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The waiting time distribution has, in recent years, proven to be a useful statistical tool for characterizing
transport in nanoscale quantum transport. In particular, as opposed to moments of the distribution of transferred
charge, which have historically been calculated in the long-time limit, waiting times are able to detect nonrenewal
behavior in mesoscopic systems. They have failed, however, to correctly incorporate backtunneling events.
Recently, a method has been developed that can describe unidirectional and bidirectional transport on an equal
footing: the distribution of first-passage times. Rather than the time between successive electron tunnelings, the
first passage refers to the first time the number of extra electrons in the drain reaches +1. Here, we demonstrate
the differences between first-passage time statistics and waiting time statistics in transport scenarios where the
waiting time either cannot correctly reproduce the higher-order current cumulants or cannot be calculated at all.
To this end, we examine electron transport through a molecule coupled to two macroscopic metal electrodes.
We model the molecule with strong electron-electron and electron-phonon interactions in three regimes: (i)
sequential tunneling and cotunneling for a finite bias voltage through the Anderson model, (ii) sequential
tunneling with no temperature gradient and a bias voltage through the Holstein model, and (iii) sequential
tunneling at zero bias voltage and a temperature gradient through the Holstein model. We show that for each
transport scenario, backtunneling events play a significant role; consequently, the waiting time statistics do not
correctly predict the renewal and nonrenewal behavior, whereas the first-passage time distribution does.
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I. INTRODUCTION

Molecular electronic devices generally consist of some
quantum system, such as a molecule or quantum dot, sand-
wiched between two macroscopic metal electrodes [1,2]. One
of the main objectives of mesoscopic physics is to use the
particle transport through such devices to understand the
nature of these quantum systems. Directly measuring transi-
tions internal to the quantum system destroys any quantum
coherence it may exhibit; instead, one must reconstruct the
system behavior from transport properties available from mea-
surements of bath variables, such as the stationary particle
current 〈I〉. Molecular devices are small enough, however, that
thermal effects and stochastic single electron transport cause
fluctuations in 〈I〉. Such fluctuations hold a dual interest in
mesoscopic electron transport. On the one hand they impede
the performance of electronic components that require reliable
currents, but on the other hand they are largely determined by
the molecule’s underlying dynamics and can thus be used to
probe quantum behavior, which is difficult to observe. Con-
sequently, multiple theoretical tools describing fluctuations in
quantum electron transport have been developed [3–7].

The full counting statistics (FCS) calculates cumulants
〈〈Ik〉〉 of the distribution of total transferred charge n in a
fixed time interval [3,8–11]. The second current cumulant,
the zero-frequency noise, can reveal the internal dynamics
of the molecule [12–14]. For example, super-Poissonian shot
noise has many origins: it can arise from telegraphic switching
due to spin-polarized leads [15,16] or inelastic cotunneling
[17,18], negative differential resistance due to asymmetric

coupling [19], the dynamical channel blockade [20], or
avalanching electrons due to interactions with a vibrational
mode [21]. Higher-order cumulants are necessary to fully
characterize the transport when the current distribution is non-
Gaussian [22–24]. The major limitation of fixed-time tools
like the FCS is that they have historically been calculated in
the infinite time, or zero-frequency, limit [6]. Although finite-
frequency, and thus finite-time, FCS have been developed
[25–32], it is numerically and analytically easier to work in the
zero-frequency regime. In recent years, however, statistical
tools that operate in fluctuating time but fixed n have arisen,
motivated by the long-time limitations of FCS.

The most prominent fluctuating time tool is the waiting
time distribution (WTD) w(τ ): the conditional probability
density that, given an electron has tunneled to the drain
electrode, the next electron will tunnel to the drain after a
time interval τ [4]. Since the inception of waiting times in
mesoscopic electron transport, a common question has been
whether the WTDs contain information distinct from the FCS.
It has been shown that the large deviation rate functions
describing zero-frequency FCS are equivalent to those for
waiting times [6]; the WTD cumulants 〈〈τ 〉〉 can be combined
to exactly reproduce the zero-frequency current cumulants
[7,33,34]. These relations only hold, however, when the re-
newal assumption is satisfied: w(τ1, τ2) = w(τ1)w(τ2), where
w(τ1, τ2) is the joint probability for successive waiting times.
When subsequent waiting times are correlated the renewal
assumption is violated and these relationships no longer hold;
the WTD contains information separate from the FCS. Inter-
estingly, even in Markovian systems nonrenewal behavior can
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arise from telegraphic switching [15,16], superconductivity
[35], quantum coherence [36], and the presence of strong
interactions [37,38]. WTD measurements are experimentally
accessible via sophisticated real-time single-electron detec-
tion techniques [39–43], or alternatively the WTD may be
reconstructed from low-order current correlation functions
[44].

