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Effect of a Chern-Simons term on dynamical gap generation in graphene
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We study the effect of a Chern-Simons term on dynamical gap generation in a low-energy effective theory
that describes some features of monolayer suspended graphene. We use a nonperturbative Schwinger-Dyson
approach. We solve a set of coupled integral equations for eight independent dressing functions that describe
fermion and photon degrees of freedom. We find a strong suppression of the gap and corresponding increase in
the critical coupling as a function of increasing Chern-Simons coefficient.
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I. INTRODUCTION

Quantum electrodynamics in 2+1 dimensions (QED2+1)
has been studied for many years as a toy model for quantum
chromodynamics (QCD). The main point is that QED2+1 is
strongly coupled, and therefore, in spite of being Abelian,
it can be used to study many interesting features of QCD
[1–5]. In this paper, we are interested in reduced QED3+1
(RQED) in which the fermions are restricted to remain in a
two-dimensional plane but the photons which are responsible
for the interactions between fermions are not. In the reduced
theory the Coulomb interaction between the electrons has the
same 1/r form as in the (3+1)-dimensional theory, instead
of the logarithmic form obtained from QED2+1. The theory
is physically relevant for the description of what are called
Dirac planar materials, which refer to condensed-matter sys-
tems for which the underlying lattice structure produces a
fermionic dispersion relation that has the form of a Dirac
equation in some regimes. We are particularly interested in
graphene, where the fermions have an effective speed vF

which is on the order of 300 times smaller than the speed
of light. The unique band structure of graphene gives it high
mobility, large thermal and electrical conductivity, and optical
transparence, which are characteristics that are valuable in
technological applications. We study specifically suspended
single-layer graphene, where we deal with a single atomic
layer in the absence of scattering from a substrate, so that the
intrinsic electronic properties of the system are accessed. For
simplicity we will also work at half filling (which means zero
chemical potential).

In both QED2+1 and RQED the fermions couple to a three-
dimensional Abelian gauge field, and therefore, the Chern-
Simons (CS) term can be added to the action. This term
breaks the time-reversal symmetry and gives a mass to the
photon. It is important in condensed-matter physics in the
context of chiral symmetry breaking [6–9], high-temperature
superconductivity [10], and the Hall effect [11]. CS terms can
dynamically generate magnetic fields in QED2+1 [12], and
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magnetic fields are thought to influence dynamical symmetry
breaking in a universal and model-independent way through
what is known as magnetic catalysis (for a review see [13]).

In this work we use RQED and study the influence of
a CS term on phase transitions in graphene. We will show
in Sec. II B that the CS term has the same properties under
discrete symmetry transformations as a chirally symmetric
mass term which was discussed in the context of graphene by
Haldane [14]. One therefore expects that including a CS term
in the photon part of the action could dynamically generate
a Haldane-type mass for the fermions. In Appendix B we
show that such a mass term in the Lagrangian of the effec-
tive theory would correspond physically to including in the
Hamiltonian of the discrete theory a contribution that would
give counterclockwise hopping around the triangles that are
formed by each sublattice of the graphene sheet. In [14] it
was originally proposed that such hopping could take place
in response to an externally applied magnetic field, and as
mentioned above, the influence of magnetic fields on the phase
transition in graphene is a subject of much interest. Within an
effective theory description, a natural way to investigate this
is through the introduction of a CS term at the level of the
Lagrangian.

The coupling constant and CS parameter are dimensionful
scales in QED2+1, but they are dimensionless parameters in
RQED. In natural units the effective coupling can be writ-
ten α = e2/(4πεvF ), where vF ∼ c/300 is the velocity of a
massless electron in graphene. The parameter ε � 1 is related
to the screening properties of the graphene sheet, and we take
the vacuum value ε = 1. The Chern-Simons parameter will be
denoted θ , and we consider θ ∈ (0, 1).

II. THE LOW-ENERGY EFFECTIVE THEORY

A. Noninteracting Hamiltonian

The carbon atoms in graphene are arranged in a two-
dimensional hexagonal lattice. The hexagonal structure can be
viewed as two sets of interwoven triangular sublattices (called
A and B). The geometry dictates each primitive cell has one
atom from the A sublattice and one from the B sublattice
and that each lattice site has three nearest neighbors on the
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opposite sublattice. For each atom, three of the four outer
electrons form hybridized σ bonds with the three nearest
neighbors. The fourth sits in the pz orbital, perpendicular
to the hybrid orbitals, and forms a π bond. The simplest
description of graphene is a tight-binding Hamiltonian for the
π orbitals,

H0 = −t
∑
〈�n�n′〉σ

[a†
�nσ

b�n′σ + H.c.], (1)

where t is the nearest-neighbor hopping parameter and the
operators a†

�nσ
and b†

�n′σ are creation operators for π electrons
with spin σ on the A and B sublattices, respectively.

