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Majorana lattices from the quantized Hall limit of a proximitized spin-orbit coupled electron gas
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Motivated by recent experiments demonstrating intricate quantum Hall physics on the surface of elemental
bismuth, we consider proximity coupling an s-wave superconductor to a two-dimensional electron gas with
strong Rashba spin-orbit interactions in the presence of a strong perpendicular magnetic field. We focus on the
high-field limit so that the superconductivity can be treated as a perturbation to the low-lying Landau levels. In
the clean case, wherein the superconducting order parameter takes the form of an Abrikosov vortex lattice, we
show that a lattice of hybridized Majorana modes emerges near the plateau transition of the lowest Landau level.
However, unless magnetic-symmetry-violating perturbations are present, the system always has an even number
of chiral Majorana edge modes and thus is strictly speaking Abelian in nature, in agreement with previous
work on related setups. Interestingly, however, a weak topological superconducting phase can very naturally
be stabilized near the plateau transition for the square vortex lattice. The relevance of our findings to potential
near-term experiments on proximitized materials such as bismuth will be discussed.
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I. INTRODUCTION

The past decade has witnessed a flurry of activity, both
theoretical and experimental alike, on engineering topological
phases of matter by piecing together less exotic, more well-
understood components. For example, a common paradigm
involves realizing spinless p-wave superconductivity, in either
one [1] or two [2] dimensions, by proximity coupling (much
more abundant) s-wave superconductors with spin-orbit cou-
pled materials in the presence of modest magnetic (Zeeman)
fields [3–8]. The one-dimensional (1D) version of this pursuit
has achieved remarkable experimental maturity in the past
few years; and while still hotly debated, the effort has led to
mounting evidence for the existence of Majorana modes at
the ends of 1D superconductor-semiconductor heterostructure
devices (see Ref. [9] for a recent review) and ferromagnetic
atom chains on the surface of strongly spin-orbit coupled
superconductors [10].

In the abovementioned proposals, the primary role of the
magnetic field is to Zeeman split the bands at zero momentum,
thereby producing a “one-band” regime across which s-wave
pairing can, due to presence of the spin-orbit coupling, pair
states on opposite sides of the Fermi surface [11]. Here, we
focus on the case of two spatial dimensions (2D) in a quite
different physical regime. We consider applying a strong per-
pendicular magnetic field to an s-wave superconductor prox-
imity coupled to a Rashba spin-orbit coupled two-dimensional
electron gas (2DEG). In this situation, orbital effects due to the
magnetic field dominate: screening of the magnetic field by
the superconductor draws the field into hc/2e flux tubes while
preserving the average flux, which subsequently organizes the
single-particle states of the 2DEG into Landau levels (on the
other hand, Zeeman effects are likely less important).

We consider a minimal Hamiltonian for this heterostruc-
ture setup,

H = H2DEG + H�, (1)

where

H2DEG =
∫

d2r �†

[(
p − e

c A
)2

2m
− μ + V (r)

− αR σ ×
(

p − e

c
A

)
· ẑ + EZσ z

]
�, (2)

H� =
∫

d2r �
†
↑ �(r)�†

↓ + H.c. (3)

Here, e is the (single) electron charge; m is the effective
electron mass; μ is the chemical potential; αR and EZ are
the Rashba and Zeeman coupling strengths, respectively; A =
A(r) is the vector potential [with B(r) = ∇ × A(r) = B(r)ẑ
the magnetic field felt by the electrons]; V (r) is a scalar po-
tential; �(r) is the superconducting pair field; and the σ j are
Pauli matrices acting in the spin space �† = (�†

↑, �
†
↓). B(r),

V (r), and �(r) will in general all be spatially nonuniform due
to formation of vortices in the superconductor.

We assume the high-field limit of this problem, so that
the cyclotron gap h̄ωc is the largest energy scale, and focus
primarily on the case of a clean system. Additionally, we take
the external magnetic field to be near the upper critical field
Hc2 of the assumed type-II superconductor. This allows us
to (i) use for �(r) the well-known lowest-Landau-level form
for the Abrikosov vortex lattice arising in Ginzburg-Landau
theory [12,13] (see Fig. 1) and (ii) ignore at leading order
screening-induced inhomogeneities in the magnetic field, i.e.,
B(r) ≈ Bẑ. In contrast to most previous approaches [14–16],
we are then able to employ a standard Landau gauge and write
H� in the corresponding magnetic Bloch basis appropriate
for the vortex lattice solution, considering both square and
triangular vortex lattices simultaneously. (An exception is
Ref. [17], where the authors take a similar approach in the
related context of a spinless p + ip superconductor in the
presence of a triangular vortex lattice.) Furthermore, assum-
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FIG. 1. Spatial dependence of the pairing potential |�(r)| for the
square (left) and triangular (right) Abrikosov vortex lattice solutions
[see Eqs. (4) and (6)]. Also shown are the respective primitive
translation vectors a1,2 (separated by the angle θ ) and magnetic unit
cells (dashed rectangles).

ing that the pairing strength is sufficiently small relative to
the Landau-level spacing, we can project the Bogoliubov-
de Gennes (BdG) Hamiltonian into the lowest Landau level
(LLL) of H2DEG. The resulting BdG problem closely re-
sembles that of a spinless p + ip superconductor [2], albeit
with a modified odd-parity gap function—denoted �̃10(k) in
Sec. III B below—which exhibits an intricate structure with
multiple Dirac nodes. That is, purely orbital effects and spin-
orbit coupling conspire to provide an intriguing means of
obtaining spinless superconductivity deep in the quantum Hall
regime.

Sweeping the chemical potential μ through the LLL gives
rise to a quantum Hall plateau transition, the nature of which
is governed by the pairing �̃10(k) rather than disorder. If
the magnetic translation symmetry of the vortex lattice is
preserved, we find that all phases in the vicinity of the plateau
transition are necessarily Abelian with integer Chern number
C (in a convention where a single copy of the integer quantum
Hall effect has C = 1). Preclusion of non-Abelian half-integer
C states due to magnetic symmetry was also pointed out
recently in a related context by Jeon et al. [18] and also earlier
in Ref. [17]. Interestingly, in the case of a square vortex lattice
we find that the intermediate-μ phases are weak topological
superconductors, and consequently a dislocation in the vortex
lattice will trap an unpaired Majorana zero mode.

All of the realized Abelian integer-Chern states harbor a
lattice of hybridized Majorana modes (located at the positions
of the original vortices)—a highly nontrivial physical system
which has garnered significant recent theoretical attention
[14–16,19–27]. By taking the approach summarized above,
we are able to provide both a fresh theoretical perspective
on this system, as well as a straightforward recipe for how
to realize such a Majorana lattice in experiment. Importantly,
by working in the high-field limit where we can project into a
single Landau level, the entirety of the low-energy density of
states necessarily corresponds to a band of Majorana modes:
a Landau level has one fermionic mode (quantum dimension
2) per flux quantum hc/e, while each vortex carries one
superconducting flux quantum hc/2e; hence, the number of
states per vortex is 1/2 (a Majorana, with quantum dimension√

2). All states other than the Majorana modes are separated
away by an energy on the order of h̄ωc, which can easily be
∼10 meV. This is in contrast to other platforms and regimes

wherein the density of states is polluted by other low-energy
modes in the vortex cores [28–31].