The WTD in quantum electron transport can be cal-
culated via scattering theory [34–36,45–48] and nonequi-
librium Green’s functions [49–52]. In order to connect it
with other fluctuating time statistics, however, we focus on
WTDs calculated from quantum master equations, which rely
on quantum jump operators defined from the Liouvillian
[4,15,16,37,38,53–62]. Unfortunately, WTDs calculated in
this manner are so far only able to reproduce 〈〈Ik〉〉 (k > 1),
as according to renewal theory, for unidirectional transport.
For bidirectional transport, one may define WTDs between
tunnelings to and from the drain; the total average current,
regardless of whether the transport is renewal, is then 〈I〉 =

1
〈τ 〉F

− 1
〈τ 〉B

, where 〈τ 〉F is the average waiting time between
forward tunnelings, conditioned upon the initial probability
of a tunneling to the drain, and 〈τ 〉B is the corresponding
backward-tunneling average waiting time. It is not clear,
however, how to obtain the higher-order total current cu-
mulants from these two WTDs. In some cases, furthermore,
the processes that contribute to the current do not appear
in the Liouvillian; for example, elastic cotunneling transfers
electrons from the source to the drain in the same quantum
process without altering the state of the intermediate system
[18,63–65]. To fully describe the transport in these cases, one
must use the n-resolved master equation [66], but waiting
times calculated from this method [52,56,60] are only defined
for unidirectional transport [37]. Bidirectional transitions play
an important role in mesoscopic electron transport [67], so it
is desirable to have a fluctuating time statistic applicable to
this regime.

Consider instead the first-passage time distribution
(FPTD): the distribution of times until the net number of
transferred electrons in the drain first reaches some number n.
First-passage times have recently gained traction in nonequi-
librium thermodynamics; first-passage time theory has been
developed for fluctuations in entropic variables describing
stationary Markovian processes [5,68–72]. This work, and
subsequent experimental and theoretical research from Singh
et al. [73], has predicted and verified fluctuation relations for
first-passage times. Saito and Dhar [5] have developed first-
passage time notation for Markovian quantum systems, which
is suitable for mesoscopic electron transport described by
n-resolved master equations. Ptaszyński [72] has also recently
brought first-passage times into line with FCS and WTDs,
by developing a method to calculate correlations between
subsequent first-passage times, deriving exact relationships
between the FPTD cumulants and the FCS cumulants, and
demonstrating that these relationships disappear when the
renewal assumption is violated. The expectation now is that
first-passage times are able to analyze the nonrenewal be-
havior of molecular systems similarly to how WTDs have
been used, except that first-passage times are applicable to
bidirectional transport. Considering these developments, it is

interesting to compare the WTD and the FPTD in systems and
regimes where one expects bidirectional transitions.

This paper’s purpose is to demonstrate the usefulness of
FPTDs by comparing them to the WTD in regimes where
the WTD either cannot be calculated or does not correctly
recreate the FCS. We demonstrate this in three transport
scenarios. First, cotunneling through an Anderson impurity
is considered. Several authors have theoretically [18,19] and
experimentally [74–76] shown that for a particular voltage
range super-Poissonian noise arises from telegraphic switch-
ing induced by inelastic cotunneling processes. In this voltage
range backtunneling processes can occur, so until now it has
remained impenetrable to waiting times. One would expect
that telegraphic switching would be accompanied by positive
correlations in the subsequent waiting times, as the transport
switches between channels with different characteristic 〈τ 〉;
however, we demonstrate that the transport in this regime is
actually characterized by small negative correlations in the
first-passage times. Second, we examine sequential tunneling
through the Holstein model due to a voltage bias. Waiting
times have already been theoretically calculated for this sce-
nario [38,55]; we demonstrate that those calculations do not
correctly reproduce the FCS and that the correlations between
the first-passage times are slightly smaller than those between
the waiting times. Finally, we consider sequential tunneling
through the Holstein model with zero bias voltage but with
a temperature gradient: a scenario in which backtunneling
events majorly contribute to the transport [77].

The paper is organized as follows. Section II outlines the
three relevant statistical tools: FCS, the WTD, and the FPTD.
Section III describes the dynamics of the three transport
scenarios, written in the form of Markovian master equations.
Section IV contains results from the statistical tools calculated
for the three transport scenarios, while Sec. V summarizes the
work and the appendices detail cotunneling calculations and
vibration jump operators.

Throughout the paper we use natural units: h̄ = kB =
e = 1.

II. STATISTICAL TOOLS

A. n-resolved master equation

We consider a general quantum system weakly coupled
to a number of thermal reservoirs, which is described by a
Markovian master equation for the reduced system density
matrix:

Ṗ(t ) = LP(t ), (1)

where {P}l (t ) is the probability that the system is in discrete
state l and L is the Liouvillian containing the system dynam-
ics. Throughout the paper, we refer to this as the standard
master equation, to distinguish it from the n-resolved master
equation. We ignore coherence between system states, so that
Eq. (1) reduces to a rate equation written in the system basis.
The system moves from state l to state k via tunneling of
particles or quasiparticles from or to the thermal reservoirs,
and the transition rate for this process is �kl . The Liouvillian
off-diagonals are [L]kl = �kl and the diagonals are [L]kk =
−∑

l �=k �lk .
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The system starts in some state P(0), so that the general
solution of Eq. (1) is

P(t ) = eLt P(0). (2)

We assume that the system has a unique stationary state P̄,
which is the null vector satisfying LP̄ = 0.