We can rewrite the Hamiltonian as a momentum integral
by Fourier transforming. Our definitions for the lattice vectors
and discrete Fourier transforms are given in Appendix A.
From the dispersion relation for the noninteracting theory
we obtain six K points, and our choice of two inequivalent
ones, which we denote K±, is given in Eq. (A5). Using
Eqs. (A6) and ((A7)), we rewrite the Hamiltonian in (1) as
a momentum integral, and we expand around K±. We define a
four-component spinor:

�σ ( �p)= (aσ ( �K++ �p), bσ ( �K++ �p), bσ ( �K−+ �p), aσ ( �K−+ �p))T,

(2)

where the superscript T indicates that the spinor should be
written as a column vector. Using this notation, the tight-
binding Hamiltonian becomes

H0 = h̄vF

∑
σ

∫
d2 p

(2π )2
�̄σ ( �p)(γ 1 p1 + γ 2 p2)�σ ( �p), (3)

where we have defined h̄vF = 3at/2 and our representation
for the gamma matrices is given in Eq. (A7). The Lagrangian
of the effective theory (including minimal coupling to the
gauge field) then takes the form [15]

L =
∑

σ

�̄σ (t,�x)[iγ 0Dt + ih̄vF �γ · �D]�σ (t,�x), (4)

where we define Dμ = ∂μ − ieAμ (taking e > 0).
In the next sections we will discuss how to include interac-

tions. At this point however, we note that while our effective
theory can accurately describe the low-energy dynamics of
the system and allow us to correctly include both frequency
and nonperturbative effects, it does not allow for the inclusion
of screening from the σ -band electrons and localized higher-
energy states.

B. Symmetries

We consider the discrete symmetries of the tight-
binding Hamiltonian. The parity, time-reversal, and charge-
conjugation transformations on the spinor in (2) are

P�( �p)P−1 = γ 0�(−�p), (5)

T �( �p)T −1 = iσ2γ
1γ 5�(−�p), (6)

C�( �p)C−1 = γ 1�̄( �p)T . (7)

It is easy to check that the noninteracting theory is invari-
ant under these symmetries. To see the physical content of

Eqs. (5)–(7) we show the action of each on the spinor defined
in Eq. (2).

The parity transformation takes the form

� =

⎛
⎜⎝

aσ (K+ + �p)
bσ (K+ + �p)
bσ (K− + �p)
aσ (K− + �p)

⎞
⎟⎠ P−→

⎛
⎜⎝

bσ (K− − �p)
aσ (K− − �p)
aσ (K+ − �p)
bσ (K+ − �p)

⎞
⎟⎠, (8)

which tells us that the parity operator reverses the sign of
the momentum and exchanges the sublattices. We note that
this definition is different from the one commonly used
in QED2+1, where the transformation P : (x, y) → (−x,−y)
would correspond to spatial rotation. Because of the hexag-
onal lattice structure of graphene, spatial rotation is not a
symmetry of the system unless the sublattice indices are
interchanged.

The time-reversal operator changes the sign of momentum
and spin, and its action on a spinor is

� =

⎛
⎜⎝

aσ (K+ + �p)
bσ (K+ + �p)
bσ (K− + �p)
aσ (K− + �p)

⎞
⎟⎠ T−→

⎛
⎜⎝

aσ (K− − �p)
bσ (K− − �p)
bσ (K+ − �p)
aσ (K+ − �p)

⎞
⎟⎠ (9)

(where we have not explicitly written the action of the factor
iσ2, which flips spin), and therefore, the time-reversal operator
inverts the K points (and spin) but does not act on the
sublattice degrees of freedom.

The action of the charge-conjugation operator is

� =

⎛
⎜⎝

aσ (K+ + �p)
bσ (K+ + �p)
bσ (K− + �p)
aσ (K− + �p)

⎞
⎟⎠ C−→

⎛
⎜⎜⎝

−b†
σ (K+ + �p)

−a†
σ (K+ + �p)

a†
σ (K− + �p)

b†
σ (K− + �p)

⎞
⎟⎟⎠. (10)

We can also consider continuous symmetries of the low-
energy effective theory. The action is invariant under the
enlarged group of global symmetries generated by both γ5

and the third spatial gamma matrix γ3, which is not part of
the Lagrangian (4). The matrices

T1 = i

2
γ 3, T2 = 1

2
γ 5, T3 = i

2
γ 3γ 5 (11)

commute with the Hamiltonian. They also satisfy the com-
mutation relations [T i, T j] = iεi jkT k and therefore form a
four-dimensional representation of SU (2). Including T4 =
I/2 gives a representation of U (2). Physically this is a sym-
metry in the space of valley and sublattice indices, where
“valley” refers to the K± points. The noninteracting theory has
a global U (4) symmetry that operates in the space of [valley
⊗ sublattice ⊗ spin]. We call this a chiral symmetry, and using
our representation of the gamma matrices (see Appendix A),
the chirality quantum number corresponds to the valley index.

C. Fermion bilinears

One reason that fermion bilinears are interesting is that,
close to the critical point, possible interactions of the low-
energy theory are constrained to have the form of local
four-fermion interactions. For example, in the Gross-Neveu
model the basic interaction is a four-fermion contact between
scalar or pseudoscalar densities, and in the Thirring model
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TABLE I. Transformation properties of the bilinears defined in
Eq. (13) under P, C, T .

P C T

I + + +
γ μ +̃ − +̃
γ 3 − + +
iγ 5 − − +
iγ μγ ν +̃ − −̃
iγ μγ 3 −̃ + −̃
γ μγ 5 −̃ − −̃
γ 3γ 5 + + −

the interaction is a contact between two conserved currents.
We note that while short-range interactions are not relevant
for dynamics in a perturbative theory, they can be important
in a strongly coupled system. Mass scales are especially in-
teresting because they are directly related to chiral symmetry
breaking and a possible semimetal/insulator transition.

We use �(n) to indicate one element of the list,

� = {I, γ μ, γ 3, iγ 5, iγ μγ ν, iγ μγ 3, γ μγ 5, γ 3γ 5}, (12)

with μ ∈ (0, 1, 2), which gives a complete basis in Dirac
space. We define a set of fermion bilinears as

G (n) = m(n)
∫

d2x �̄(�x) �(n) �(�x). (13)

The terms constructed with scalar/pseudoscalar elements
�(n) ∈ {1, γ 3, iγ 5, γ 3γ 5} correspond to mass terms and will
be denoted M, M3, M5, and M35.

