, we note that an interaction
term of the form d · E contains in principle all electromagnetic
interactions involving the emitters [8]; in the dipole approxi-
mation considered here for the TLS, these include Coulomb
and dipole-dipole interactions.

Substituting (10)–(12) in (9) results in the expression for
the total Hamiltonian of the combined environment-emitters
system:

Ĥtot =
∫

d3r
∫ ∞

0
dωh̄ωf̂†(r, ω)f̂ (r, ω)

− 1

2

N∑
i=1

h̄ωQσ̂ z
i −

N∑
i=1

di[σ
†
i Ê (+)(rQ,i ) + H.c.]. (13)

This Hamiltonian describes N quantum emitters in an
environment that includes absorptive material, and accounts
for all electromagnetic interactions of the emitters. Internal
decay mechanisms of the emitters are omitted from this paper.
This is appropriate when the emitters have long internal decay
times, such as atoms or quantum dots which have charac-
teristic internal decay times in the order of microseconds to
milliseconds, compared to decay times of native spontaneous
emission which are in the order of nanoseconds (for example,
see Refs. [18,19]). As we will show in Sec. IV, this assump-
tion is even more justified for the case of superradiance, which
is characteristically a much faster process than independent
spontaneous emission.

B. The master equation

We now develop the rate equations for the many-emitter
system. The first part of this section follows literature [8,9] in
the development of the general framework for the evolution
of many TLSs in a radiation field, and in the second part
the Hamiltonian we have developed in the previous section
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is incorporated and the specific system which is the focus of
this paper is considered.

Denote the density operator of the combined emitter-
environment system �̂Q+F (t ). By definition of the partial
trace operation, the reduced state density operators for the
quantum emitters and field are, respectively,

�̂Q = TrF [�̂Q+F ], �̂F = TrQ[�̂Q+F ]. (14)

This operator should satisfy the Schrödinger equation

˙̂�Q+F (t ) = −i[Ĥ, �̂Q+F (t )] ≡ −iL̂�̂Q+F (t ), (15)

where L̂ is the Liouville operator L̂X̂ = [Ĥ, X̂ ] and Ĥ is
the system’s total Hamiltonian (13). We assume that in the
initial state there are no emitted photons and denote the start
condition for the field part as �̂F (0) = |{0}〉〈{0}|. Since there
is no radiation at time t = 0, the density matrix operator is
separable at that instant, so that

�̂Q+F (0) = �̂Q(0)�̂F (0) = �̂Q(0) ⊗ |{0}〉〈{0}|. (16)

Solving (15) [cf. (16)] for �̂Q, we assume that the emitter-
field correlation time is negligibly short in comparison to the
characteristic time scale of the system’s evolution since, as
pointed out before, the coupling of the field to the emitters
is considered weak and near resonance, and the character-
istic size of the sample is assumed to be smaller than the
emitted wavelength. In these conditions we can apply the
Born-Markov approximation. We obtain a system of ordinary
differential equations

˙̂�Q(t ) = −iωQ

∑
i

[
σ̂ z

i , �̂Q(t )
]

−
∑
i, j

{
A+

i j

[
σ̂

†
i , σ̂ j�̂

I
Q(t )

]

− A−
i j

[
σ̂ j, �̂

I
Q(t )σ̂ †

i

]}
, (17)

with the definition A±
i j = (	i j ± iδωi j )/2, where

	i j = 2ω2
Qdμdν

c2h̄ε0
Im[Gμν (rQ,i, rQ, j, ωQ)] (18)

and

δωi j = 2dμdν

π h̄ε0
PV

∫ ∞

0
dω

ω2

c2

Im[Gμν (rQ,i, rQ, j, ωQ)]

ω − ωQ
(19)

are the real valued real and imaginary parts of A±
i j , respec-

tively. In (17) and in the following, unless otherwise specified,
the sums run from 1 to N for each index specified under the
summation symbol. The Greek letter subscripts and super-
scripts for the vectors and tensors are summed together over
all spatial coordinates.

The real part of A±
i j , given in (18), corresponds to the radia-

tive decay rate change of the emitter located at rQ,i, due to its
coupling through the radiation field to the emitter in rQ, j . Note
that 	i j encapsulates two distinct phenomena: When i = j,
one simply obtains Einstein’s A coefficient for the ith emitter,
describing its interaction with the field; however, the terms
with i �= j describe a second radiative coupling mechanism

between the sample and the field, through interactions of pairs
of emitters with the field.