We now discuss potential laboratory realizations of the
above system and associated considerations that arise. Indeed,
models such as Eq. (1) are now on the near-term experimen-
tal horizon in light of recent advances in epitaxial growth
for superconductor-semiconductor hybrid devices (see, e.g.,
Ref. [32]). Proximitizing the strongly Rashba spin-orbit cou-
pled surface states of elemental bismuth [33,34] is one entic-
ing possibility. Bismuth is an extremely clean electronic sys-
tem (with a bulk mean free path on the order of millimeters),
which has long played a central role in the development of
electronic characterization techniques [35] and has more re-
cently become a playground for novel topological phenomena
[36–41]. Recently, by performing scanning tunneling micro-
scope (STM) measurements on the (unproximitized) Bi(111)
surface in high perpendicular magnetic fields, Feldman et al.
[42] provided evidence for the emergence of a gapped ne-
matic quantum Hall state (arising from a combination of
local strain and Coulomb interactions spontaneously lifting
the sixfold Landau-level valley degeneracy characteristic of
the anisotropic hole states on this surface). However, any
such Rashba coupled surface could in principle suffice for
the 2DEG portion of the system in our setup, so as long as
it can be grown epitaxially with a sizable proximity effect on
the surface of a strong type-II superconductor. We note that
while our simplified model, Eq. (1), is seemingly far-removed
from complicated band structures like the Bi(111) surface, it
can be viewed as a (fully isotropic) proxy for Landau-level
states arising from a single electron pocket centered about the
� point in a real material.

As discussed above, we approach Eq. (1) from the rather
unusual limit in which the proximitized superconductivity
can be treated as a perturbation to the Landau levels, an
assumption which amounts to working in the regime where
the cyclotron gap is much larger than the characteristic s-
wave proximity-induced pairing gap �0: h̄ωc = h̄eB

mc � �0.
To obtain this limit, it is thus of course desirable to use
a 2DEG whose carriers have a small effective mass, as is
the case for Bi(111) [34,42]. Furthermore, for our analysis
to apply, we require �0 to be much larger than the char-
acteristic disorder and electron-electron interaction strengths
(we briefly address the former in Sec. V; the latter certainly
constitutes an intriguing issue which we leave for future work
and comment on in our concluding remarks in Sec. VI). In
a real experiment, this will require a superconductor with a
sufficiently large Hc2 so as to be able to withstand the requisite
large magnetic fields and still have appreciable �0. Promis-
ing candidate superconductors include epitaxially grown thin
films of FeSe or NbN: both of which show upper critical fields
of ∼16 T, and in both cases, previous experiments have been
able to image vortex lattices using spectroscopic mapping
with the STM [43,44]. The spin-orbit coupled 2DEG—such as
Bi(111)—has to be grown epitaxially on the surface of these
thin film superconductors at a thickness that is comparable
or below the coherence length (e.g., 5 nm for FeSe) to allow
for at least a weak superconducting gap to develop on the
Landau levels. Thus, in addition to simplifying the theoretical
analysis in several respects, the high-field limit is also quite
experimentally reasonable.
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Finally, while our ultimate goal here is geared more to-
wards engineering a Majorana lattice and not necessarily
a non-Abelian topological superconductor with half-integer
Chern number [2], the latter naturally arises near the plateau
transition in our model provided that the magnetic translation
symmetry is broken (for example by a unit-cell-doubling
superlattice potential) [17]. Even without such doubling, how-
ever, the resulting symmetry-respecting phases for the square
vortex lattice are of interest for topological quantum comput-
ing applications [45] as dislocations in the vortex lattice trap
an unpaired Majorana zero mode. We note that our work is
closely related to previous work by Qi, Hughes, and Zhang
[46], in which the authors discussed a similar setup, but
focused mainly on proximity coupling a quantum anoma-
lous Hall state. In contrast, we here consider the analogous
problem of proximity coupling a (Rashba spin-orbit coupled)
2DEG in the quantum Hall regime, while also carefully ac-
counting for the presence of vortices in the superconductor.

The rest of the paper is organized as follows. In Sec. II,
we describe the technical details underlying our calculations,
including reviews of the high-field Abrikosov vortex lat-
tice solution (Sec. II A) and the Landau-level structure of a
Rashba-coupled 2DEG (Sec. II B); the most important part is
Sec. II C wherein we derive expressions for the gap function
in the appropriate magnetic Bloch basis. Appendix contains
additional details relevant to Sec. II. Sections III and IV
contain our main results. Section III concerns the nature of the
quantum Hall plateau transition in the vicinity of the LLL. In
Sec. III A, as a warmup, we first consider the lowest spinful
Landau level in the absence of Rashba coupling. Then, in
Sec. III B, we work out the much more interesting case of
the lowest spinless Rashba-coupled Landau level discussed
above. The weak topological phases harboring Majorana zero
modes at lattice dislocations, which emerge near this plateau
transition, are described in Sec. IV. In Sec. V, we briefly
discuss the effects of disorder on the system, and we finally
conclude in Sec. VI.

II. SETUP AND TECHNICAL INGREDIENTS

A. Abrikosov vortex lattice in the high-field limit

In the case of a clean system, the applied perpendicular
magnetic field induces a perfect Abrikosov vortex lattice in the
superconductor [12]. The spatial dependence of B(r), V (r),
and |�(r)| in Eq. (1) will thus all have a periodicity given
by the resulting Bravais lattice. For technical simplicity, we
choose for �(r) the well-known solution of the Ginzburg-
Landau (GL) equations valid at the upper critical field Hc2. In
this limit, which is not inconsistent with the high-field limit
described in Sec. I, screening of the magnetic field by the
superconductor can be ignored at leading order in � [12];
one then solves the “linearized Ginzburg-Landau” equation,
i.e., the single-particle Schrödinger equation for charge 2e
particles in a constant background magnetic field B0 = ∇ ×
A0 (equivalent to the applied external field). Working in a
Landau gauge A0 = Bxŷ, the resulting lowest-Landau-level
vortex lattice solution at Hc2 reads [12]

�(r) =
∞∑

j=−∞
Cj e

ik j y− 1
2ξ2 (x−x j )2

, (4)

where k j ≡ 2π j
a (with a the intervortex separation), x j ≡

1
2 k j�

2
B, and ξ ≡ �B√

2
with �B = √

h̄c/eB the magnetic length
for the charge e electrons of H2DEG [47].