We look at the transformation properties of fermion bilin-
ears under parity, time reversal, and charge conjugation. We
introduce the notation γ μ̃ = (γ 0,−γ i ), with i ∈ (1, 2). Two
examples where this notation can be used are P�̄γ μ�P−1 =
�̄γ μ̃� and P�̄γ μγ 5�P−1 = −�̄γ μ̃γ 5�. Our results are

shown in Table I, and transformations of the type discussed
above are listed with a tilde over the sign. The first of the two
examples given above is written +̃ in the second row of the
second column of Table I, and the second is the symbol −̃
in the seventh row of the second column. The mass terms
M3 and M5 can be accessed from the standard Dirac mass
M by a change of integration variables in the path integral.
The mass M35 is completely independent of the other three
and is related to a model introduced by Haldane [14]. We
remark that although actions constructed from an effective
Lagrangian with mass term M, M3, or M5 will describe
identical physics, the symmetries of a continuous theory are
not necessarily evident in the original discrete theory, which
means that equivalent continuous theories may correspond to
different discrete theories.

To see directly how mass terms are related to physical
quantities in the discrete theory, we look at a specific example.
We consider a term in the Hamiltonian of the form

H1 =
∑
�nσ

[maa†
�nσ

a�nσ + mbb†
�nσ

b�nσ ], (14)

which would correspond to different densities of particles on
the A and B sublattices and could be realized physically by
placing the graphene sheet on a substrate. Fourier transform-
ing to momentum space and expanding around the K points,
Eq. (14) becomes

H1 =
∑

σ

∫
d2 p

(2π )2
[m+�̄σ ( �p)γ0�σ ( �p) + m−�̄σ ( �p)γ3�σ ( �p)],

(15)

where we have defined m± = 1
2 (ma ± mb). The term in (15)

with the factor m− is proportional to the M3 mass term, which
breaks parity. Writing it explicitly in terms of creation and
annihilation operators, we obtain

M3 =
∫

d2x �̄γ 3� =
∑

σ

∫
d2 p

(2π )2
{[a†

σ ( �K+ + �p)aσ ( �K+ + �p) + a†
σ ( �K− + �p)aσ ( �K− + �p)]

− [(b†
σ ( �K+ + �p)bσ ( �K+ + �p) + b†

σ ( �K− + �p)bσ ( �K− + �p)]}, (16)

which makes clear that the order parameter M3 is proportional to the difference in electron densities for the A and B sublattices.
A nonzero value of this order parameter corresponds physically to a charge density wave and lifts the sublattice degeneracy. The
term in (15) that is proportional to m+ is less interesting since it can be absorbed into a redefinition of the chemical potential.

The independent mass term

M35 =
∫

d2x �̄γ 3γ 5� =
∑

σ

∫
d2 p

(2π )2
{[a†

σ ( �K+ + �p)aσ ( �K+ + �p) − a†
σ ( �K− + �p)aσ ( �K− + �p)]

− [(b†
σ ( �K+ + �p)bσ ( �K+ + �p) − b†

σ ( �K− + �p)bσ ( �K− + �p)]} (17)

corresponds to a gap with opposite sign at the K− point,
relative to M3. Mathematically, a triangular next-neighbor
hopping term in the Hamiltonian of the discrete theory gives a
mass term proportional to M35 in the effective theory. This is
shown in Appendix B. Physically it corresponds to a topolog-
ically nontrivial phase generated by currents propagating on

the two different sublattices. Both the CS term and the M35

mass term violate time-reversal invariance (see Table I), and
one therefore expects that one-loop radiative corrections to
the photon polarization tensor obtained from internal fermions
with a Haldane-type mass would generate an odd-T piece
in the polarization tensor or that including a CS term in
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the photon part of the action would dynamically generate a
Haldane-type mass for the fermions. In this paper we will
introduce a CS term into the action and study the effect of this
term through dynamical mass generation on phase transitions
in graphene.

D. The brane action

Dynamical photons are included in RQED by constructing
the brane action [16–18]. We start with the four-dimensional
Euclidean action

S =
∫

d4x

[
1

4
FμνFμν − 1

2ξ
(∂μAμ)2 + ie�̄ /A�

]
(18)

and integrate out the four-dimensional gauge field to obtain

S → 1

2

∫
d4x

∫
d4y Jμ(x)Dμν (x − y)Jν (y),

Dμν (x − y) =
∫

d3K

(2π )3

∫
dk3

2π
eik(x−y)

×
[
δμν − (1 − ξ )

kμkν

K2 + k2
3

]
1

K2 + k2
3

, (19)

where we write k = (K, k3). We use capital letters for three
vectors which include a timelike component, for example,
K = (k0, �k) = (k0, k1, k2) and X = (x0,�x) = (x0, x1, x2). To
describe graphene we take

J3 = 0, Jμ(x0, x1, x2, x3) = jμ(x0, x1, x2) δ(x3),

μ ∈ (0, 1, 2), (20)

which allows us to do the k3 integral in (19) analytically and
obtain

Dμν (X − Y ) =
∫

d3K

(2π )3
eiK (X−Y )

×
[

δμν

2
√

K2
− (1 − ξ )

KμKν

4
√

K2K2

]
. (21)

Note that in this equation the indices μ and ν are ∈ (0, 1, 2),
and therefore they should properly be written differently (as
μ̄ and ν̄, for example), but to simplify the notation we use the
same letters for these indices. We can rescale the gauge pa-
rameter (1 − ξ ) → 2(1 − ξ̄ ) and suppress the bar to remove
the factor of 1/4 in the last term in (21).