The imaginary term of A±
i j corresponds to the nonradiative

(virtual) transitions of energy between the emitters in rQ,i and
rQ, j . Just as for the radiative term, δωi j also describes two
different phenomena: When i = j, δωi j is equal to the Lamb
shift of the ith emitter, while i �= j describes dipole-dipole
interactions between the ith and jth emitters. These shifts,
although divergent, are cut off at frequencies corresponding
to the size of the sample [20], resulting in a negligible effect
on the superradiant process [21]. For now, for the sake of
completeness, we shall not omit δωi j . Substituting (18) in (17)
and transforming back to the Schrödinger picture yields

˙̂�Q(t ) = −iωQ

∑
i

[
σ̂ z

i , �̂Q(t )
]

−
∑
i, j

{
	i j

2
[σ̂ †

i σ̂ j�̂Q(t ) + �̂Q(t )σ̂ †
i σ̂ j − 2σ̂ j�̂Q(t )σ̂ †

i ]

+ iδωi j

2
[σ̂ †

i σ̂ j, �̂Q(t )]

}
. (20)

This expression is the master equation of the emitters
sample. Its solution governs the evolution of the emitters
in time, from which the temporal behavior of the emitted
electromagnetic field can be derived.

A system of N emitters can be fully described by a density
matrix of dimension 2N , which is the dimension of the Hilbert
space spanned by N two-level systems. Calculation of a
general setting of emitters might prove to be impractical, as
we are required to solve those coupled ordinary differential
equations (ODEs) (e.g., 1024 × 1024 coupled ODEs for
only ten emitters). Therefore, we shall deal with systems in
which all the emitters are indistinguishable—such that the
states are symmetrical. In practice, this indistinguishability
means that every emitter will experience the exact same
environment as the others. That means that if one had put
serial numbers on the emitters an observer situated on any
emitter would not have been able to tell on which emitter he
was situated based on any physical measurement that he could
perform, so that the dynamics of the problem are invariant
to the indices of the emitters. That also imposes restrictions
on the generality of the geometrical setting of the problem,
and so the model presented in this paper will be valid only
for settings with axial symmetry. Specifically, in this paper
we examine a system composed of a spherical nanoparticle
having quantum emitters located equidistantly from it on a
ring around its equator—however, many more symmetrical
settings are viable.

It is well known that the problem of N TLSs is isomorphic
to the problem of N spinors with spin ½. Thus, three quantum
numbers can fully span the 2N -dimensional Hilbert space—
| j, m, λ〉, where 0 � j � N/2 is the cooperation number,
− j � m � j is the total excitation, and λ is the degeneracy of
the ( j, m) state. In dealing only with indistinguishable emit-
ters in a symmetrical state, which are initially fully excited, it
can be shown (e.g., in Ref. [9]) that the only quantum number
relevant to the evolution of the system is |m| � j = N/2, and
so it is clearly sufficient to work in a subspace of dimension
N + 1.
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We replace ladder operators σ̂i of the individual emitters
with collective ladder operators for symmetrical states defined
by

�̂| j, m〉 =
√

j( j + 1) − m(m − 1)| j, m − 1〉,
�̂†| j, m〉 =

√
j( j + 1) − m(m + 1)| j, m + 1〉

�̂z| j, m〉 = m| j, m〉 (21)

and rewrite the Hamiltonian:

Ĥtot =
∫

d3r
∫ ∞

0
dωh̄ωf̂†(r, ω)f̂ (r, ω) − 1

2
h̄ωQ�z

− 1

N

∑
i

di{�†Ê(+)(rQ,i ) + H.c.}. (22)

The interaction part in the Hamiltonian (13) consists of
a summation of multiplications of the electric-field operator
at points rQ,i and the ith emitter operators. By replacing the
individual emitter operators with the collective operators and
normalizing by a factor N we in fact state that the average
electrical field acts on the entire sample. Assuming that the
system of emitters and material is spatially symmetrical, as it
is in our case, this approximation is good.

Solving for the master equation with the new Hamiltonian,
one arrives at

˙̂�Q(t ) = −iωQ[�̂z, �̂Q(t )]

− 	

2
[�̂†�̂�̂Q(t ) + �̂Q(t )�̂†�̂ − 2�̂�̂Q(t )�̂†]

+ iδω[�̂†�̂, �̂Q(t )], (23)

with

	 = 1

N2

∑
i, j

	i j (24)

and

δω = 1

N2

∑
i, j

δωi j (25)

being the averaged rate and shift factors, each containing both
of their respective environment coupling and virtual interac-
tion mechanisms. Lastly, since we consider systems wherein
the entire sample is initially excited, it is straightforward to
show that �̂(t ) is diagonal and so the master equation in its
final form is

˙̂�Q(t ) = −	

2
[�̂†�̂�̂Q(t ) + �̂Q(t )�̂†�̂ − 2�̂�̂Q(t )�̂†].

(26)

This equation describes a lossy process with no level shifts
due to virtual interactions. The absence of the δω term stems,
in this case, from our choice of initial conditions, and not from
the negligibility of δω that was discussed above. The exact
state of the emitters at any time can be extracted from this

equation. Moreover, the evolution of the expectation value
of any operator Â that does not commute with the emitter
operators (21) can be evaluated, using the identity 〈Â〉 =
Tr(Â�̂). It is clear from (26) that in the general case the
temporal behavior of the system is completely different from
the decay admitted by a semiclassical analysis of a collection
of emitters near a nanoparticle [6].