In order to calculate the FCS, FPTD, and WTD, it is
necessary to resolve the master equation on the net number
of particles n transferred to the drain electrode:

Ṗ(n, t ) =
∑

n′
L(n − n′)P(n, t ), (3)

where {P(n, t )}k now represents the probability that, at time
t , the net number of extra electrons in the drain is n and the
system is in state k. It is important to note that despite the
term “extra electrons” n may be zero, a negative integer, or
a positive integer. From here, following Ptaszyński’s notation
[72], we will refer to n as the jump number. Sequential and
cotunneling processes add or remove at most one electron to
or from the drain, so n − n′ = 0,±1. The Liouvillian can then
be split into two jump operators containing all the transitions
that move electrons forward to the drain JF and all the
transitions that move electrons back from the drain JB, and
a part containing the remaining dynamics L0 = L − JF − JB.
The n-resolved master equation is then

Ṗ(n, t ) = L0P(n, t ) + JF P(n − 1, t ) + JBP(n + 1, t ). (4)

The Fourier transform of P(n, t ),

P(χ, t ) =
∑

n

einχ P(n, t ), and conversely (5)

P(n, t ) = 1

2π

∫ 2π

0
dχe−inχ P(χ, t ), (6)

conveniently introduces a counting field χ that transforms
Eq. (3) from an infinite set of coupled differential equations
to a solvable problem [3,78]:

Ṗ(χ, t ) = L(χ )P(χ, t ), where (7)

L(χ ) = L0 + JF eiχ + JBe−iχ . (8)

Now, P(χ, t ) time-evolves according to the solution of
Eq. (7), with the initial condition P(χ, 0) = P̄ since it is
assumed that counting begins at t = 0 when the system has
already reached the steady state:

P(χ, t ) = eL(χ )t P̄. (9)

B. Full counting statistics

The generating function for the cumulants of transferred
charge is

M(χ, t ) = ln
∑

n

P(n, t )einχ , (10)

where P(n, t ) = Tr[P(n, t )] is the probability that n extra
electrons are transferred to the drain in the time interval
[0, t]. Throughout the paper we use the superoperator notation
Tr[A] = (I, A), where A is a column vector of length m and

I = (1, 1, 1, . . . ) is a row vector of length m. Consequently,
Eq. (10) transforms to

M(χ, t ) = ln
∑

n

(I, P(n, t ))einχ , (11)

with the inverse Fourier transform

(I, P(n, t )) = 1

2π

∫ 2π

0
dχe−inχ eM(χ,t ). (12)

Examining the trace of Eq. (6), one sees that the part
corresponding to the cumulant generating function is

M(χ, t ) = ln(I, eL(χ )t P̄). (13)

Theoretically, one can now calculate all current cumulants
in any time interval by direct differentiation of M(χ, t ) in
the limit χ → 0: 〈〈Ik〉〉 = 1

t (−i)k ∂k

∂χ k M(χ, t )|χ=0, where t is
the measurement time. The second cumulant, for example,
is 〈I2〉 − 〈I〉2. It is well known that, except for the simplest
systems, these calculations remain too difficult at finite t .
Bagrets and Nazarov have shown that in the long-time limit,
the cumulant generating function reduces to

M(χ, t ) = t�max, (14)

where �max is the eigenvalue of L(χ ) with the largest real part
[3,79].

We focus on the Fano factor, the second cumulant scaled by
the average current, which measures the zero-frequency noise
power S (0) compared to that of a Poissonian process,

F = 〈〈I2〉〉
〈I〉 (15)

= S (0)

2〈I〉 , (16)

for Poissonian processes F = 1; sub-Poissonian and super-
Poissonian processes are characterized by F < 1 and F > 1,
respectively.

C. Waiting time distribution

If instead one wishes to examine the distribution of waiting
times between subsequent tunnelings to the drain, then one
may use the formula developed by Brandes [4]:

wF (τ ) =
(
I, JF e(L−JF )τ JF P̄

)
(I, JF P̄)

. (17)

The waiting time distribution between tunnelings from the
drain, wB(τ ), is similarly defined.

There are tunneling events that do not appear in the stan-
dard master equation, yet change the drain number n. To
include these events in the WTD, one must use the n-resolved
master equation and the definition of the WTD from the idle
time probability [37,45,56,80]:

wF (τ ) = 1

p

∂2

∂τ 2
�(τ ), (18)

where p is the probability for observing a tunneling to the
drain and �(τ ) is the idle time probability: the probability
that no tunneling events to the drain are observed by time τ .
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In the case of unidirectional transport, when JB = 0 and
all backtunneling transitions are safely neglected from the
Liouvillian, p = 〈I〉 and the idle time probability is obtained
from the n-resolved master equation:

�(τ ) = lim
iχ→−∞

(I, eL(χ )τ P̄). (19)

Now, L(χ ) = L0 + JF eiχ and no backtunneling transition
rates are included in L0. Evidently, backtunneling events will
be accompanied by an e−iχ factor that will diverge in the
limit iχ → −∞. Of course, if the transport is unidirectional
in the backward direction as opposed to the forward direction,
then the same definition may be used with the limit iχ → ∞;
either way only one direction of tunneling events may be
included. Using Eq. (19) in the waiting time definition from
Eq. (18) yields the same form of the WTD as developed
by Brandes, except now the exponent L(0) − JF is obtained
from the n-resolved master equation; when the transport is
unidirectional the two methods coincide. The only difference
between them is that when the jump operators can be defined
in terms of a standard master equation Brandes’s method can
calculate both wF (τ ) and wB(τ ), whereas Eq. (18) cannot.

The Laplace transform of the WTD is

w̃(z) = (I, J(z − L0)−1JP̄)(
I, JP̄

) , (20)

from which the cumulants are calculated:

〈〈τ k〉〉 = (−1)k dk

dzk
ln w̃(z)|z=0. (21)

We have included the notation L0 = L − J as shorthand for
the exponent in Eq. (17).