We introduce a three-dimensional vector field (which we
again call A) and write the effective action

S =
∫

d3X

[
1

2
Fμν

1√−∂2
Fμν + AμJμ + 1

ξ
∂ · A

1√−∂2
∂ · A

]
,

(22)

which corresponds to (21) in the sense that if we integrate out
the gauge field, we reproduce the dimensionally reduced prop-
agator. We redefine the gauge-fixing term to be (∂ · A)2/ξ , add
the kinetic term for the fermions [see Eq. (4)], and add a CS
term to obtain

S =
∫

d3X

[
�̄i /D� + 1

2
Fμν

1√−∂2
Fμν

+ 1

2ξ
(∂ · A)2 + iθεμνλAμ∂νAλ

]
. (23)

We want to use this relativistic theory to describe graphene
near the Dirac points. To do this, we replace the Euclidean
metric in the first term of Eq. (23) with the noncovariant form

gμν → Mμν with M =
⎡
⎣ 1 0 0

0 vF 0
0 0 vF

⎤
⎦, (24)

so that �̄i /D� becomes �̄iγμMμνDν�. We obtain the Feyn-
man rules (in Landau gauge) from the resulting action:

S(0)(p0, �p) = −(iγμMμνPν )−1, (25)

G(0)
μν (p0, �p) =

(
δμν − PμPν

P2

)
1

2
√

P2
, (26)

�(0)
μ = Mμνγν. (27)

From this point on we will not refer again to the original
four-dimensional theory. We define new notation so that low-
ercase letters denote the spatial components of three vectors
[for example, P = (p0, �p)]. We also introduce some additional
notational simplifications that will be used in the rest of this
paper: we will sometimes write all momentum arguments of
functions with a single letter [for example, S(P) := S(p0, �p)],
we define dK := dk0d2k/(2π )3, and we write Q = K − P.

III. NONPERTURBATIVE THEORY

We will include nonperturbative effects by introducing
fermion and photon dressing functions and solving a set of
coupled Schwinger-Dyson (SD) equations.

A. Propagators and vertices

In the nonperturbative theory the bare propagator
S(0)(P) in Eq. (25) is written with six dressing functions
(Z+

P , A+
P , B+

P , Z−
P , A−

P , B−
P ), where we have used subscripts

instead of brackets to indicate the momentum dependence
[for example, Z+

P := Z+(p0, �p)]. We define two projection
operators χ± = 1

2 (1 ± γ3γ5). Using this notation, the fermion
propagator has the form

S−1(P) = [−i(Z+
P p0γ0χ+ + vF A+

P �p · �γ ) + B+
P ]χ+

+ [−i(Z−
P p0γ0χ− + vF A−

P �p · �γ ) + B−
P ]χ−,

S(P) = 1

Den+
P

[i(Z+
P p0γ0 + vF A+

P �p · �γ ) + B+
P ]χ+

+ 1

Den−
P

[i(Z−
P p0γ0 + vF A−

P �p · �γ ) + B−
P ]χ−,

Den±
P = p2

0Z±2
P + p2v2

F A±2
P + B±2

P . (28)

We define the even and odd functions:

X± = Xeven ± Xodd → Xeven/odd = 1
2 (X+ ± X−), (29)

where X ∈ (Z, A, B). In the notation of Sec. II C, Beven(0, 0) is
a standard Dirac-type mass (denoted M), which breaks chiral
symmetry but not time-reversal symmetry, and Bodd(0, 0) is a
Haldane-type mass (M35), which preserves chiral symmetry
but violates time-reversal invariance. In the bare theory Z± =
A± = 1, and B± = 0, and therefore the odd functions are zero.
It is easy to see that (28) reduces to (25) in this limit.
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The Feynman rule for the dressed vertex is

�ν (P, K ) = 1
4 [H+

νσ (P) + H+
νσ (K )]γσ (1 + γ5) + 1

4 [H−
νσ (P) + H−

νσ (K )]γσ (1 − γ5), (30)

where P is the outgoing fermion momentum, K is the incoming fermion momentum, and H± indicates the diagonal 3 × 3 matrix

H±(P) =
⎡
⎣Z±(P) 0 0

0 vF A±(P) 0
0 0 vF A±(P)

⎤
⎦. (31)

It is clear that (30) and (31) reduce to (27) in the limit Z± = A± = 1. Equations (30) and (31) are the first term in the full
Ball-Chiu vertex [19]. We include only the first term because calculations are much easier using this simpler ansatz and because
in our previous calculation we found that the contribution of the additional terms is very small [20].

To define the dressed photon propagator we start with a complete set of 11 independent projection operators. Defining nμ =
δμ0 − q0Qμ/Q2, we write

P1
μν = δμν − QμQν

Q2
, P2

μν = QμQν

Q2
, P3

μν = nμnν

n2
, P4

μν = Qμnν, P5
μν = nμQν,

P6
μν = εμναQα, P7

μν = εμναnα

Q2

q2
, P8

μν = εμαβQαnβQν, P9
μν = εναβQαnβQμ,

P10
μν = −εμαβQαnβnν

Q2

q2
, P11

μν = −εναβQαnβnμ

Q2

q2
. (32)

Using this notation, the inverse dressed photon propagator can be written

G−1
μν = 2

√
Q2

[
P1

μν + 1

ξ
P2

μν

]
+ 2θP6

μν + �μν, (33)

where the polarization tensor is written in a completely general way as the sum

�μν =
11∑

i=1

aiP
i
μν. (34)

We invert the inverse propagator and then impose the constraints that the polarization tensor be transverse and satisfy the
symmetry condition �μν (Q) = �νμ(−Q). The surviving components of the polarization tensor give