We will treat both square and triangular vortex lattices,
each with lattice constant a, on the same footing. Since
each vortex by definition carries magnetic flux equal to a
superconducting flux quantum �0 = hc/2e, we can relate the
lattice constant a to the magnetic length �B via the angle θ

between primitive translation vectors (see Fig. 1) as follows:

a2 sin θ = hc

2eB
= π�2

B, θ =
{
π/2 (square)

π/3 (triangular)
. (5)

For the coefficients Cj in Eq. (4), we have

Cj = C0 e−iπ j2 cos θ =
{

C0 (square)

C0 e−i π
2 j2

(triangular)
, (6)

where C0 ∈ R is an energy scale parametrizing the strength
of the proximity-induced superconducting pairing. In Fig. 1,
we show the resulting |�(r)| for each respective vortex lattice
solution, as well as the corresponding primitive translation
vectors and magnetic unit cells [48]. While this solution for
�(r) is, within GL theory, valid exactly at Hc2, we do expect
our qualitative conclusions to hold more generally for fields
[49] Hc1 � B � Hc2 since our analysis is largely symmetry-
based.

We remark that most treatments of Abrikosov vortex lat-
tices in related contexts (see, for example, Refs. [14,15,50])
typically work in the “London” limit appropriate for inter-
mediate flux densities, Hc1 � B � Hc2. In this regime, the
superconducting coherence length ξ is much less than the
intervortex separation, i.e., ξ � a, so that |�(r)| = const.
except near the vortex cores of radius ∼ξ ; furthermore, the
magnetic field is strongly inhomogeneous and is governed by
a London-type equation [12,51]. Our choice of working in the
high-field limit B � Hc2 with a ∼ ξ is advantageous from a
technical standpoint in that it affords us the luxury of working
with an explicit form for �(r) in the presence of a constant
magnetic field. We later account for spatial inhomogeneities
in the field due to screening, B(r) = B0 + δB(r) with δB ∼
O(�2), at a phenomenological level by introducing Landau-
level broadening via a dispersion relation. By then casting
the pairing in a Landau-gauge-based magnetic Bloch basis
adapted to �(r) (see Sec. II C below) and subsequently per-
forming Landau-level projection, we circumvent the need for
ingenious gauge transformations [14–16] (see also Ref. [17]).

B. Landau levels of a Rashba spin-orbit coupled 2DEG

We now review the Landau-level structure of the single-
particle eigenstates which diagonalize H2DEG [see Eq. (2)]
taking a constant perpendicular magnetic field and zero ex-
ternal potential, V (r) = 0 [52–55]. Working in the same
Landau gauge (A0 = Bxŷ), which was used to obtain �(r)
and defining the standard Landau-level ladder operators
a = 1√

2
[(x/�B − k�B) + ipx�B/h̄], with [a, a†] = 1 and k the

plane-wave the momentum in the y direction, the single-
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FIG. 2. Landau-level energies εN± [Eq. (10)] as a function of
reduced Rashba coupling gR [Eq. (8)] evaluated at zero Zeeman
coupling, gZ = 0. Levels labeled by N � 1 are obtained by diag-
onalizing HN [Eq. (9)] in the subspace {|N,↑〉 , |N − 1, ↓〉}; the
N = 0 level corresponds to the unpaired state |0, ↑〉 with energy
ε0 = h̄ωc( 1

2 + gZ ).

particle Hamiltonian for each k reads

H2DEG = h̄ωc

[(
a†a + 1

2

)
+ gZσ z + gR(aσ− + a†σ+)

]
,

(7)

where σ± = (σ x ± iσ y)/2 and

gR ≡
√

2αR

�Bωc
= 2m2c

h̄e

(
αR√

B

)
, gZ ≡ EZ

h̄ωc
= g

4

m

me
(8)

parameterize the Rashba and Zeeman coupling strengths,
respectively, in units of the cyclotron gap (in the latter case,
we have used EZ = 1

2 gμBB with g the Landé g factor and
μB = eh̄/2mec the Bohr magneton).

The full single-particle Hilbert space is spanned by states
|N, σ 〉 with (bare) Landau-level index N = 0, 1, . . . ,∞ and
spin projection σ =↑,↓. It is clear that H2DEG only couples
states within spaces {|N,↑〉 , |N − 1,↓〉}. In each such space,
given that N � 1, we are left to contend with

HN = h̄ωc[N + gR

√
Nσ x + (1/2 + gZ )σ z], (9)

resulting in an energy spectrum given by

εN± = h̄ωc
[
N ±

√
(1/2 + gZ )2 + Ng2

R

]
. (10)

In addition, there is an unpaired level |0,↑〉 whose energy
ε0 = h̄ωc( 1

2 + gZ ) is independent of the Rashba coupling. In
Fig. 2, we show the evolution of the spectrum as a function
of gR for gZ = 0. Note that gR → 0 corresponds either to the
limit αR → 0 or B → ∞. Likewise, gR → ∞ corresponds to
either αR → ∞ or B → 0; in this limit, εN± ≈ ±h̄ωc gR

√
N ,

which is the Dirac spectrum.

C. Representing superconducting pairing in the Landau
and magnetic Bloch bases

With the eventual goal of diagonalizing H� [Eq. (3)]
upon projection into a given Landau level of H2DEG

[Eq. (7)], we aim to express the former in magnetic Bloch
bases adapted to the respective symmetries of the square
and triangular vortex lattice pairing potentials �(r). Our
procedure is completely general in that it applies to arbitrary

Landau levels. As a first step, we transform the pairing
operator into the Landau basis without Rashba coupling.
In Landau gauge, the single-particle wave functions on
the infinite plane are φmk (r) = 〈r|m, k〉 = 1√

2π
φm(x −

k�2
B)eiky with φm(x) ≡ 1√

�B
√

π2mm!
Hm(x/�B)e− 1

2 (x/�B )2

(Hm being Hermite polynomials). Writing H� =
�̂ + H.c., we have �̂ ≡ ∫

d2r �
†
↑(r)�(r)�†

↓(r) =∑
m,n

∫
k,k′ �

†
m↑(k) �mn(k, k′) �

†
n↓(k′), where

∫
k ≡ ∫

dk
2π

and
�†

mσ (k) are the creation operators for the φmk (r) orbitals.
The matrix elements in question are thus

�mn(k, k′) ≡
∫

d2r φ∗
mk (r)�(r)φ∗

nk′ (r). (11)

Using the form of the pairing potential given in Eq. (4), we
evaluate this integral in Appendix A 1 and find

�mn(k, k′) =
∑

j

Cj δ(k+k′−k j )Amn
1√
2

e− 1
4 q2�2

B Hm+n

(
q�B√

2

)
,

(12)

where q ≡ k − k′ and

Amn ≡ (−1)m

2m+n
√

m!n!
. (13)

Of particular importance below are the matrix elements
corresponding to m = n = 0:

�00(k, k′) =
∑

j

Cj δ(k + k′ − k j )
1√
2

e− 1
4 (k−k′ )2�2

B . (14)

We next transform from the Landau basis to the magnetic
Bloch basis. Let T1,2 be the magnetic translation operators
which translate by one primitive translation vector along
directions a1,2 (see Fig. 1). With one superconducting flux
quantum penetrating each unit cell of the vortex lattice (i.e.,
φ

φ0
= p

q = 1
2 with φ0 = hc/e = 2�0, so that each magnetic

unit cell contains two vortices, cf. Fig. 1), T1 and T2 do not
commute with each other but rather satisfy T1T2 = −T2T1. We
can thus construct a basis—the magnetic Bloch basis—which
simultaneously diagonalizes T1, T 2