The average current can be reconstructed from the average
waiting times:

〈I〉 = 1

〈τ 〉F
− 1

〈τ 〉B
, (22)

where 〈τ 〉F and 〈τ 〉B are the average forward and backward
waiting times, respectively. Waiting times calculated from an
n-resolved master equation only satisfy Eq. (22) for unidirec-
tional transport [37]. The equality in Eq. (22) holds regardless
of whether the transport is renewal, which follows from
examining the forward and backward currents separately. The
forward current, reconstructed from the WTD, is

〈I〉F =
∞∑

k=1

k

〈τ1 + τ2 + · · · + τk〉F
P(k), (23)

where P(k) is the probability that the forward current is
k

〈τ1+τ2+...+τk〉F
. The average waiting times are defined via the

joint probability distribution:

〈τ1 + τ2 + · · · + τk〉 =
∫

dτk · · ·
∫

dτ2

∫
dτ1(τ1 + τ2

+ · · · + τk )w(τ1, τ2, . . . , τk ) (24)

=
k∑

p=1

∫
dτp τpw(τp) (25)

= k〈τ 〉, (26)

where we have made no assumption on the renewal nature of
the transport. Equation (23) then reduces to

〈I〉F = 1

〈τ 〉F
, (27)

assuming that {P(k)} spans the entire current space. The same
reasoning follows for the backward current.

The higher-order current cumulants, in comparison, are
only reconstructable from the WTD for unidirectional trans-
port; for example, the randomness parameter

R = 〈〈τ 2〉〉
〈τ 〉2

(28)

is equal to the Fano factor defined in Eq. (15) for unidi-
rectional transport satisfying the renewal assumption. The
Pearson correlation coefficient measures the strength of cor-
relations between successive waiting times:

p = 〈τ1τ2〉 − 〈τ 〉2

〈〈τ 2〉〉 . (29)

When p is nonzero, the renewal assumption is violated and the
equality between Eq. (28) and Eq. (15) no longer applies.

The first moment of the joint distribution 〈τ1τ2〉 is calcu-
lated similarly to the cumulants:

〈τ1τ2〉 = ∂

∂z1

∂

∂z2
w̃(z1, z2)

∣∣
z1=z2=0 (30)

=
(
I, JL−2

0 JL−2
0 JP̄

)
(
I, JP̄

) . (31)

D. First-passage time distribution

Unlike the WTD, which calculates the time interval be-
tween successive electron tunnelings to the drain, the FPTD
calculates the time interval between a tunneling to the drain
and when the jump number next reaches a specified integer n.
Necessarily, the FPTD includes backward-tunneling events,
and it is defined from the n-resolved master equation. To
derive the FPTD we follow the method neatly encapsulated
by Saito and Dhar in the framework of Markovian master
equations [5], and explicitly explained by Ptaszyński [72].

We return to the χ -dependent Liouvillian defined in Eq. (8)
and start the time evolution in some arbitrary state P(0). The
n-resolved probability vector is written using Eq. (7) and
Eq. (9):

P(n, t ) = 1

2π

∫ 2π

0
dχe−inχ eL(χ )t P(0) (32)

= T(n|t )P(0). (33)

Now, T(n|t ) = 1
2π

∫ 2π

0 dχe−inχ eL(χ )t is the evolution oper-
ator for P(n, t ), which in Laplace space is

T̃(n|z) = 1

2π

∫ 2π

0
dχe−inχ [z − L]−1. (34)

The matrix element [T(n, t )]kl is the conditional probability
that, given the system is initially in state l at time t = 0, it
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will be in state k at time t and the jump number will have
reached n for the first time. Saito and Dhar [5], Ptaszyński
[72], and Singh et al. [73] have all found exact expressions for
T̃(n|z) for simple single reset systems, in which a tunneling
to the drain leaves the molecule empty. In general, though,
evaluating Eq. (34) requires a numerical contour integration,
which is the approach we take.

Alternatively, P(n, t ) is obtainable by considering the col-
umn vector of first-passage time probabilities F(n|τ ). Here,
[F(n|τ )]k is the probability density that at time τ the system is
in state k and n extra electrons have been recorded for the first
time in the drain. Premultiplication by the evolution operator
T(0, t − τ )F(n, τ ) transitions the system in the interval [τ, t]
to a final probability vector, during which no total change to n
is made. This contributes to the probability vector P(n, t ); the
final step integrates over all possible first-passage times:

P(n, t ) =
∫ t

0
dτT(0, t − τ )F(n, τ ). (35)

From here it is easier to work in Laplace space. The right-
hand side of Eq. (35) is a convolution, and using Eq. (33) one
obtains

T̃(n|z)P(0) = T̃(0, z)F̃(n, z). (36)

In Laplace space, the total first-passage time probability is

F̃ (n|z) = (I, T̃(0, z)−1T̃(n|z)P(0)). (37)

As Ptaszyński [72] notes, in order to connect the FPTD to
the WTD, the initial state P(0) needs to be the normalized sys-
tem state just after a forward jump to the drain has occurred:

P(0) = JF P̄
(I, JF P̄)

. (38)

Combining this choice of P(0) with Eq. (37), we obtain

F̃ (n|z) = (I, T̃(0, z)−1T̃(n|z)JF P̄)

(I, JF P̄)
, (39)

where F (n|τ ), defined as the inverse Laplace transform of
Eq. (39) L−1{F̃ (n|z)}, is the probability that, given an initial
tunneling to the drain occurred at some arbitrary time in
the stationary state, the jump number first reached n after a
time interval τ . For unidirectional transport, F (1|τ ) exactly
reproduces the WTD defined in Eq. (17).

The FPTD in time space is obtained from the numerical
inverse Laplace transform of Eq. (39):

F (n|τ ) = 1

2π i
lim

R→∞

∫ c+iR

c−iR
dz ezτ (I, T̃(0, z)−1T̃(n|z)JF P̄)

(I, JF P̄)
.