�μν (Q) = α(Q)P1
μν + γ (Q)P3

μν + �(Q)P6
μν + ρ(Q)

[
P10

μν + P11
μν

]
, (35)

and the propagator is

Gμν = GLP3
μν + GT

[
P1

μν − P3
μν

] + GDP6
μν + GE

[
P10

μν − P11
μν

]
, GL = 2

√
Q2 + α

(2
√

Q2 + α)(2
√

Q2 + α + γ ) + Q2(2θ + ρ + �)2
,

GT = 2
√

Q2 + α + γ

(2
√

Q2 + α)(2
√

Q2 + α + γ ) + Q2(2θ + ρ + �)2
,

GD = − (2θ + �)(2
√

Q2 + α + γ )

(2
√

Q2 + α)[(2
√

Q2 + α)(2
√

Q2 + α + γ ) + Q2(2θ + ρ + �)2]
,

GE = (2θ + �)(2
√

Q2 + α + γ ) − (2
√

Q2 + α)(2θ + ρ + �)

(2
√

Q2 + α)[(2
√

Q2 + α)(2
√

Q2 + α + γ ) + Q2(2θ + ρ + �)2]
. (36)

B. Fermion Schwinger-Dyson equations

The inverse fermion propagator is written generically as

S−1(P) = (S(0) )−1(P) + �(P), (37)

where the fermion self-energy is obtained from the SD equation as

�(P) = e2
∫

dK Gμν (Q) Mμτ γτ S(K ) �ν. (38)

Comparing (37) and (38) with (28), we find the operators that project out each of the fermion dressing functions. For example,

PB+ = 1
4 (1 + γ5) → B+

P = Tr[PB+�(P)]. (39)
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Performing the traces, we obtain the set of self-consistent integrals that give the six fermion dressing functions:

Z±
P = 1 − 4απvF

2p0

∫
dK

DenK
±

q2GL

Q2
k0ZK

±(ZK
± + ZP

±),

A±
P = 1 + 4απvF

2p2

∫
dK

DenK
±

{
k0GDE(�q × �p)ZK

±(AK
± + AP

± − ZK
± − ZP

±)

+ GL

Q2
[q2(�k · �p)AK

±(ZK
± + ZP

±) + k0q0( �p · �q)ZK
±(AK

± + AP
± + ZK

± + ZP
±)

− q0(�q × �p)B+
K (AK

± + AP
± − ZK

± − ZP
±)]

}
,

B±
P = 4απvF

2

∫
dK

DenK
±

q2GL

Q2
BK

±(ZK
± + ZP

±). (40)

We have used the notation �q × �p = q1 p2 − q2 p1, GDE = GD + GE and dropped terms proportional to v2
F (relative to 1), which

is the reason there are no terms containing factors GT in (40).
From Eq. (40) it is easy to see that if we find a solution for the plus dressing functions Z+, A+, and B+, then we automatically

have a solution for the minus dressing functions of the form Z− = Z+, A− = A+, and B− = −B+. We expect therefore that we
will always be able to find a chirally symmetric and time-reversal-violating solution (Beven = 0 and Bodd �= 0) if we initialize
with Zodd = Aodd = Beven = 0. We call this solution 1 and write the solutions for the nonzero dressing functions Z (1)

even, A(1)
even, and

B(1)
odd.

We can also see immediately that a solution with Zodd = Aodd = Bodd = 0 should not exist since setting all odd dressing
functions to zero on the right sides of Eqs. (40) gives Zodd(P) = Bodd(P) = 0 but

Aodd(P) = 4απvF

2p2

∫
dK

Q2

BKeven

DenKeven
[q0GL(�q × �p)(ZKeven + ZPeven − AKeven − APeven )

+ GDE Q2( �p · �q)(AKeven + APeven + ZKeven + ZPeven )]. (41)

In the vicinity of the critical point, however, where BKeven is small, we would have Aodd(P) ≈ 0. We therefore expect to get
rapid convergence if we start in the vicinity of the critical point and initialize with Zodd = Aodd = Bodd = 0. We will call this
solution 2.

We can also show that the two solutions discussed above are approximately the same, except for the reversal of the even and
odd parts of the B dressing function. To see this we substitute on the right side of (40)

Z (2)
odd = A(2)

odd = B(2)
odd = 0, Z (2)

even = Z (1)
even, A(2)

even = A(1)
even, B(2)

even = B(1)
odd, (42)

which gives

Z (2)
even = Z (1)

even, B(2)
even = B(1)

odd, A(2)
even = A(1)

even + 4απvF

2p2

∫
B(1)

Kodd

DenK Q2

× [
q0GL(�q × �p)

(
A(1)

Keven + A(1)
Peven − Z (1)

Keven − Z (1)
Peven

) − GDE Q2( �p × �q)
(
A(1)

Keven + A(1)
Peven + Z (1)

Keven + Z (1)
Peven

)]
. (43)

The first two lines in (43) are consistent with (42), and the last line is approximately consistent when we are close to the critical
point.

This analysis agrees with our numerical results, which are presented in detail in Sec. V. In summary, for all values of (α, θ )
we have considered, we have found only two solutions, which have the form

Solution 1: Z (1)
even �= 0, A(1)

even �= 0, B(1)
odd �= 0 ; Z (1)

odd = A(1)
odd = B(1)

even = 0; (44)

Solution 2: Z (2)
even ≈ Z (1)

even, A(2)
even ≈ A(1)

even, B(2)
even ≈ B(1)

odd ; Z (2)
odd ≈ A(2)

odd ≈ B(2)
odd ≈ 0. (45)

The approximately equal to symbols in the second line indicate deviations from zero of less than 0.01 percent. Solution 1
preserves chiral symmetry but violates time-reversal invariance, and to the degree of accuracy noted above, solution 2 breaks
chiral symmetry but satisfies time-reversal invariance.