C. Total radiated power

In order to calculate the total power radiated from the
superradiating sample, we have to evaluate the evolution of
the operators describing the environment state. Since we can
find the time dependence of any operator that acts on the
emitters, from (26), our goal is to find the radiation intensity
function of the system in terms of emitter operators. By
Heisenberg’s equation one obtains

˙̂f = i

h̄
[Ĥ, f̂] = i

h̄
[ĤF + ĤQF , f̂], (27)

and substituting the field and interaction Hamiltonian and
formally integrating yields

f̂ = 1

N

ω2

c2

√
Im[ε(r, ω)]

h̄πε0

×
∑

i

G∗(rQ,i, r, ω)di

∫ t

0
dτe−iω(t−τ )�̂(τ ). (28)

Under the Born-Markov approximation, we may assume
that �̂(τ )e−iτωQ is slowly varying so one may pull it out of
the integral (28) at time t and take the upper bound of the
integral to infinity [12]. Then, using (7), the expression for the
electric-field operator at time t is

Ê(r, ω; t ) = i
e−itωQ�̂(t )

N

ω2

c2

1

πε0

×
∑

i

d jIm[G(r, rQ,i, ω)]ζ (ωQ − ω)

≡ e−itωQ�̂(t )�(r, ω). (29)

The intensity at a far-field point R is related to the
electric-field operator through the known relation I (R, t ) =

1
2η0

〈Ê†(R, t )Ê(R, t )〉. Up to a constant with respect to time,

this quantity is the expectation value of the operator �̂†�̂,
which, clearly, is an operator acting on the emitters. Therefore,
its evolution is given completely from (26). Under substitution
of (29) and negligence of energy shift terms, and integration of
I (R, t ) over the surface of a sphere with radius R, one obtains
the expression for the total radiated power from the system:

Itot (t ) = 1

2η0

ω4
Q

ε2
0c4

〈�̂†(t )�̂(t )〉

× 1

N2

∑
i, j

∫
d�R2d jZ j (ωQ)Zi(ωQ)dT

i , (30)

where for brevity we have denoted the imaginary part of the
Green’s function Zi(ωQ) = |Im[G(R, rQ,i, ωQ)]|.
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This expression is the main result of this paper. It is
composed of a temporal part, which is quantum mechanical
in nature and is in fact contained solely in the zero-gap
correlation function of the collective emitter ladder operator,
and a spatial part, which is a solution to a scattering problem
with boundary conditions embodied in the Green’s functions.
However, the rate by which the temporal part is governed
is 	 from expression (24), which is also dependent on the
boundary conditions expressed via the Green’s function. It is
straightforward to verify that, in free space and with the dipole
approximation conditions ∀i, j : |ri − r j | � λ and di = d j ,
Dicke’s superradiance is obtained.

We restate (30) as

Itot (t ) = 1

N
I0T (t )F ({rQ}), (31)

where T (t ) = 〈�̂†(t )�̂(t )〉 is the zero-gap first-order correla-
tion function of the collective ladder operators,

I0 = 1

6η0πε0
2

ω4
Q

c4
|d|2 (32)

is the known result for total radiated intensity of a single
dipole in free space, and

F ({r̄}) = 1

N

3

|d|2
∑
i, j

∫
R2d�d jZ j (ωQ)Zi(ωQ)dT

i (33)

will be denoted the spatial enhancement factor of the emitter-
matter system, accounting for the electromagnetic scattering
from the sphere for the fields of N emitters. This term is
the same one as the classical one, and thus, in contrast to
the purely quantum-mechanical temporal evolution, it may be
also obtained from a semiclassical analysis [6]. It encapsulates
both interference and the effect the material has on the power
of the scattered fields. The factor is proportional to the rate of
energy radiated to the far field from several dipole emitters
[22], and we have elected to normalize it such that when
∀i, j : |ri − r j | � λ it will tend to a value of 1. In the above
we have applied the notation {r̄} = {rQ,1, rQ,2...rQ,N }.

IV. CALCULATION RESULTS AND DISCUSSION

A. The Green’s function

We focus in this paper on indistinguishable emitters on
a symmetrical setting, thus the most straightforward choice
of shape for the absorptive material would be a sphere,
conveniently placed at the origin. We will use the expression
for the Green’s function from the literature [23] in spherical
coordinates:

G(r, r′) = − 1

k2
0

r̂r̂δ(r − r′)

+ i
k0

4π

∑
νmn

cmn
[
F(1̃)

ν,mn(k0r)F(3̃)
ν,−mn(k0r′)

−αν,l (k0, k1, a)F(3)
ν,mn(k0r)F(3)

ν,−mn(k0r′)
]
, (34)

which expresses the scattering object as a superposition of
its vector spherical harmonic components F(s)

v,mn(k0r) as well

as their respective material dependent reflection coefficients
αM,l (k0, k1, a) and the sequence coefficients cmn as defined in
Ref. [23] with the indices v = {M, N}, 1 � n � K , and |m| �
n for some integer K . Here, k0 and k1 are the electromagnetic
field’s wave numbers in free space and inside the sphere,
respectively, a is the radius of the sphere, r is the position
of the field’s source, and r′ is the point of measurement,
with respect to the origin of axes. This expression is easily
calculable numerically. In the following section, the cutoff
integer was chosen to be K = 12 for all cases, as for all
calculations the 12th and higher elements of the sequences
were found to be negligible in comparison to the convergent
results.