(40)

We focus, however, on the cumulants of the FPTD, which are
again calculated from F̃ (n|z):

〈〈
τ k

n

〉〉∗ = (−1)k lim
z→0+

[
dk

dzk
ln F̃ (n|z)

]
, (41)

where the limit z → 0+ is required as L(χ ) is singular for
χ = {0, 2π} [72]. We have introduced the ∗ notation for
FPTD cumulants to distinguish them from WTD cumulants,
and used Ptaszyński’s notation of 〈〈τ k

n 〉〉∗ referring to the kth
cumulant of F (n|τ ).

Ptaszyński has recently shown that when the transport is
renewal the FPTD cumulants are linearly related:〈〈

τ k
n

〉〉∗ = n
〈〈
τ k

1

〉〉∗
, (42)

as well as deriving, similarly to the WTD, renewal relations
between the FCS and the first-passage time cumulants [72].
The average current is then

〈I〉 = n

〈τn〉∗ (43)

= 1

〈τ1〉∗ . (44)

Unlike the WTD, where the equality in Eq. (22) is satisfied
regardless of renewal behavior, the equality in Eq. (44) is
only true for renewal processes; the logic applied in Eq. (25)
is not available to first-passage times since, for nonrenewal
processes, F (2|τ ) �= F (1|τ ; 1|τ ′).

One can also define a randomness parameter R∗
n for each

distribution F (n|τ ):

R∗
n = n

〈〈
τ 2

n

〉〉∗
(〈τn〉∗)2 . (45)

For renewal systems they all reduce to R∗
1, which is then

equal to the Fano factor. Unlike R, we expect that the renewal
relationships will hold in bidirectional transport. The Pearson
correlation coefficient between subsequent first-passage times
can be calculated using F (2|τ ) [72]:

p∗ = 2
R∗

2

R∗
1

− 1. (46)

Throughout the majority of the paper we will not use the
subscript n for the cumulants, with the implication being that
we are referring to cumulants of F (1|τ ) unless explicitly
stated.

III. MODEL SYSTEMS

In this section we introduce the three transport scenarios
under consideration and define the rate equations describing
their dynamics. Quantum rates are calculated using the T-
matrix method, which is a suitable replacement for more
rigorous approaches when the transport is Markovian, that
is, when Tα,VSD 	 γ , where γ is the broadening of the
molecular energy levels, Tα is the temperature of electrode α,
and VSD is the source-drain voltage bias [19]. In order to use
rate equations as opposed to comprehensive master equations
[66,81–86] we also operate under the secular approximation;
coherence between molecular basis states is ignored. All sce-
narios describe the transport of electrons through a molecule
weakly coupled to two macroscopic metal electrodes. The
total Hamiltonian is

H = HS + HD + HM + HT , (47)

where HM is the Hamiltonian of the nanoscale quantum sys-
tem, HS and HD are the source and drain Hamiltonians

HS + HD =
∑

α=S,D

∑
k,σ

εα,k,σ a†
α,k,σ

aα,k,σ , (48)
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and HT is the system-electrode interaction

HT =
∑

α=S,D

∑
k,σ

tα,k,σ (a†
α,k,σ

aσ + a†
σ aα,k,σ ). (49)

The operator a†
α,k,σ

creates an electron in electrode α in the
single-particle state k with spin σ = {↑,↓} and free energy
εα,k,σ , while aα,k,σ annihilates an electron with spin σ from
the same state in electrode α, and tα,k,σ are the tunneling
amplitudes between the quantum system and the electrodes.

The molecule is described by the Anderson-Holstein
model; an energy level, which can be spin split, is coupled
to a vibrational mode such that electrons occupying the
molecule experience electron-electron and electron-phonon
interactions:

HM =
∑

σ

εσ a†
σ aσ + Un↑n↓ + λ(b† + b)n + ωb†b. (50)

The operators a†
σ and aσ create and annihilate an electron in

the single-particle state σ with free energy εσ , while b† and b
create and annihilate phonons with frequency ω. The parti-
cle number operators are nσ = a†

σ aσ and n = ∑
σ a†

σ aσ . The
λ(b† + b)n term describes the electron-phonon interaction,
where λ is the coupling strength. Likewise, U is the Coulomb
repulsion strength.

The transition rate from the electrode-system many-body
state i to many-body state f is

� f i = 2π |〈 f | T |i〉|2δ(Ei − E f ), (51)

where the T matrix is

T = HT + HT
1

Ei − H0 + iη
HT

+ HT
1

Ei − H0 + iη
HT

1

Ei − H0 + iη
HT + · · · . (52)

The leading order approximation is Fermi’s golden rule,
and describes sequential tunneling:

� f i = 2π |〈 f | HT |i〉|2δ(Ei − E f ). (53)

Fermi’s generalized golden rule [87,88] details the higher-
order terms; for example, cotunneling events are described by
going to fourth order in HT .