2 , as well as the Hamil-
tonian. This basis is constructed via a linear superposition
of Landau orbitals |N, ky〉 as follows (see Appendix A 2 for
details):

|N, k〉 =
√

Q�2
B

2π

∞∑
r=−∞

eikxky�
2
B (eik·a2 T2)2r |N, ky〉

=
√

Q�2
B

2π

∞∑
r=−∞

eikx (ky+rQ)�2
B−i2πr2 cos θ |N, ky + rQ〉 ,

(15)

where we have defined the wave vector Q ≡ 2π
a and chosen

a normalization 〈m, k|n, k′〉 = δmnδ
(2)(k − k′); the choice of

phase factor is motivated by the Landau gauge center of
mass relation 〈x〉ky = ky�

2
B. Equation (15) encapsulates both

the square and triangular vortex lattices through the parameter
θ = π/2, π/3, respectively [cf. Eq. (5)]; note also that the
length scale Q�2

B = 2a sin θ is lattice-type-dependent.
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In this Bloch basis, with associated creation operators
�†

mσ (k), the lattice momentum is conserved and the pairing
operator takes the form

�̂ =
∑
m,n

∫
k
�

†
m↑(k)�mn(k)�†

n↓(−k), (16)

where the integral is over the magnetic Brillouin zone (mBZ;
see Fig. 3):

∫
k ≡ ∫

mBZ
d2k

(2π )2 . It suffices to first focus on the
pure LLL matrix elements �00(k). Applying the transfor-
mation in Eq. (15) to the Landau basis matrix elements of
Eq. (14) yields

�00(k) = �0

∑
r

e−ikx (2ky+rQ)�2
B− 1

4 (2ky+rQ)2�2
B+iπr2 cos θ . (17)

Here, we have defined �0 ≡ C0/
√

2 and also assumed that
k ∈ mBZ. For evaluation, this expression can be cast in terms
of the Jacobi theta function,

ϑ3(z; τ ) ≡
∞∑

n=−∞
eiπτn2+2πniz, (18)

as follows:

�00(k) = �0e(kx−iky )2�2
B−k2

x �2
B

× ϑ3

[
z = (kx − iky)�B

√
sin θ

π
; τ = eiθ

]
. (19)

In Appendix A 3, we show how one can obtain arbitrary �mn

by taking derivatives of �00. Specifically, we find

�mn(k) = Amn Hm+n

(
i∂kx

�B

√
2

)
�00(k). (20)

Note that �00 is parity even so that �mn has parity (−1)m+n:

�mn(−k) = (−1)m+n�mn(k). (21)

These expressions for �mn(k) will be used below in Sec. III
to compute the phase diagram in the vicinity of a plateau
transition of the superconductor-2DEG hybrid system.

III. PHASE DIAGRAM IN THE VICINITY OF A QUANTUM
HALL PLATEAU TRANSITION

We now envision sweeping the chemical potential [56] μ

through one of the low-lying Landau levels of H2DEG, the
energies of which are depicted in Fig. 2 (for gZ = 0 and no
Landau-level broadening). In the limit of large Landau-level
separation relative to the pairing gap, we can formally project
the problem into a single Rashba-coupled Landau level using
the machinery developed in Sec. II. Due to the presence
of the vortex lattice, the functions �mn(k) computed above
exhibit intricate nodal structures which govern the nature of
the plateau transition of interest.

A. Lowest spinful Landau level at gR = 0

As a warmup, we first address the nature of the plateau
transition upon sweeping the chemical potential through the
lowest spinful Landau level in the limit of vanishing Rasbha
coupling: gR = 0. Assuming h̄ωc � �0, we can project the
Hamiltonian into this Landau level (consisting of states |0,↑〉,

|0,↓〉) leading to a BdG Hamiltonian H = ∫
k �

†
kHBdG(k)�k

in the basis �
†
k = [�†

0↑(k), �0↓(−k)] with

HBdG(k) =
(

EZ + εk − μ �00(k)

�∗
00(k) EZ − εk + μ

)
. (22)

Here we have included a phenomenological broadening of
the Landau level εk to account for any periodic variation in
B(r) and V (r) that we have so far neglected (εk = 0 for a
completely flat Landau level; see also Sec. III B below), and
the chemical potential is measured relative to ε0(gZ = 0) =
h̄ωc

2 . The resulting energy spectrum reads

E (k) = EZ ±
√

(εk − μ)2 + |�00(k)|2. (23)

In Fig. 3, we show plots of the gap function �00(k)
for the square and triangular vortex lattice pairing po-
tentials as derived in Sec. II. �00(k) contains Dirac
nodes located at momenta k∗ such that (kx − iky) 2

Q sin θ =
[(m + 1

2 ) + (n + 1
2 ) cos θ ] + i(n + 1

2 ) sin θ with m, n ∈ Z; for
each lattice, there are two such nodal points in the mBZ (see
Fig. 3). The phase winding of both nodes in each case have
the same, say, “positive” chirality.

Further taking the limit EZ = 0 allows a simple under-
standing of the plateau transition from the viewpoint of a
Chern-number-changing transition involving the Dirac nodes
of �00(k). We denote the Chern number C as the topological
invariant which counts the net number of complex spinless
fermions propagating along the edge of the sample [57]. For
EZ = 0, the system becomes gapless at (relative) chemical po-
tential μc = εk∗ . If the dispersion relation respects symmetries
of the vortex lattice (specifically, magnetic translations plus an
additional C2 symmetry for the triangular lattice case), then
the Fermi surface passes through both nodes simultaneously
at which point the spectrum will reveal two Dirac cones. In the
spinful BdG basis of Eq. (22), each of the two Dirac cones will
change the Chern number by one; therefore, the total change
in Chern number is �C = 2. This is the expected behavior: for
μ < μc, the system is trivial with C = 0, while for μ > μc,
we have a topological superconducting analog of two copies
of integer quantum Hall with C = 2. Note that in the presence
of symmetry-breaking perturbations, the single transition will
generically be split into an extended C = 1 region; however,
non-Abelian states with half-integer C cannot appear.

B. Lowest Rashba-coupled Landau level for gR > 0

A much more interesting situation arises if we consider the
lowest Rashba-coupled “spinless” Landau level at finite gR.
The pertinent Landau-level states are those with energy

ε1− = h̄ωc
[
1 −

√
(1/2 + gZ )2 + g2

R

]
(24)

obtained by diagonalizing

H1 = h̄ωc[1 + gRσ x + (1/2 + gZ )σ z]. (25)

[see Eqs. (10) and (9) with N = 1.]
We first briefly describe the procedure for projecting the

superconducting pairing into a given Rashba-coupled Landau
level of H2DEG. If the solution to the eigenvalue problem of
HN in the subspace {|N,↑〉 , |N − 1,↓〉} reads HN |N,±〉 =
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FIG. 3. Pairing gap function �00(k) for the square (left column)
and triangular (right column) vortex lattices. (Top) The amplitude
|�00(k)| is plotted on the z axis, while the phase arg �00(k) is
represented by color. (Bottom) We show the locations of the Dirac
nodes of �00(k) in the magnetic Brillouin zone (mBZ). For each
lattice, the mBZ is rectangular with an M point located at M(θ ) =
( Q

4 sin θ
, Q

2 ).