B. Figures of merit

As evident from Secs. II and III, description of the system
of quantum emitters and matter is complex and its dynamics
are suitably involved, even when considering a relatively
simple case of symmetrical configuration of identical emit-
ters. Because of this complexity, it is important to introduce
definitions for some figures of merit to quantify the results. In
measuring the total radiated energy from the radiating system,
various authors [5,7–10] normalize the energy with respect
to the total radiated energy of a single emitter in vacuum.
However, because of the intricate dependence of the total
radiated energy on the number of sources and the geometry
of the problem, it will not always be sensible to normalize the
spatial enhancement factor with respect to a single emitter in
free space, where neither the geometry of the problem nor the
matter is considered. In our case a reasonable figure of merit
would be

χ ({r̄}) = Itot (Matter)

Itot (Vacuum)
. (35)

Here, the expressions for the radiated power Itot (Matter)
and Itot (Vacuum) are both evaluated for the same number of
emitters with the same geometrical setting, in the presence and
absence of the material, respectively. This figure of merit will
enable us to quantify the change in the total radiated power
when matter is introduced.

Similarly, the effect of the matter on the rate of superradiant
emission will be evaluated through the ratio between the de-
cay rate of interacting emitters in the presence of the material
and that of independently emitting emitters in free space. We
define the effective decay enhancement factor

γ = 1

N

∑
i, j

	i jA
−1 = N	A−1, (36)

where 	 is defined in (24) and A is Einstein’s A coefficient.
We emphasize again the importance of the geometrical sym-
metry of the system on the correctness of this quantity. An
important remark about γ is that the decay rate 	 measures the
rate at which the system of emitters decays, into both radiative
and nonradiative modes. To obtain the relation between radia-
tive and nonradiative mechanisms of energy decay, we define
the radiation efficiency factor

ηR = Prad

Pabs + Prad
, (37)
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where Prad and Pabs are the total radiated and total absorbed
powers, respectively. It is straightforward to see that Prad ∝
F ({r̄}). Similarly, Pabs is proportional to F ({r̄}) but with the
integral calculated from the center of the sphere to its radius,
under proper alteration of the vector spherical harmonics and
scattering coefficients in expressions for the Green’s functions
[23]. Convenient closed expressions for Prad and Pabs can be
found, for example, in Ref. [22]. Then, it is natural to alter
(35) to include ηR, so that

g({r̄}) = ηR
Itot (Matter)

Itot (Vacuum)
. (38)

This quantity is called the “superradiance intensity en-
hancement factor,” and it assesses the enhancement of the
total radiated power in the vicinity of material while also
considering the amount of power dissipated into losses in the
material.

In Sec. III we have shown that one can divide the rate
coefficients (18) into spontaneous emission rates of the indi-
vidual emitters and emission rates associated with pairwise
interaction with the environment. Upon inspection of (33), it
can be immediately seen that a similar analysis would yield
the contribution of each of the coupling mechanisms to the
total amount of power radiated from the system. This can be
done by introducing the quantity

ζ ({r̄}) =
∑

i, j

∫
R2d�d jZ j (ωQ)Zi(ωQ)dT

i∑
i

∫
R2d�[diZi(ωQ)]2 , (39)

which is the ratio between the total radiated power of the en-
tire sample in the presence of the material and the sum of the
contributions of each emitter as if it is radiating independently
from the others in the same geometrical setting, including the
matter. When ζ > 1 the cross terms of the numerator cor-
responding to the pairwise interaction with the environment
are enhancing the total radiated power, while when ζ < 1 the
pairwise interaction inhibits the radiated power. The amount
of enhancement or inhibition of the radiated power resulting
from the interference of emitters can therefore be assessed
from this figure of merit.

C. Collective spontaneous emission in free space

Before proceeding to analyze test cases of superradiance
assisted by a medium, it will be instructive to analyze several
cases in free space. The derivation of the model was done
under the assumption that there is absorptive material present

in the system, and indeed the electric-field vector operator is
directly related to the imaginary part of the dielectric function
of the material as is evident in (7). Therefore, at first glance,
it is impossible to use this model in free space. However, the
expression for the total radiated power (30) is independent of
the material’s dielectric function, and so in practice we can
calculate the radiated intensity in free space by considering
the Green’s dyadic in vacuum. This toy model exploration
will help us develop some intuition on the influence of the
emitter setting on the process of superradiance, with no regard
to the contributions of the material to the process. Throughout
this section, we consider the emitters to be set on rings of
varying radii, but always around the equator of the sphere,
such that the center of the ring coincides with the center of
the sphere. The emitter dipoles themselves, having to satisfy
the indistinguishability condition, are all directed in the same
manner relative to the sphere and the other emitters.