A. Anderson impurity

For a rigid molecule with no electron-phonon coupling λ =
0, Eq. (50) reduces to the Anderson model:

HM =
∑

σ

εσ a†
σ aσ + Un↑n↓̄. (54)

The molecular orbital is then in one of four system
states; it can be empty |0〉, occupied by a single elec-
tron of either spin |σ 〉, or occupied by two electrons
of opposite spin |2〉, with probability vector P(χ, t ) =
[P0(χ, t ), P↑(χ, t ), P↓(χ, t ), P2(χ, t )]T . Including cotunnel-
ing and sequential tunneling events, the Liouvillian minus the
forward and backward jump operators is

L0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(�↑0 + �↓0 + �
(2)
00 ) �S

0↑ �S
0↓ 0

�S
↑0 −(�0↑ + �2↑ + �

(2)
↑↑ + �

(2)
↓↑ ) �SS

↑↓ + �DD
↑↓ �S

↑2

�S
↓0 �SS

↓↑ + �DD
↓↑ −(�0↓ + �2↓ + �

(2)
↓↓ + �

(2)
↑↓ ) �S

↓2

0 �S
2↑ �S

2↓ −(�↑2 + �↓2 + �
(2)
22 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(55)

with the forward and backward jump operators defined as

JF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�SD
00 �D

0↑ �D
0↓ 0

0 �SD
↑↑ �SD

↑↓ �D
↑2

0 �SD
↓↑ �SD

↓↓ �D
↓2

0 0 0 �SD
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, JB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�DS
00 0 0 0

�D
↑0 �DS

↑↑ �DS
↑↓ 0

�D
↓0 �DS

↓↑ �DS
↓↓ 0

0 �D
2↑ �D

2↓ �DS
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (56)

The total sequential rates are

�kl = �S
kl + �D

kl , (57)

the total elastic cotunneling rates are

�
(2)
ll = �SD

ll + �DS
ll , (58)

and the total inelastic cotunneling rates are

�
(2)
kl = �SD

kl + �DS
kl + �SS

kl + �DD
lk . (59)

The sequential rates are

�α
σ0 = γ α nF (εσ − μα ), (60)

�α
0σ = γ α (1 − nF (εσ − μα )), (61)

�α
σ2 = γ α (1 − nF (εσ + U − μα )), (62)

�α
2σ = γ α nF (εσ + U − μα ), (63)
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where γ α = 2π |tα|2ρ(εα ); ρ(εα ) is the density of states for the
source and drain electrodes, which is assumed to be constant;
and nF (ε − μα ) is the Fermi-Dirac distribution:

nF (ε − μα ) = 1

1 + e(ε−μα )/Tα
. (64)

During cotunneling, the electron undergoes two tunneling
events in the same quantum process through an intermediate
“virtual” energy level in the molecule. Elastic cotunneling
leaves the molecule in the same energetic state as before
the process, while inelastic cotunneling leaves the molecular
orbital occupied by the same number of electrons but in an
excited or deexcited state. The notation �

αβ

kl implies that an
electron cotunneled from electrode α to electrode β, changing
the system from state l to state then k; if the process is elastic
l = k. Elastic cotunneling processes do not appear in Eq. (1)
as they do not affect the molecular probabilities P(t ), while
elastic cotunneling events involving the same electrode α = β

are not included even in the n-resolved master equation as they
change neither the jump number nor the molecular state.

The cotunneling rates are calculated by going to fourth
order in HT in Eq. (51) and Eq. (52). To avoid divergences
in the T-matrix calculated cotunneling rates, and overcounting
of sequential processes, one must use the regularization pro-
cedure noted first by Averin [89] and detailed separately by
Koch etal. [90,91] and Turek and Matveev [92]. The details
and specific form of the lengthy cotunneling rates for an
Anderson impurity are in Appendix A.

B. Holstein model

In the limit U → ∞, the molecule cannot be doubly oc-
cupied and behaves as a single level coupled to a vibrational
mode: the Holstein model, with the Hamiltonian

HM = ε0a†a + λ(b† + b)a†a + ωb†b. (65)

After the Lang-Firsov transformation [93] the molecular
Hamiltonian reduces to

HM = εã†ã + ωb̃†b̃, (66)

with ε = ε0 − λ2

ω
and new fermionic ã†ã and bosonic b̃†b̃ op-

erators obtained from the original operators via the canonical
transformation. The molecular eigenstate is now described by
two quantum numbers |nq〉, where n = {0, 1} is the electron
occupation number and q = {0, 1, . . . ,+∞} is the vibrational
quanta occupation number. The associated eigenenergy is
Enq = εn + ωq. The Fourier-transformed vector is then

P(χ, t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P00(χ, t )
P10(χ, t )
P01(χ, t )
P11(χ, t )

.

.

.

P0N (χ, t )
P1N (χ, t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (67)

which is described by the master equation [94]

Ṗ0q(χ, t ) =
∑

q′

(
�S

0q;1q′ + �D
0q;1q′eiχ

)
P1q′ (χ, t )

−
∑
αq′

�α
1q′;0qP0q(χ, t ), (68)

Ṗ1q(χ, t ) =
∑

q′

(
�S

1q;0q′ + �D
1q;0q′e−iχ

)
P0q′ (χ, t )

−
∑
αq′

�α
0q′;1qP1q(χ, t ). (69)

Evidently, there can be any number of interacting vibrations
and P(χ, t ) is a vector of infinite length. In practice, however,
we only include a finite number N of vibrations in the trans-
port calculations, so that P(χ, t ) and I are vectors of length
2(N + 1). Likewise, the Liouvillian and two jump operators
are 2(N + 1) × 2(N + 1) matrices. JF and JB are explicitly
written in Appendix B.