εN± |N,±〉, we can expand the eigenstates in the original
Landau basis as

|N,±〉 = U N±
N↑ |N,↑〉 + U N±

N−1,↓ |N − 1,↓〉 . (26)

The associated electron creation operators are thus �
†
N± =

U N±
N↑ �

†
N↑ + U N±

N−1,↑�
†
N−1,↓, which upon inverting allows us

to express the “bare” electron operators �
†
Nσ in terms of

these “dressed” operators �
†
N±. After inserting the �

†
Nσ into

Eq. (16), it is straightforward to project the pairing operator
into any one of the (dressed) Rashba-coupled Landau levels.
Since the pairing operator contains all Landau levels, this
projection is of course appropriate only when the state in
question is sufficiently separated in energy from all other
states.

If the level closest to the lowest Rashba-coupled Landau
level with energy ε1− is the unpaired level with energy
ε0 (which occurs for sufficiently small gR in Fig. 2),
projecting entirely into the former can be safely performed
provided ε0−ε1−= h̄ωc

[√
(1/2 + gZ )2 + g2

R − 1
2

] � �0 [58].
For sufficiently strong Rashba coupling, this condition
seems quite reasonable given the high-field limit on which
we have based our entire analysis. After introducing
a phenomenological broadening via ε1− → ε1− + εk
and measuring μ relative to ε1−, the projected
BdG Hamiltonian is H = 1

2

∫
k �

†
kHBdG(k)�k, now

in the spinless BdG basis �
†
k = [�†

1−(k), �1−(−k)],

FIG. 4. Same as in Fig. 3, but now plotting the pairing gap
function �10(k) which enters Eq. (27) [after being renormalized by
β(gR, gZ ), cf. Fig. 5]. Dirac nodes with positive (negative) phase
winding are indicated in the bottom panels by blue circles (orange
crosses). As explained in Sec. IV, the gap function for the square
lattice case (left) gives rise to weak TSC phases.

with

HBdG(k) =
(

εk − μ �̃10(k)

�̃∗
10(k) −εk + μ

)
. (27)

The corresponding eigenenergies are

E (k) = ±
√

(εk − μ)2 + |�̃10(k)|2. (28)

Here we have defined �̃10(k) ≡ β(gR, gZ )�10(k) to be the
pairing function �10(k) renormalized by the product of
wave function amplitudes U 1−

1↑ U 1−
0↓ ≡ β(gR, gZ ) ∈ [− 1

2 , 0],
cf. Eq. (26). In what follows, we quote energies in units of
the reduced pairing strength �̃0 ≡ |β(gR, gZ )|�0 (see Fig. 5).
Note that in the limit of vanishing Rashba coupling, the
Landau level is completely spin polarized giving β(gR →
0, gZ ) → 0; thus, as it very well should, the projected s-wave
pairing function also vanishes in this limit: �̃10(k) → 0.

The BdG Hamiltonian in Eq. (27) looks just like that of a
spinless p + ip superconductor [2], but with a modified pair-
ing potential �̃10(k) and dispersion εk. The former however
takes on a nontrivial structure with multiple Dirac nodes of
both positive and negative chirality—see Fig. 4. In the bottom
panels of Fig. 4, we highlight the precise locations/chiralities
of these Dirac nodes: For the square lattice, there are four
(two) nodes with positive (negative) chirality, while for the
triangular lattice, there are six (four) nodes with positive
(negative) chirality [59].

Now, in this spinless BdG basis, when the Fermi surface
passes through a given Dirac node, the Chern number will
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FIG. 5. Reduced pairing strength �̃0 in units of �0 ≡ C0/
√

2 [cf.
Eq. (6)] as a function of gR and gZ . β(gR, gZ ) is merely the product
of wave function amplitudes for the eigenstate of H1 with energy
ε1−. Without spin-orbit coupling, the effective pairing strength van-
ishes, i.e., β(gR = 0, gZ ) = 0; while for modest gR, �̃0 ∼ �0, e.g.,
|β(gR = 1, gZ = 0)| ≈ 0.35.

change by �C = ± 1
2 , depending on the chirality of the node.

(For reference, a single p + ip superconductor in the con-
tinuum has a pairing function �(k) ∼ kx + iky with a single
Dirac node located at zero momentum, and so for a quadrat-
ically dispersing band, the topological transition occurs at
μ = 0 [2]. The trivial phase for μ < 0 has Chern number
C = 0, while the non-Abelian topological phase for μ > 0
has Chern number [60] |C| = 1

2 , indicating the presence of
a single chiral Majorana edge mode and concomitant non-
Abelian Ising anyonic bulk quasiparticles.)

In the limit of a completely flat Landau level, εk = 0,
the chemical potential passes through all nodes of �̃10(k)
simultaneously. Therefore the system undergoes a Chern-
number-changing transition at μ = 0 (recall here μ is mea-
sured relative to the energy ε1− of the Landau level) with
�C = 1 for both lattice types [61]. For μ < 0, the ground
state has C = 0, while for μ > 0, the system is a topological
superconductor (TSC), albeit with C = 1 (this phase is adia-
batically connected to the ν = 1 integer quantum Hall state).

The C = 0 and C = 1 phases can natually be interpreted as
the two possible states arising from a Majorana lattice hopping
model embedded in a host non-Abelian p + ip superconduc-
tor [14,15,19,22–24]. The latter without a vortex lattice has
C = 1

2 , as would arise if we had kept the Zeeman energy
but neglected the orbital effect of the magnetic field [5–7,62].
Adding orbital effects, the resulting vortex lattice would trap a
lattice of Majorana modes, and the total Chern number would
include the contribution Cχ from the band structure of the Ma-
joranas: C = 1

2 + Cχ . μ then tunes a Chern-number-changing
transition of the Majorana lattice: Cχ = − 1

2 → 1
2 . (As will

be discussed, the intermediate non-Abelian phase, Cχ = 0,
is forbidden by the magnetic algebra.) However, it appears
to us there is an obstruction to determining a microscopic
relation between our Landau-level-projected Bloch operators
�

†
k = [�†

1−(k), �1−(−k)] and the real-space orbitals of such
a Majorana lattice (e.g., the γm,n of Ref. [63]), precisely
because the two pictures differ by a non-Wannier-localizable
C = 1

2 phase.
This scenario of a single, direct C = 0 → 1 plateau transi-

tion is, however, fine tuned: In general, the Landau level will
be broadened by spatially periodic variations in the magnetic

field and/or electric potential, so that the Fermi surface will
no longer pass through all nodes of �̃10(k) at once. We now
explore the phase diagram in the vicinity of the above plateau
transition in the presence of these more general perturbations.
We focus here on the case of the square vortex lattice, as
it—in contrast to the triangular lattice—gives rise to weak
TSC phases, which we discuss in Sec. IV. For concreteness,
we consider the following dispersion for the Landau level:

εk = ε
(sym)
k + ε

(CDW)
k , (29)

where

ε
(sym)
k = −tb(cos 2kxa + cos 2kya), (30)

ε
(CDW)
k = VCDW cos kya. (31)

The first term, ε(sym)
k , represents a phenomenological broaden-

ing of the Landau level which preserves all symmetries of the
vortex lattice, namely magnetic translations and spatial rota-
tions; the corresponding bandwidth is tb. The second “charge
density wave” (CDW) term, ε(CDW)

k , arises from a perturbation
of period 2a in the x direction which doubles the unit cell of
the original square lattice and dimerizes the Majorana modes
bound to the two corresponding vortices. This unidirectional
superlattice perturbation, in contrast, explicitly breaks the
magnetic translation symmetry (as well as the C4 rotational
symmetry).