We now turn to investigate the collective spontaneous
emission of several identical emitters, set symmetrically on
rings of varying radii in free space. Figure 2 shows the
radiated power of a sample of ten emitters, normalized by
the radiated power of a single emitter, I0, vs time. Each
subplot shows the radiated power for each of the three
principle directions, for three ring radii—r = 0.01λ, 0.015λ,
and 0.02λ. The dipole moment strength for the emitters is
|d| = 3qe[c][nm] ≈ 144[D], and the emitted wavelength is
λ = 600[nm]. The graphs match in shape those obtained for
superradiance in literature (for example, in Refs. [7,8,10]),
exhibiting the same characteristic delayed peak. Comparisons
between the three subplots show substantial differences, span-
ning several orders of magnitude, for both time and radiated
power. These can be explained through relatively intuitive
considerations. For example, for the radial case [Fig. 1(a)] the
superradiant process is the slowest and weakest. The closer
the emitters are to one another, the slower and weaker the
process is, as predictable if one considers the sources as
classical dipoles, since identical dipoles oriented in opposing
directions will tend to cancel one another. On the other hand,
parallelly oriented dipoles [Fig. 1(b)] will act as one stronger
source when brought closer together. Indeed, in this setting the
process is stronger and faster than in the radial case by about
three orders of magnitude. It is evident that in the elevational
setting the process is less susceptible to the distances between
emitters than in the other two cases. This is also expected
if one considers that for the radial and azimuthal settings
higher multipolar moments are present and contribute to the

FIG. 1. Schemes of the three principle emitter orientations, for eight emitters around a nanoparticle: (a) radial (r̂) orientation, (b) elevational
(θ̂ ) orientation, and (c) azimuthal (φ̂) orientation.
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FIG. 2. Normalized total radiated power vs time for ten identical quantum emitters set equidistantly in free space on a ring of radii
r = 0.01λ(yellow line), r = 0.015λ(red line), and r = 0.02λ(blue line). The emitters are set in (a) radial (r̂) orientation, (b) elevational (θ̂ )
orientation, and (c) azimuthal (φ̂) orientation.

total radiated intensity. These are more appreciable when the
sources are farther away and negate one another less. It is
important to note the significant impact that the orientations of
emitters have on the results; the strengths and durations of the
superradiant pulse span more than three orders of magnitude
for the ten emitters considered here. For a larger number of
emitters, these discrepancies will grow. Thus, it is clear that
the orientations and setting of the emitters, which were largely
neglected in previous analyses of collective spontaneous emis-
sion, are key determinant factors for superradiance.

The free-space analysis is also important since it confirms
a crucial assumption that we have made in Sec. III. For the
chosen wavelength of λ = 600[nm] the characteristic sample
size is at most ∼25[nm], which takes light less than one
tenth of a femtosecond to traverse; this is about five orders of
magnitude faster than the characteristic time scale of fastest
process presented in Fig. 2. Therefore, the assumption that

retardation effects are negligible across the sample, as well
as the Born-Markov approximation, central in the derivation
of the model, are justified. Note, however, that for a very
large number of emitters the characteristic time scale of the
evolution will approach the optical cycle time, as the superra-
diant process time scales like 1/N . Therefore, for N � 1 these
assumptions will no longer be valid [8]. However, in this paper
we focus on smaller samples.

D. Collective spontaneous emission near a silver nanoparticle

The dielectric function for the silver is at λ = 600[nm], fol-
lowing Ref. [24]. The expression for the total radiated power
(31) is separated into spatial and temporal parts, with a rate
factor that also strongly depends on the spatial setting. The
shape of the graph of the time-dependent radiated power will
therefore be identical for any considered setting, but will be
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FIG. 3. χ ({r̄}) and γ for ten identical emitters set equidistantly around the equators of silver spheres of varying radii (color coded) vs
distance from the center of the spheres. (a, c, e) χ ({r̄}) for radial, elevational, and azimuthal orientations, respectively. (b, d, f) γ for radial,
elevational, and azimuthal orientations, respectively.