C. Photon Schwinger-Dyson equations

The two components of the polarization tensor denoted ρ and � can be set to zero in the approximation v2
F  1, which is

consistent with what was done with the fermion dressing functions in Sec. III B. In this case Eqs. (36) become

GL = 2Q + α

(2
√

Q2 + α)(2
√

Q2 + α + γ ) + 4Q2θ2
, GD + GE ≡ GDE = − 2θ

(2
√

Q2 + α)(2
√

Q2 + α + γ ) + 4Q2θ2
. (46)
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TABLE II. Comparison of B+(0, 0) from different approxima-
tions for two different values of (α, θ ).

Approximation (α, θ ) = (4.0, 0.2) (α, θ ) = (3.4, 0.6)

(3,0,0) 0.00256085 0.00036157
(3,0,1) 0.00255782 0.00036102
(2,0,0) 0.00256082 0.00036167
(2,0,1) 0.00255762 0.00036080
(1,0,0) 0.00256083 0.00036168
(1,0,1) 0.00255762 0.00036080

These expressions involve only two components of the polar-
ization tensor: α(p0, p) and γ (p0, p). We work with the more
convenient expressions

�00 = q2

Q2
(α + γ ), (47)

Tr� = �μμ = α + Q2

q2
�00. (48)

From the Schwinger-Dyson equation for the polarization ten-
sor we obtain

�00 = −4απvF

∫
dK

DenK
+DenQ

+ (ZK
+ + ZQ

+)

× [
v2

F (�k · �q)AK
+AQ

+ + BK
+BQ

+ − k0q0ZK
+ZQ

+]
+ (+ → −), (49)

where the notation (+ → −) indicates a second integral with
the same form as the first but with all plus superscripts
changed to minus. Similarly, we obtain for the trace

�μμ = −4απvF

∫
dK

DenK
+DenQ

+
{
2v2

F (AK
+ + AQ

+)

× (BK
+BQ

+ + k0q0ZK
+ZQ

+) + (ZK
+ + ZQ

+)

× [
v2

F (�k · �q)AK
+AQ

+ + BK
+BQ

+ − k0q0ZK
+ZQ

+]}
+ (+ → −). (50)

Equations (40), (46), (49), and (50) form a complete set of
self-consistent equations that involve only the approximation
v2

F  1.
Now we discuss some additional approximations for the

photon propagator and dressing functions. From Eqs. (49)

and (50) it is straightforward to show that

�μμ = �00 + O
(
v2

F

)
, (51)

and therefore to O(v2
F ) we can set �μμ = �00, which gives

α(q0, q) = −q2
0

q2
�00. (52)

From equation (52) we see that by making a Coulomb-like
approximation we can set α(q0, q) = 0. The full Coulomb ap-
proximation involves setting q0 = 0 everywhere in the photon
propagator. We summarize as follows: For approximation 1

we use (Z, A, B,�)|
v2

F 1
and

GL = q2Q2�00 − q4(�μμ + 2Q)

Q
[
Q3�2

00 − �μμq2(Q�00 + 2q2) − 4(1 + θ2)q4Q
] ,

GDE = 2θq4

Q
[
Q3�2

00 − �μμq2(Q�00 + 2q2) − 4(1 + θ2)q4Q
] .

For approximation 2 we use (Z, A, B,�)|
v2

F 1
and �μμ =

�00 and

GL = q2q2
0�00 − 2q4Q

Q
[
q2

0Q�2
00 − 2q4�00 − 4(1 + θ2)q4Q

] ,

GDE = 2θq4

Q
[
q2

0Q�2
00 − 2q4�00 − 4(1 + θ2)q4Q

] .

For approximation 3 we use (Z, A, B)|
v2

F 1
and �|

(v2
F ,q0/q)1

and

GL = q2

Q[Q�00 + 2(1 + θ2)q2]
,

GDE = − θq2

Q2[Q�00 + 2(1 + θ2)q2]
.

For approximation 4, (Z, A, B,�)|
v2

F 1
(GL, GDE )|

q0=0
,

GL = 1

�00 + 2(1 + θ2)q
,

GDE = − θ

q[�00 + 2(1 + θ2)q]
.

FIG. 1. The ratio of the odd mass divided by the even one for solution 2 [see Eq. (45)]. The left panel shows the ratio as a function of the
coupling with θ = 0.6, and the right panel shows the dependence on θ with α = 4.0.
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When θ = 0 approximations 1 and 3 reduce to the full back-
coupled calculation of Ref. [21], and approximation 4 reduces
to the Coulomb version of that calculation.

We also consider using analytic results for the polarization
components �00 and �μμ obtained from the one-loop expres-
sions using bare-fermion propagators. This is a commonly
used approximation and is based on the vanishing fermion
density of states at the Dirac points.

Finally, we note that although Eq. (46) indicates that GDE

is of the same order as GL for values of θ of order 1,
we expect that the contribution of this term to the fermion
dressing functions will be small. To understand this point,
recall that the propagator component GT does not contribute
in Eq. (40) because it drops out in the limit v2

F  1. Likewise,
in the second line of (40) the term proportional to GDE is
proportional to a difference of the form Z − A, and the first
two lines of this equation show that this difference is of
order vF .