The rates are

�α
1q′;0q = γ |Xq′q|2nF (ε + ω(q′ − q) − μα ), (70)

�α
0q′;1q = γ |Xq′q|2[1 − nF (ε + ω(q′ − q) − μα )], (71)

where the Franck-Condon matrix elements are

Xqq′ = 〈q|e−λ(b†−b)|q′〉. (72)

We consider two distinct vibrational scenarios. So far we
have described transport when the phonons are unequilibrated,
but when the phonons are in equilibrium with an external bath
at temperature TV , the rate equation reduces to that of a single
resonant level, with Liouvillian

L0 =
[−T10 T S

01
T S

10 −T01

]
, (73)

and jump operators

JF =
[

0 T D
01

0 0

]
, JB =

[
0 0

T D
10 0

]
, (74)

where the probabilities are defined with the ansatz

Pnq(χ, t ) = Pn(χ, t )
e−qω/TV

1 − e−ω/TV
, (75)

the total transition rates are Tkl = ∑
α T α

kl , and the individual
transition rates are

T α
kl =

∑
qq′

�α
kq;lq′

e−qω/TV

1 − e−ω/TV
. (76)

IV. RESULTS

In this section we compare the full counting statistics,
waiting time distribution, and first-passage time distribution
for the three transport scenarios.

A. Sequential tunneling and cotunneling through
an Anderson impurity

In a previous paper, we examined, via waiting times, the
effect cotunneling has on strong electron-electron interactions
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FIG. 1. (a) The exact sequential and cotunneling current 〈I〉 = (I, (JF − JB )P̄) (black) compared to the respective predictions from the
FPTD 1

〈τ 〉∗ (red) and WTD 1
〈τ 〉F

− 1
〈τ 〉B

(blue). Current is measured in units of γ

2 and voltage is measured in meV. In (b) the randomness
parameter R∗ calculated from Eq. (45) is compared to the Fano factor F defined in Eq. (15). The energies of the spin-split electronic levels are
ε↑ = 0.5 meV and ε↓ = −1.5 meV; the Coulomb repulsion is U = 4 meV, T = 75 μeV, and γ = 0.5 T. The source and drain Fermi energies
are symmetric about zero: μS = −μD = VSD/2.

in an Anderson impurity [37]. In order to include elastic
cotunneling events, it is necessary to use the n-resolved master
equation to calculate the waiting times. Unfortunately, when
bidirectional transitions are included the definition of the
idle-time probability in Eq. (19) is no longer satisfied [56].
One may of course treat the transport as unidirectional and
calculate the waiting times in either direction; Fig. 1(a) shows
that doing this, in a regime where backtunneling processes are
present, does not reproduce the correct cotunneling current
from 1

〈τ 〉F,co
− 1

〈τ 〉B,co
. The first-passage time prediction 1

〈τ 〉∗co
, on

the other hand, reproduces the cotunneling current; the black
and red dashed lines in Fig. 1(a) coincide. Over the voltage
range 2–3 meV there is a small numeric difference between
〈I〉co and 1

〈τ 〉∗co
, since the transport is nonrenewal, but it is not

visible to the naked eye. In comparison, the sequential current
is exactly reproduced by 1

〈τ 〉F,seq
− 1

〈τ 〉B,seq
, since sequential tun-

neling is described completely by a standard master equation,
and 1

〈τ 〉∗seq
, since the sequential transport is always renewal.

One can see this in Fig. 1(a), as all solid lines coincide.
These difficulties previously kept us to the large bias

voltage regime. It is well known in the literature, however,
that in a certain voltage range inelastic cotunneling processes
cause telegraphic switching in an Anderson impurity, which
is now accessible to fluctuating time statistics via the FPTD.
The Fano factor in Fig. 1(b) is a reproduction of Fig. 3 from
Ref. [17], with the first-passage and waiting time randomness
parameters included as well. The molecule is in the Coulomb
blockade regime U 	 VSD, so that transport through one σ

level blocks transport through the other σ̄ level. At small
voltages, for sequential tunneling, Belzig [20] has shown
that the molecule goes through cycles of transferring n − 1
electrons quickly through the ↑ level until it gets “stuck” in the
↓ level. The cycle completes when the ↓ empties via thermal
broadening of the drain occupation function. The noise is
thus characteristic of a sum of Poissonian processes, each
transferring n electrons, and weighted by ( 1

2 )n. In contrast,

when cotunneling processes are included, super-Poissonian
noise arises from a different mechanism. Note that from here
we have not included cumulants from the forward-cotunneling
WTD, such as R and p, since in this voltage regime the
transport is bidirectional.

At low bias VSD/2 < ε↑ the only transport mechanism
is elastic cotunneling through the empty ↑ level or the oc-
cupied ↓ level; the noise is Poissonian and F = 1. When
ε↓ > VSD/2 � ε↑ the ↑ level may be occupied via sequential
tunneling, and there are now two main transport channels:
elastic cotunneling through the ↓ level and sequential tun-
neling through the ↑ level. Telegraphic switching between
these two processes occurs when inelastic cotunneling induces
a spin flip σ → σ̄ or the molecule relaxes from ↑→↓ via
sequential tunneling. Super-Poissonian noise is a symptom
of the switching between two Poissonian processes, which is
the main observation of Fig. 3 from Ref. [17] and is evident
in Fig. 1(b). In this voltage regime the transport is evidently
nonrenewal as R∗ does not match the Fano factor; there should
thus be correlations between subsequent first-passage times.