stretched or contracted by the factors F ({r̄}) and 	, depending
on the geometry of the system. Thus, we will concentrate on
the influence of the geometry on these factors to assess the
effect matter has on superradiance, by comparing χ ({r̄}) and
γ as defined in (35) and (36), respectively, for different cases.
These figures of merit are presented in Fig. 3 for radial (a, b),
elevational (c, d), and azimuthal (e, f) orientations of identical
emitters set equidistantly around the equators of silver spheres
of varying radii, at distances of R/λ, from the center of the
spheres. Throughout the following sections, the graphs are

color coded with respect to the radii of the spheres. The
circles denote the points for which R/λ = a—with a being
the radius of the respective sphere—below which the figures
of merit are not measured. For the radial orientation, it is clear
from subplots (a) and (b) that the silver nanosphere enhances
the LDOS, so that the emitters radiate significantly stronger
and faster to the far field compared to the radial free-space
case. Whereas in free space the radiated power was greatly
inhibited when the emitters were pointing radially, here the
sphere enhances the radiation. On the other hand, the θ̂
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FIG. 4. ζ ({r̄}) for ten identical emitters set equidistantly around the equators of silver spheres of varying radii (color coded) vs distance
from the center of the spheres. The emitters are set in (a) radial orientation and (b) elevational orientation.

oriented emitters (c, d) experience inhibition in close vicinity
of the sphere in comparison to free space, and enhancement
at a distance R ≈ 0.42λ from the center of the sphere. This
can again be explained through classical electromagnetism
considerations, as like-oriented dipoles would induce an equal
and opposite dipole moment on a metallic sphere they are
adjacent to, resulting in destructive interference and weaker
radiation. Note that close to the sphere the decay rate γ is still
high, due to nonradiative losses in the absorptive silver.

Around R ≈ 0.42λ from the center of the sphere, the
phase of the induced dipole moment results in constructive
interference with the sources themselves so the total radiation
in enhanced. For the azimuthal orientation (e, f) the image
charges on the sphere would imitate another ring of dipoles
set head-to-tail with respect to one another, resulting in overall
weak coupling to the far field and decay into both dissipative
modes in the material and near-field modes. Since in the φ̂

setting the introduction of matter further weakens a setting
which did not couple strongly to the far field in the first place,
we will not discuss it. Further insight into the silver sphere
cases could be obtained by examining ζ ({r̄}) defined in (39)
for ten emitters at different distances around silver spheres of
different radii, as in Fig. 4.

As mentioned before, ζ ({r̄}) quantifies the contribution of
the pairwise emitter interaction with the far field. For the r̂
orientation [Fig. 4(a)], it can be seen that close to the smaller

spheres where ζ < 1 it is the individual emitter interaction
that mainly contributes to the coupling of the sample to the
far-field modes as is expected if one considers the effect that
a silver sphere has on the total far-field radiation when a
classical dipole is located adjacent to it perpendicular to its
surface. However, for larger spheres and farther away from
their surfaces, there is a region where the pairwise interaction
is in fact the main contributor of radiated power—as would be
classically predictable from the analogy of dipoles inducing
higher multipolar moments on the silver sphere. For the θ̂

orientation, the emitter-pair interactions enhance and inhibit
the coupling to the far field periodically, over period lengths of
approximately λ/2, further reaffirming that the mutual inter-
ferences between the emitters and the silver sphere determine
the total radiated power. Another aspect in the analysis of
material influence on the emission is the consideration of
power dissipation within the sphere. Higher rates of decay
near the surfaces of silver imply that a significant portion
of the power stored in the emitters is in fact transferred into
absorptive modes. The figure of merit g({r̄}) defined in (38)
considers power dissipation into nonradiative modes in the
sphere and admits a measure of assessing the effectiveness of
the introduction of matter. This is plotted in Fig. 5 for various
sphere radii and orientations.

Comparing Fig. 5(a) with Fig. 3(a), it is evident that
dissipative losses greatly reduce the efficiency of the radial
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FIG. 5. g for ten identical emitters set equidistantly around the equators of silver spheres of varying radii (color coded) vs distance from
the center of the spheres. The emitters are set in (a) radial orientation and (b) elevational orientation.

setting. The highest enhancement occurs at distances of about
0.05λ from the surface of the spheres, where the dissipation
due to absorptive losses is less dominant and the suppression
of multipolar constructive induction on the sphere is concur-
rently minimal. Similar comparison for the elevational setting
admits that for the θ̂ case radiation is more efficient around the
R ≈ 0.42λ point from the center of the sphere. It can be then
deduced that introduction of silver nanospheres to both r̂- and
θ̂ -directed emitters at a certain range of distances will result in
a stronger and faster superradiance, in comparison to systems
where matter is absent. It is important to note, however, that
for the radial case the total superradiated power will still be
significantly lower than in the elevational case, and in practice
only θ̂ -oriented emitters in the vicinity of a silver nanosphere
will produce a strong superradiation.

E. Collective spontaneous emission near a NZE nanoparticle

We will now investigate the effect a metamaterial with di-
electric function ε ≈ 0 has on superradiance. These materials
have been researched extensively (for example, Refs. [25–27])
and have been shown to display interesting properties, such as
very large phase velocity resulting in effective light tunneling
through the material. It will be interesting to investigate the ef-
fects NZE nanoparticles will have on superradiating sources.