In summary, the full set of possible approximations we
have discussed above can be written using the notation
(n, m, l ), where (1) n ∈ (1, 2, 3, 4) for approximation 1, 2,
3, or 4 [as defined following Eq. (52)], (2) m ∈ (0, 1), where
m = 0 means the polarization components �00 and �μμ are
obtained from their self-consistent expressions (back coupled)
and m = 1 means we use their analytic one-loop approxima-
tions, and (3) l ∈ (0, 1), where l = 0 means GDE is set to zero
and l = 1 means GDE is included.

There are, in principle, 16 possible calculations, corre-
sponding to approximations n = (1, 2, 3, 4) × m = (0, 1) ×
l = (0, 1). Approximations n ∈ (1, 2, 3) and l ∈ (0, 1) agree
to very high accuracy. We show some results for the values of
B+(0, 0) which verify this in Table II. From this point on we
will consider only approximations (3,0,0), (4,0,0), and (4,1,0).

IV. NUMERICAL METHOD

We need to solve numerically the set of eight coupled
equations (40), (49), and (50) for the dressing functions
Z±, A±, B±, �00, and �μμ. The functions �00 and �μμ are
renormalized by subtracting the zero-momentum value

�renorm
00 (P) = �00(P) − �00(0),

�renorm
μμ (P) = �μμ(P) − �μμ(0).

FIG. 2. Beven(0, 0) and Bodd(0, 0) as functions of the parameter θ

with coupling α = 4.0.

FIG. 3. Beven(0, p) as a function of momentum at fixed α = 4.0.

We work in spherical coordinates and define cos(θ ) = �p ·
�k/(pk), so that the integrals have the form

∫
dK = 1

(2π )3

∫ ∞

−∞
dk0

∫ ∞

0
dk k

∫ 2π

0
dθ f (k0, k, θ )

= 1

(2π )3

∫ ∞

0
dk0

∫ ∞

0
dk k

∫ 2π

0

× dθ [ f (k0, k, θ ) + f (−k0, k, θ )]. (53)

We use an ultraviolet cutoff � on all momentum integrals and
define dimensionless variables p̂0 = p0/�, p̂ = p/�, k̂0 =
k0/�, and k̂ = k/�. We also use generically B̂ = B/� for
all components and representations of the masslike fermion
dressing function. The hatted momentum and frequency vari-
ables range from 10−6 to 1, and to simplify the notation
we suppress all hats. We use a logarithmic grid in the k0

and k dimensions to increase sensitivity to the infrared. We
use Gauss-Legendre integration. Dressing functions are in-
terpolated using double linear interpolation, using grids of
220 × 200 × 16 points in the k0, k, and θ dimensions. In the
calculation of �μν we use an adaptive grid for the k0 integral
to more efficiently include the region of the integral where
k0 ∼ p0,

∫ 1

10−6
dk0 =

∫ p0

10−6
dk0 +

∫ 1

p0

dk0. (54)

The integrands for the fermion dressing functions are
smoother, and the adaptive grid is not needed.

FIG. 4. Beven(0, 0) as a function of coupling for different approx-
imations and different values of the parameter θ .
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FIG. 5. The dressing functions Z+ and Z− as functions of p0,
with p held fixed to its maximum and minimum values, for two
values of α and θ = 0.6.

V. RESULTS

Unless stated otherwise, all results in this section are
obtained with the approximation (3,0,0).

In Refs. [20,21] we learned that using the Lindhard screen-
ing function, instead of calculating the photon polarization
tensor using a self-consistently back-coupled formulation,
produces an artificially large damping effect which increases
the critical coupling. This result can be understood as arising
from the fact that large fermion dressing functions Z and A
are neglected in the denominator of the integral that gives the
Lindhard expression for the polarization tensor. In this work
we find that higher values of θ increase the critical coupling,
and this result can be understood in the same way as resulting
from increased screening.

We have found (for all values of θ and α considered) only
two types of solutions [see Eqs. (44) and (45)]. Up to very
small corrections, there is an odd mass solution (solution 1)
and an even mass solution (solution 2), but no solutions for
which both the even and odd mass parameters are nonzero. In
Fig. 1 we show the absolute value of Bodd(0, 0)/Beven(0, 0) for
solution 2. As claimed following Eq. (45), this ratio is always
less than 0.01%.

From this point on we show only results from solution 2.
In Fig. 2 we show the condensates Beven(0, 0) and Bodd(0, 0)
as a function of θ at fixed coupling, and in Fig. 3 we show the
dressing function Beven(p0, p) as a function of momentum at
fixed p0 = 0, using different values of θ . Figures 2 and 3 show

FIG. 6. The dressing functions Z+ and A+ as functions of p, with
p0 held fixed to its maximum and minimum values, for two values of
α and θ = 0.6.

FIG. 7. The dressing functions Z+ and A+ as functions of p0 for
α = 3.4 and θ ∈ (0, 0.6).

clearly that the condensate decreases as a function of θ , which
implies that the critical coupling will increase as θ increases.

The dependence of the critical coupling on the parameter
θ is seen explicitly in Fig. 4, which shows the condensate
as a function of α for different values of θ , using different
approximations.

In order to understand what drives this behavior, we look
at the momentum dependence of the dressing functions Z and
A. Figures 5 and 6 show the dressing functions Z+ and A+
as functions of p0 and p with the other variable held fixed
to its maximum or minimum value. The two values of α

that are shown are α = 2.85, which is close to the critical
coupling for the value of θ = 0.6 that is chosen, and α = 3.4,
which is relatively far from the critical coupling. One sees
that the Z dressing function does not change much, but the A
function does change and is responsible for the experimentally
observed increase in the Fermi velocity at small frequencies as
one approaches the critical coupling.

To see explicitly how this effect is influenced by the
parameter θ , we show in Fig. 7 the fermion dressing functions
Z+ and A+ as functions of p0 for two different values of θ .
Figure 7 shows that once again it is A+(p0, 0) which changes
the most and that the largest effect is obtained with the higher
value of θ .