As can be gleaned by inspecting the bottom-left panel of
Fig. 4, all positive-winding nodes (blue circles) of �̃10(k)
can be related by some combination of the magnetic trans-
lations as well as C4 rotations. (For the former, recall that
since T1T2 = −T2T1 and T1 |k〉 = e−ikya |k〉, we can identify
T2 |k〉 ∼ |k + (0, Q

2 )〉.) Similarly, the magnetic algebra alone
relates the two negative-winding nodes (orange crosses).
Therefore—since T1, T2, and C4 all commute with the
Hamiltonian—if these symmetries are preserved, the Fermi
surface must pass through all four of the positive-winding
nodes simultaneously thereby changing the Chern number by
�C = 1

2 × 4 = 2, and similarly for the two negative-winding
nodes with �C = − 1

2 · 2 = −1. In general, however, these
two transitions need no longer happen at the same chemical
potential.

One such example of a symmetry-preserving perturbation
is the Landau-level broadening term ε

(sym)
k introduced above.

The phase diagram in the space tb vs μ (at VCDW = 0) is
shown in Fig. 6. For tb > 0, the Chern number sequence
upon sweeping μ through the Landau level goes C = 0 →
−1 → 1, while for tb < 0, it is C = 0 → 2 → 1 (negative-
winding nodes get swept through first in the former case,
positive-winding ones first in the latter case). Interestingly,
the intermediate integer Chern C = −1, 2 phases are actually
weak TSCs, as we elaborate below in Sec. IV.

Figure 7 shows the total density of states (DOS) per
magnetic unit cell,

DOS(E ) =
∫

k
δ[E − E (k)], (32)
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FIG. 6. Phase diagram in the vicinity of the plateau transition for
the square vortex lattice encountered upon sweeping the chemical
potential μ through the lowest Rashba-coupled Landau level of
energy ε1− (μ is measured relative to ε1−). Here, tb is the bandwidth
of the Landau level [see Eq. (30)], and the magnetic-symmetry-
violating term VCDW = 0. For a completely flat Landau level (tb = 0),
there is a direct Chern number C = 0 → 1 transition at μ = 0, while
at finite tb the transition splits into intermediate C = −1 or 2 states.
All phases consist of Majorana lattices; in particular, the C = −1, 2
states are weak TSCs (see Sec. IV).

[with E (k) given by Eq. (28)] versus chemical potential
at tb = 0.15�̃0 > 0. The first transition (with �C = −1)
upon increasing μ occurs at μc1 = −2tb = −0.3�̃0, while
the second transition (with �C = 2) occurs at μc2 = 0. At
each transition (see arrows in Fig. 7), there is a clear Dirac
signature in the DOS at E = 0. Because we have projected
to a single Landau level, there is one state per magnetic unit
cell (area 2a2), or equivalently, 1

2 states (i.e., a Majorana) per
vortex (area a2):

∫
dE DOS(E ) = 1

2
1
a2 . Unfortunately, such

total number of states per unit area is not directly accessible
with STM, which measures differential conductance, and thus
the density of states only up to a nonuniversal prefactor.
Still, as discussed in Sec. I, the Landau-level limit precludes
other low-energy states in the vortex cores, which should be
verifiable experimentally.

We make the following observation: Because the magnetic
symmetry relates each node to a partner of the same chi-
rality, its presence prohibits the realization of non-Abelian
topological states with half-integer Chern number. In other

FIG. 7. Total density of states, DOS(E ), of the Landau-level
projected BdG Hamiltonian, Eq. (27), versus chemical potential μ at
fixed Landau-level bandwidth tb = 0.15�̃0 > 0 with VCDW = 0. The
black arrows indicate the critical points μc1 = −2tb and μc2 = 0.

FIG. 8. Phase diagram near the plateau transition for the square
lattice, now including finite VCDW. Since this term breaks the mag-
netic translation symmetry [see Eq. (31)], the transitions in Fig. 6
get split into multiple transitions involving intermediate non-Abelian
states with half-integer C, as labeled in the diagram. The left and right
panels correspond to different signs of tb, and the phase diagram is
symmetric under VCDW ↔ −VCDW.

words, to obtain bona fide non-Abelian topological states, it
is thus necessary to introduce perturbations which violate the
magnetic translation symmetry (see also Ref. [17] as well
as Ref. [18], where in the latter case the considered pairing
potential itself breaks the magnetic symmetry). For illustrative
purposes and for use in Sec. V, we consider as a concrete
example the unit-cell-doubling CDW term in Eq. (31). The
obtained phase diagram as a function of VCDW and μ at
fixed tb is shown in Fig. 8 (the two panels correspond to
positive and negative tb). Now, indeed the individual phase
transitions from Fig. 6 split into multiple transitions involving
half-integer �C and thus intermediate extended non-Abelian
states with C = ± 1

2 , 3
2 . The extent of these phases, as well

as their excitation gaps, are both set by the strength of the
perturbation VCDW. Here, the phase boundaries were deduced
by analyzing E (k) [Eq. (28)] evaluated at the nodal points of
�̃10(k) as functions of μ, tb, and VCDW; the critical values of μ

for which the dispersion vanishes evolve linearly with respect
to tb and VCDW for the simple cosine model potentials, thereby
producing linear phase boundaries. Note also that the phase
diagram in Fig. 8 is symmetric upon taking VCDW ↔ −VCDW,
although the half-integer states related by flipping the sign of
VCDW differ by a weak topological index described in Sec. IV.
We will return to this point in Sec. V when discussing the
effects of disorder on this Majorana lattice system.

While in the above we have chosen to explicitly work out
the case of the square vortex lattice, similar considerations
apply equally well to the case of the triangular lattice [17].
As is clear from the right panels of Fig. 4, half-integer Chern
phases are again precluded provided that magnetic transla-
tions, as well as an additional C2 (i.e., k ↔ −k) symmetry,
are preserved. One important difference, however, is that
now intermediate integer Chern phases are no longer weak
TSCs (see Sec. IV below). Finally, we note that the above
procedure also carries over to plateau transitions involving
higher Landau levels, with the only difference being the gap
function input to Eq. (27). For example, for the Landau level
at energy ε1+, one would work again with �10(k), so in that
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case the above results apply directly. In general, for levels at
εN±, one needs to contend with the gap function �N,N−1(k).