We demonstrate here the effect of a spherical NZE
nanoparticle on the superradiance process. Throughout this
section, we consider the dielectric function of the NZE to
be εNZE = −0.01 + 0.01i. As in Sec. IV D, we first compare
χ ({r̄}) and γ for several spheres and emitter configurations.
These are depicted in Fig. 6.

Contrary to the case of silver spheres, for the radial and
azimuthal orientations the NZE sphere significantly inhibits
coupling to far-field modes, while significantly enhancing it
for the elevational setting, generating radiation intensity of
1400% at an almost 400% rate compared to the free-space
case. This can be attributed to the large phase velocity prop-
erty of the NZE sphere, that in practice makes the emitters
optically closer, so that oppositely directed in-phase classical
sources would tend to cancel out one another while like-
directed ones will radiate in sync. Thus, the situation of a NZE
material sphere at the center of a ring of emitters oriented in
parallel to the axis of the ring will, in general, enhance their
total radiated power, with the optimal radii dictated by clas-
sical electromagnetism interference considerations. One may
notice a discrepancy between the enhancement of radiated
power and the rate enhancement coefficient, most notably for
the r̂ and θ̂ cases; the rates seem to be highest for the sphere
radii for which the enhancement is the weakest, especially
near the surfaces of the spheres. Since for the NZE the
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FIG. 6. χ ({r̄}) and γ for ten identical emitters set equidistantly around the equators of NZE spheres of varying radii (color coded) vs
distance from the center of the spheres. (a, c, e) χ ({r̄}) for radial, elevational, and azimuthal orientations, respectively. (b, d, f) γ for radial,
elevational, and azimuthal orientations, respectively.

transmission coefficient for the impingent field is small and
the radiation efficiency coefficient is ηR → 1, this mismatch
cannot be explained by dissipative losses in the sphere. This
excess power dissipated from the emitters is stored in near-
field modes, not accounted for by ηR or any of the far-field
figures of merit defined in Sec. IV A. In Fig. 7 we inspect
ζ ({r̄}) for NZE spheres for the θ̂ orientation. The two other
settings, which are ill-coupled to the far field in free space

(see Fig. 2), are further weakened by the NZE sphere, and we
shall therefore not discuss them further.

This figure shows that for all considered sphere radii the
dominant radiation mechanism is the emitter-pair interaction
with the environment. This further establishes the fact that
the NZE sphere enhances the total radiated power of the
emitters by bringing them closer optically, as this implies that
the emitters couple to the far field through the matter via
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FIG. 7. ζ ({r̄}) for ten identical emitters set equidistantly around the equators of NZE spheres of varying radii (color coded) vs distance
from the center of the spheres. The emitters are set in elevational orientation.

a collective effect, rather than solely via enlargement of the
LDOS separately for each source.

For the NZE sphere case, the introduction of matter en-
hances the total radiated power of the superradiant process
to the far field for the already constructive θ̂ setting, while
weakening it for the already suppressed r̂ and φ̂ orientations.
Note that since ηR ≈ 1 for all considered distances g({r̄}) ≈
χ ({r̄}) everywhere.

V. CONCLUSION

We have developed a generalization of Dicke’s model of
superradiance to include geometric considerations as well as
adjacent absorptive material and investigated the effect on
the collective spontaneous emission of initially fully excited
quantum emitters. This generalization holds for indistinguish-
able emitters, which impose restriction on the symmetry of the
system. Apart from that, the model is valid for any material
which may be described by a macroscopic dielectric func-
tion, so that one may apply the Huttner-Barnett quantization
scheme to it. We have developed a fully quantum-mechanical
description of the system, composed of the quantized absorp-
tive material and any number of identical two-level quantum
emitters. Two main results emerge from our derivation. The
first is the expression for the total radiated power presented
in (30), which is separable into a spatial part determined
by classical electromagnetism and a temporal part which
is quantum mechanical. The second result is the effective
rate coefficient of the temporal evolution, given in (24),
which stems from two distinct types of emitter-environment
interactions—individual emitter environment interactions and
emitter-pair environment interactions. This rate coefficient is
also determined from electromagnetic boundary conditions.

Examining the results in free space to assess the impact of
the emitter geometry on their collective spontaneous emission,
we have seen that the emission strength and duration can be
elucidated from classical considerations. Orienting the emit-
ters in different directions resulted in differences in emission
intensities and durations spanning more than three orders of
magnitude, for only ten emitters, a discrepancy that increases
with the number of sources. This stresses the impact that
source setting has on the collective emission process, a factor

that has mostly been overlooked in previous supperradiance
works.