In Fig. 8 we show �00 as a function of momentum for
α = 3.4 and two different values of θ . For comparison the
Lindhard expression is also shown. Maximal screening is
obtained with the Lindhard approximation, and the smallest

FIG. 8. The component �00 as a function of p0 and p for α = 3.4
and θ ∈ (0, 0.6).
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TABLE III. Extrapolated values of the critical coupling for dif-
ferent approximations and different values of the Chern-Simons
parameter.

Approximation

θ (3,0,0) (4,0,0) (4,1,0)

0.0 2.07 1.99 3.19
0.6 2.84 2.80 4.20

screening effect occurs when we set θ to zero. This is con-
sistent with our results in Figs. 2 and 4, which show that the
critical coupling increases with θ .

We fit the data shown in Fig. 4 using Mathematica, and
the resulting function is extrapolated to obtain the value of
the critical coupling for which Beven(0, 0) goes to zero. Our
results are collected in Table III. The result for approximation
(4,1,0) with θ = 0 is taken from [20], and the result for
approximation (4,0,0) with θ = 0 is taken from [21].

VI. CONCLUSIONS

Chern-Simons terms have been widely studied in
condensed-matter physics in the context of chiral symmetry
breaking, the Hall effect, and high-temperature superconduc-
tivity. In this work we showed that they are also relevant to
the study of phase transitions in graphene. We worked with
a low-energy effective theory that describes some features of
monolayer suspended graphene. We used reduced QED3+1,
which describes planar electrons interacting with photons that
can propagate in three spatial dimensions. We studied the
effect of a Chern-Simons term in this theory. We found two
classes of solutions: in the odd sector the theory dynamically
generates a time-reversal-violating Haldane-type mass, and in
the even sector a mass term of the standard Dirac type is gen-
erated. We studied the dependence of the Dirac mass on the
Chern-Simons parameter θ and showed that it is suppressed
as θ increases, which means that the critical coupling at which
a nonzero Dirac condensate is generated increases with θ . We
showed that this effect can be understood physically as arising
from an increase in screening.
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APPENDIX A: NOTATION

Our definitions of the lattice vectors are

a1 = a{−
√

3, 0, 0},
a2 = a

2
{−

√
3,−3, 0},

a3 = a

2
{3

√
3, 3, 0}. (A1)

Using these definitions, the volume of the lattice cell is S =
3
√

3a2

2 . The vectors that generate the positions of the nearest-
neighbor lattice points are

δ1 = a

2
{−

√
3, 1, 0},

δ2 = {0,−a, 0},
δ3 = {

√
3, 1, 0}, (A2)

and the reciprocal lattice vectors are

b1 = 2π

a

{
− 1√

3
,

1

3
, 0

}
,

b2 = 2π

a

{
0,−2

3
, 0

}
,

b3 = 2π

a

{
− 1√

3
,−1

3
, 0

}
. (A3)

The six K points are

Ki = 3a

2π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

1

4√
3

0

1√
3

−1

− 1√
3

−1

− 4√
3

0

− 1√
3

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

and we choose our two inequivalent K points as

K+ = −K− =
{

− 8π

3
√

3a
, 0

}
. (A5)

We define the Fourier transform

a�nσ =
√

S
∫

BZ

d2k

(2π )2
ei�k·�naσ (�k),

∑
�n

ei(�k−�k′ )·�n = (2π )2

S
δ2(�k − �k′). (A6)

Our representation of the γ matrices is

γ 0 =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, γ 1 =

⎛
⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠,

γ 2 =

⎛
⎜⎝

0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎠, γ 3 =

⎛
⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎠,

γ 5 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠. (A7)

APPENDIX B: HALDANE-TYPE MASS

We consider a term in the Hamiltonian which would
give counterclockwise hopping around the triangles that are
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formed by each sublattice. We write

H2 = t2
∑ [

i
(
a†

x1
ax2 + a†

x2
ax3 + a†

x3
ax1

)]

+ t2
∑ [

i
(
b†

y1
by2 + b†

y2
by3 + b†

y3
by1

)] + H.c., (B1)

where {�x1,�x2,�x3} and {�y1,�y2,�y3} indicate the A and B sites on
one hexagonal cell and the sums are over all A and B triangular
sublattices. We will take the origin of the coordinate system to
be at �x1 = (0, 0). Using our definitions of the lattice vectors,
the corners of the triangular A and B sublattices which form
the hexagon with �x1 in the lower left corner are

�x1 = (0, 0), �x2 = − �a1√
3

= a(1, 0),

�x3 = − �a2√
3

= a

2
(1,

√
3),

�y1 = −2

3
�a1 + 1

3
�a2 = a

2
√

3
(
√

3,−1),

�y2 = −2

3
�a1 − 2

3
�a2 = a√

3
(
√

3, 1),

�y3 = −1

3
�a1 − 2

3
�a2 = a√

3
(0, 1). (B2)

Fourier transforming to momentum space and expanding
around the Dirac points, we obtain

H2 = t2C
∫

d2 p

(2π )2
{[a†

+(p)a+(p) − a†
−(p)a−(p)]

− [b†
+(p)b+(p) − b†

−(p)b−(p)]}

= t2C
∫

d2 p

(2π )2
[�̄(p)γ 3γ 5�(p)], (B3)

where we have defined the constant C = 2[sin(2φ) −
2 sin(φ)], with φ = 8π/(3

√
3). Equation (B3) shows that the

Hamiltonian (B1) corresponds to a mass of the form M35 in
the effective theory.
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