IV. INTERMEDIATE INTEGER CHERN PHASES AS WEAK
TOPOLOGICAL SUPERCONDUCTORS

Weak 2D topological phases arise when an array of 1D
topological phases are “stacked” side-by-side along either
columns or rows. More formally, for a system with a Bravais
lattice generated by T1,2, we can associate weak indices ν1,2

according to whether 1D topological phase νi is stacked along
direction Ti [64,65]. In our context, the relevant 1D phase
is the 1D Kitaev chain, which has a Majorana edge state
[1]. The Kitaev chain is the nontrivial νi = −1 element of
a νi ∈ Z2 classification in the absence of further protecting
symmetries. The stacking picture makes evident two physical
signatures of a weak TSC. First, because each constituent
1D chain carries a localized edge state, the boundary of the
2D system will host an array of edge states which hybridize
into a 1D gapless mode. This gapless mode is stable so long
as the translation symmetry of the boundary is preserved.
Second, if a dislocation is introduced in the bulk, the core
of the dislocation will carry the same zero mode as the edge
of the 1D topological phase. In the context of our system, if
the realized phase is a weak TSC then a dislocation in the
superconducting vortex lattice will carry an unpaired non-
Abelian Majorana zero mode, as shown in Fig. 9. We now
show that the intermediate-μ phases of the square lattice
(C = −1 or C = 2 in Fig. 6) is such a weak TSC.

To compute the weak invariant [64], consider wrapping
the model onto a circumference Ly cylinder. According to
the stacking picture, viewed as a 1D system the cylinder is
equivalent to Ly copies of a 1D superconductor with index ν1

each; the resulting 1D invariant is ν1D = ν
Ly

1 . So we can take
Ly = 1 and thereby read off ν1 by computing the 1D strong
invariant. Fixing Ly = 1 amounts to projecting onto ky = 0,
so the resulting 1D Hamiltonian is

H1D(k) = HBdG(kx = k, ky = 0) (33)

where HBdG(k) is defined in Eq. (27). The corresponding 1D
dispersion is εk = εk=(k,0), cf. Eq. (29). To compute ν1D, we
then appeal to Kitaev’s weak-pairing criteria for an inversion-
symmetric TSC [1]. In the absence of pairing, let ν(k) =
(−1)Nocc(k) denote the parity of the number of bands below
the Fermi surface at momentum k; then ν1D = ν(0)ν( π

2a )
(corresponding to the � and X points, respectively, in the
bottom-left panel of Fig. 4). For μ � εk , all states are empty
and so ν1D = 1 (trivial); likewise for μ � εk , all states are full
and ν1D = 1. But for min εk < μ < max εk , one of k = 0, π

2a
will be empty while the other is occupied [which depends on
the shape of the dispersion, e.g., the sign of tb in Eq. (30)].
In this intermediate regime, ν1D = −1 and so the 2D system
is a weak TSC with ν1 = ν2 = −1 (ν2 is identical from C4

symmetry). The transition points are of course precisely where
the Fermi surface passes through k = 0, π

2a and the supercon-
ductor becomes gapless due to the nodes in the pairing �̃10(k)
at � and X .

The triangular lattice, on the other hand, does not have
an intermediate weak TSC, because the weak invariant is

FIG. 9. Unpaired Majorana zero mode χdisloc occurring at the
core of a lattice dislocation in the intermediate C = −1, 2 phases
of the square vortex lattice (see Figs. 6 and 8). The model pairing
potential |�(r)| shown here is merely meant to be illustrative and,
in contrast to Fig. 1, is not an accurate rendition of the actual form,
Eq. (4), used throughout.

incompatible with the C3 point-group symmetry. Nonetheless,
the identification of such weak TSC phases for the square
lattice, as demonstrated above, further bolsters our argument
for the presence of a Majorana lattice in this system.

V. EFFECTS OF DISORDER

Finally, we comment at a qualitative (and rather specu-
lative) level on the effects of disorder, which will naturally
arise from imperfections in the vortex lattice. The analogous
problem has been addressed previously in Refs. [22,23] in the
context of disordered Majorana lattice hopping models (on the
triangular lattice). In the region of the phase diagram with a
large gap (e.g., μ large or small), the disorder will have little
impact. However, as μ approaches the C-changing transition,
the width of the disorder will become comparable to the gap.
We argue that disorder will broaden the transition into a region
of “thermal Majorana metal” [22,23] so long as the magnetic
translation symmetry is preserved on average. Consider, for
example, the critical point at μc1 = −2tb in the left panel
of Fig. 8. Local variations in μ and VCDW will nucleate
domains of the four competing phases. If all are present,
there is a gapless intermediate phase because their boundaries
carry a chiral Majorana mode, resulting in a gapless network
model.

A more delicate possibility, however, is the presence of an
intermediate regime in which only regions of C = − 1

2 appear
(for example, if the variance in VCDW is large compared to that
in μ). More precisely, there are four such C = − 1

2 phases cor-
responding to ε

(CDW)
k=Q ≶ 0 at wave vectors Q = (0, π

a ), ( π
a , 0),

which are related by T1, T2, and C4. Accordingly, we can label
them with a Z4 index ψ = eiθ following the order ε

(CDW)
k=(0,π/a) >

0, ε
(CDW)
k=(π/a,0) > 0, ε

(CDW)
k=(0,π/a) < 0, ε

(CDW)
k=(π/a,0) < 0. While all are

strong C = − 1
2 TSCs, inspection of their band structures ver-

ifies that the four phases differ by weak indices. Specifically,
the two phases related by T1 (ψ = ±1) differ by ν2, and
the two phases related by T2 (ψ = ±i) differ by ν1. Thus,
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for example, a domain wall between ψ = ±1 which locally
preserves the T2 symmetry will have a low-energy mode.

In the Majorana lattice picture, the situation is directly
analogous to the C4-related columnar valence-bond-solid
(VBS) dimerization patterns of a spin- 1

2 antiferromagnet,
with a nearest-neighbor Majorana “pairing” (e.g., iγx,yγx,y+1)
playing the role of a singlet. Just as vortices in a VBS
pattern carry an unpaired S = 1

2 moment [66], here we expect
vortices in ψ will carry a Majorana mode. Thus, disorder
will nucleate a dilute random lattice of Majorana modes
which will hybridize into the Majorana version of the random
singlet phase. Similar physics was investigated recently in
the spin- 1

2 case [67], where a power-law spectrum of low-
energy modes was predicted to arise from a disordered version
of the Lieb-Schultz-Mattis theorem. It would be interesting
to extend their quantitative predictions to the present Majo-
rana case [68] since such power laws might be observed in
STM spectroscopy, although interacting phases may intervene
instead.