We have then investigated the impact of introduction of
spherically shaped matter to the system on the superraidant
effect, specifically the modification of the characteristic decay
rate of the process and the total radiated power. Our model en-
abled decomposition of the radiated power into contributions
from each of the two types of emitter-environment interac-
tions, allowing further insight into the influence of material
on the collective process. The analysis of the matter-assisted
superradiance focused on spheres of silver and near-zero
epsilon material. It was found that silver spheres augment the
rate and magnitude of the superradiant pulses for both radial
and elevational settings of the emitters, at distances from the
surfaces of the spheres with optima predicted from analysis
of electromagnetic boundary conditions. However, as silver
is highly absorptive for the optical wavelengths considered, a
large portion of the power invested in the excitation of the
emitters is inevitably coupled to dissipative modes on the
sphere rather than to the far field. In the conditions considered,
for the radial setting we have calculated a superradiance
intensity enhancement factor of about 400% compared to
the free-space process, with a rate constant increased by a
factor of approximately 1000%. For the elevational setting
about 500% intensity enhancement was observed with an
approximately 250% rate. The NZE sphere, on the other hand,
introduces negligible losses across a sphere much smaller
than the optical wavelength inside the material, and due to its
optical properties acts to shorten the optical distance between
the sources, thus considerably enhancing the coupling to the
far field for the elevational orientation by a factor of 14 at
almost quadruple rate, but weakening it for the radial and
azimuthal cases. Additionally, the rate enhancement coeffi-
cient was found to be larger in comparison to the intensity
enhancement, therefore indicating power stored in the near-
field region.
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APPENDIX

We start by considering each TLS being made of charged
particles, such that the charge, mass, position operator, and
momentum operator of the αth particle of the ith emitter
are denoted as qi,α, mi,α, r̂i,α , and p̂i,α , respectively. The
center of the ith emitter is denoted rQ,i. Since the emitters are
electrically neutral,

∑
α

qα,i = 0 (A1)

for all i. We approximate the charge-density operator up to the
dipole moment

ρ̂Q,i(r′) ≈
∑

α

qi,αδ(r̂′ − r̂Q,i )

+∇ ·
[
δ(r̂′ − r̂Q,i )

∑
α

(r̂Q,i − r̂i,α )qi,α

]
(A2)

and define the scalar potential vector for the matter using the
longitudinal part of the electric-field operator Ê||(r, ω) as

−∇ϕ̂M (r, ω) = Ê||(r, ω). (A3)

Generalizing the expression obtained in Ref. [28] to the
case of N emitters, the interaction Hamiltonian is

ĤQF = −
N∑

i=1

[∑
α

qi,α

mi,α
p̂i,α â(ri,α ) +

∫
d3rρ̂Q,i(r)ϕ̂M (r)

]
,

(A4)

where

â(r) =
∫ ∞

0
dωâ(r, ω) + H.c. (A5)

is the frequency integral over the vector potential operator,
taken to be purely transverse and defined as a function of the
effective vacuum operators defined in Sec. II A 1. Therefore,
the transverse part of the electric-field operator is defined in
the frequency domain to be Ê⊥(r, ω) = iωâ(r, ω). The first
term of (A4) can be simplified under the dipole approximation
to yield

−
∑

i

∑
α

qi,α

mi,α
p̂i,α â(ri,α ) ≈ i

h̄

∑
i

[d̂Q,i, ĤQ]â(ri,Q), (A6)

where the dipole moment operator of the ith emitter is intro-
duced in the coordinate system of the ith dipole:

d̂Q,i =
∑

α

qi,ar̂i,α. (A7)

This operator operates on states of the ith emitter, such that

〈e|id̂Q,i|g〉i = 〈g|id̂Q,i|e〉i ≡ di,

〈e|id̂Q,i|e〉i = 〈g|id̂Q,i|g〉i = 0, (A8)

so that eventually one arrives at

i

h̄

∑
i

[d̂Q,i, ĤQ]â(ri,Q) = iωQ

∑
i

(σ̂ †
i − σ̂i )diâ(ri,Q).

(A9)
We define the vector field operator

Ê (r) = Ê (+)(r) + Ê (−)(r), (A10)

where

Ê (+)(r) =
∫ ∞

0
dωÊ(r, ω). (A11)

Under the assumption that the electric field is approxi-
mately monochromatic with frequency ωQ, and under employ-
ment of the RWA, from the definition of the transverse part of
the electric-field operator [see (A10) ] we obtain

−
∑

i

∑
α

qi,α

mi,α
p̂i,α â(ri,α )

≈ −
∑

i

di[σ
†
i Ê⊥(+)(rQ,i ) + σiÊ⊥(−)(rQ,i )]. (A12)

For the second term in (A4), substitution of (A2) and (A3)
and application of the RWA produces

−
N∑

i=1

∫
d3rρ̂Q,i(r)ϕ̂M (r)

≈ −
N∑

i=1

di{σ †
i Ê ||(+)(rQ,i ) + σiÊ ||(−)(rQ,i )} (A13)

so that the interaction Hamiltonian is simply

ĤQF = −
N∑

i=1

di{σ †
i Ê (+)(rQ,i ) + σiÊ (−)(rQ,i )}. (A14)
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