VI. DISCUSSION

The quantum Hall effect and superconductivity have tradi-
tionally been thought to be largely incompatible: the strong
magnetic fields required for the former will generally kill
the latter. However, for near-term superconductor-2DEG het-
erostructure devices, the marriage is not entirely unreasonable
if one can choose a 2DEG with a sufficiently small effective
mass and a superconductor with a sufficiently large upper
critical field—then one can in principle attain large cyclotron
gaps without completely destroying proximity-induced super-
conducting pairing. We have analyzed a physically reasonable
limit of this scenario in which an s-wave superconductor at
fields near its upper critical field Hc2—and exhibiting the
corresponding Abrikosov vortex lattice—is proximity cou-
pled to a strongly spin-orbit coupled 2DEG in the quantum
Hall regime. The Landau-level wave functions are natively
endowed with both spin components by the spin-orbit cou-
pling, thereby allowing s-wave superconductivity to give rise
to effective spinless superconductivity when projected into
a single Landau level. This is somewhat analogous to the
usual Zeeman-based recipe [5–7,62] of engineering spinless
p-wave superconductivity [2] with the exact same ingredients;
however, now orbital effects of the magnetic field dictate the
physics, while the Zeeman effect does not play an essential
qualitative role.

All realized states involve a lattice of Majorana modes.
In fact, in this single Landau-level limit of the problem,
simple state counting alone tells us that each vortex must
necessarily harbor a Majorana mode. However, the symme-
tries of the underlying vortex lattice preclude the presence
of any non-Abelian states with half-integer Chern number C
(an additional vortex would thus not bind a Majorana zero
mode). While additional perturbations such as a superlattice
modulation could in principle give rise to bona fide non-
Abelian states (see Fig. 8 and Refs. [17,18]), for topological
quantum computing purposes, perhaps the most intriguing
application of our results involves the weak topological su-
perconducting states emerging near the plateau transition for
the square vortex lattice at intermediate μ. Can one exper-

imentally pattern a square vortex lattice with intentionally
introduced lattice dislocations as a means of engineering the
1D Kitaev model site by site [69]? Tuning the system to the
weak TSC phase then gives bona fide Majorana zero modes
at the cores of the dislocations. Even in the absence of such
applications though, our proposal for engineering a Majorana
lattice deep in the quantum Hall limit seems experimentally
appealing.

Finally, adding strong electron-electron interactions to this
problem leads to a number of interesting open questions.
For example, will the inclusion of interactions spontaneously
split the integer �C transitions into intermediate non-Abelian
states with half-integer C? Furthermore, the presence of strong
interactions in the 2DEG should be a promising means for
engineering interacting Majorana lattice models, as have be-
gun to be discussed only recently [63,70–75]. More gen-
erally, it is very interesting to contemplate what kinds of
ground states could emerge upon adding proximity-induced
superconducting pairing to interacting fractional quantum
Hall states. The near-term experimental setup proposed herein
gives new motivation for attacking this challenging problem,
both theoretically and numerically.
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APPENDIX: CALCULATIONAL DETAILS PERTINENT
TO SEC. II

1. Evaluating Landau gauge pairing matrix elements
�mn(k, k′ ) [Eq. (12)]

After performing the integration over y in Eq. (11), we need
to evaluate an integral of the form (setting �B = 1)

Gmn(q) = 1√
π2m+nm!n!

∫
dx Hm(x − q/2)Hn(x + q/2)

× e− 1
2 (x−q/2)2− 1

2 (x+q/2)2−x2
. (A1)

First, note the generating function expansion

e2tx−t2 =
∑

n

Hn(x)
t n

n!
, ∂n

t e2tx−t2 |t=0 = Hn(x). (A2)

Thus it will be sufficient to evaluate

O(t1, t2) =
∫

dx e2t1(x−q/2)−t2
1 −2t2(x+q/2)−t2

2

× e− 1
2 (x−q/2)2− 1

2 (x+q/2)2−x2
(A3)

=
√

π/2 e− 1
4 q2− 1

2 (t2−t1 )2+(t2−t1 )q (A4)

=
√

π/2 e− 1
4 q2

∑
j

Hj (q/
√

2)
(t2 − t1) j

√
2

j
j!

, (A5)
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from which we obtain

Gmn(q) = 1√
π2m+nm!n!

∂m
t1 ∂n

t2 O(0, 0) (A6)

= Amn
1√
2

e− 1
4 q2

Hm+n(q/
√

2). (A7)

Reinserting �B gives the summand appearing in Eq. (12).

2. Details of the magnetic Bloch basis

As shown in Fig. 1, we take for primitive translation
vectors

a1 = a(0, 1), (A8)

a2 = a(sin θ, cos θ ), (A9)

where a is the intervortex separation [related to the magnetic
length via Eq. (5)]. For “π flux” per unit cell ( φ

φ0
= p

q = 1
2 ),

the corresponding magnetic translation operators are taken to
act on the Landau gauge orbitals |ky〉 (suppressing Landau-

level index) as follows:

T1 |ky〉 = e−ikya |ky〉 , (A10)

T2 |ky〉 =
{|ky + Q/2〉 (square)

|ky + Q/2〉 e−iπ (ky/Q+1/4) (triangular)
, (A11)

where recall Q ≡ 2π
a . T1 and T2 do not commute but rather

satisfy the magnetic algebra T1T2 = −T2T1; thus, the magnetic
Bloch basis—as constructed in Eq. (15)—is that which simul-
taneously diagonalizes T1 and T 2

2 . To obtain the second line of
Eq. (15), we have used

(T2)2r |ky〉 =
{

|ky + rQ〉 (square)

|ky + rQ〉 e−iπ (2rky/Q+r2 ) (triangular)
,

(A12)

which along with the relation Q�2
B = 2a sin θ allows both

lattice types to be treated at once. Note that the additional ky-
independent phase for the triangular lattice case in Eq. (A11)
is chosen so as to leave the resulting phase in Eq. (A12) void
of terms proportional to r.

3. Evaluating magnetic Bloch basis pairing matrix elements �mn(k) for arbitary m, n [Eq. (20)]

The full expression analogous to Eq. (17) for arbitrary m, n is

�mn(k) = �0 Amn

∑
r

e−ikx (2ky+rQ)�2
B− 1

4 (2ky+rQ)2�2
B+iπ cos θ r2

Hm+n

[
(2ky + rQ)�B√

2

]
. (A13)

To evaluate this, we delay dealing with the Hermite polynomial by using the simple identity, valid for any nth order polynomial,
Hn(x) = Hn(∂t )etx|t=0:

Hm+n

[
(2ky + rQ)�B√

2

]
= Hm+n(∂t )e

t (2ky+rQ)�B/
√

2 (A14)

= Hm+n

(
i∂t

�B

√
2

)
e−it (2ky+rQ)�2

B . (A15)

Equation (20) can then be obtained after a few lines of algebra:

�mn(k) = �0 AmnHm+n

(
i∂t

�B

√
2

)∑
r

e−ikx (2ky+rQ)�2
B− 1

4 (2ky+rQ)2�2
B+iπ cos θ r2

e−it (2ky+rQ)�2
B (A16)

= �0 AmnHm+n

(
i∂t

�B

√
2

)∑
r

e−i(kx+t )(2ky+rQ)�2
B− 1

4 (2ky+rQ)2�2
B+iπ cos θ r2

(A17)

= AmnHm+n

(
i∂kx

�B

√
2

)
�00(k), (A18)

where in the last line we have used the expression for �00(k) in Eq. (17). We can thus obtain arbitrary �mn(k) by simply taking
appropriate derivatives of �00(k).
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