Positive correlations in the waiting times are known to
occur for systems undergoing telegraphic switching: for ex-
ample, in systems with spin-polarized electrodes [15]. The
current switches between two transport channels, each with a
characteristic waiting time. When in the faster channel, wait-
ing times between successive tunnelings are more likely to be
shorter, and vice versa in the slower channel. Consequently,
waiting times between successive tunnelings to the drain are
positively correlated; one would expect that there would be
similar positive correlations between the first-passage times.
In Fig. 2, however, we report intriguing negative correlations
between successive first-passage times. That is, if the jump
number reaches +1 after a short time interval, it is more likely
that the time until the jump number next reaches +1 will be
long. The values are small enough, however, that the first-
passage times are still not considered correlated. A possible
explanation is that the time it takes for the transport to switch
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FIG. 2. The Pearson correlation coefficient for sequential tun-
neling and cotunneling, defined in Eq. (46), calculated from the
FPTD only. The energies of the spin-split electronic levels are ε↑ =
0.5 meV and ε↓ = −1.5 meV; the Coulomb repulsion is U = 4 meV,
T = 75 μeV, and γ = 0.5 T.

between the two mechanisms is comparable to the average
first-passage times for the two channels, so that the system
does not spend long enough in either channel for subsequent
first-passage times to become positively correlated.

B. Vibrations with a finite bias voltage

One of the authors (D.S.K.) has previously reported pos-
itive correlations in successive waiting times for transport
through the Holstein model [38], which we now compare to
first-passage times.

We consider transport through the Holstein model with
fixed temperature and over a range of VSD. In such a scenario,
Koch and von Oppen have previously explained the different
behavior of equilibrated and unequilibrated current at low
voltages [21], which originates from Xqq′ being suppressed
on diagonal and close-to-diagonal elements under a strong
electron-phonon coupling λ 	 1. At small T and eV, when
the electrons are not energetic enough to reach highly excited
phonon states, the current is thus suppressed, which is evi-
dent more for equilibrated phonons than out-of-equilibrium
phonons, as multiple unequilibrated transitions can produce
the required excited phonon states. At higher voltages, the
current also displays the characteristic steplike structure, with
steps occurring when the voltage is a multiple of 2, since
ω = 1.

The total electronic current is correctly predicted from
the WTD in Eq. (22) for both equilibrated and unequili-
brated phonons; the blue and black dashed and solid lines
in Fig. 3(a) exactly overlap. In comparison, 1

〈τ 〉∗ correctly
predicts the current over all voltages for equilibrated but not
unequilibrated phonons, implying that at the voltages where
they differ the transport is nonrenewal. One can see that the
red dashed line in Fig. 3(a) coincides with both the blue and
black dashed lines, but that there is a difference between the
red solid line and the blue and black solid lines. Unlike the
current plots for the other transport scenarios we consider,
the discrepancy between the unequilibrated 1

〈τ 〉∗ and 〈I〉 due to
renewal processes is large enough to be visually recognizable.
As Fig. 4 shows, however, the largest correlations occur at
voltages where the current, and thus the difference between

1
〈τ 〉∗ and 〈I〉, is negligible; consequently, we turn to the ran-
domness parameters to analyze the nonrenewal behavior.

As found in Ref. [38], when phonons are unequilibrated,
there exist strong correlations between successive waiting
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FIG. 3. (a) The exact current for equilibrium and nonequilibrium phonons 〈I〉 = (I, (JF − JB )P̄) (black) compared to the respective
predictions from the FPTD 1

〈τ 〉∗ (red) and WTD 1
〈τ 〉F

− 1
〈τ 〉B

(blue). In (b) the randomness parameters R∗ calculated from Eq. (45) and R

calculated from Eq. (28) are compared to the Fano factor F defined in Eq. (15). Note that here the WTD current prediction is 1
〈τ 〉F

− 1
〈τ 〉B

,
but R is calculated only from the forward WTD. The vibrationally adjusted energy level is ε = 0, the vibrational frequency is ω = 1,
TS = TD = 0.05, the electron-phonon coupling strength is λ = 4, γα = γ

2 = 0.01, and the equilibrium phonons are kept at a vibrational
temperature of TV = 0.05. The source and drain chemical potentials are shifted symmetrically about zero: μS = −μD = VSD/2. We use units
of ω for 〈I〉 (eω if we reintroduce h̄ and e) and units of ω for all energy parameters as well (or h̄ω/e).
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FIG. 4. The Pearson correlation coefficient for equilibrium and
nonequilibrium vibrations, defined in Eq. (29) and Eq. (46), cal-
culated from the WTD and the FPTD, respectively. The vibra-
tionally adjusted energy level is ε = 0, the vibrational frequency
is ω = 1, TS = TD = 0.5, the electron-phonon coupling strength is
λ = 4, γ α = γ

2 = 0.01, and the equilibrium phonons are kept at a
vibrational temperature of TV = 0.05. Again, the electrode chemical
potentials are shifted symmetrically about zero μS = −μD = VSD/2,
and the energy units are in ω.

times, due to an elastic “shortcut” channel that opens in a
small voltage range. In Fig. 4 we report similar correlations in
the first-passage times over the same voltage range, albeit with
a smaller peak. This is expected; due to backtunneling events
the first-passage time can never be smaller than the waiting
time τ ∗ � τ , and so correlations between first-passage times
must be smaller. The Fano factor and randomness parameters
in Fig. 3(b) support this nonrenewal behavior. At low voltages

R fails to capture the divergence of the Fano factor and R∗. Be-
tween the 1 → 2 eV voltage range F and R∗ differ, correctly
predicting the nonrenewal behavior in Fig. 4. In comparison, R
actually crosses the F at ∼1.9 eV, implying renewal behavior,
while at the same voltage the waiting time Pearson coefficient
is still a nonzero p ≈ 0.05. The correlations disappear when
the phonons are forced to relax to equilibrium immediately, as
the excited phonon state providing the elastic shortcut channel
is no longer occupied.

C. Vibrations with a finite-temperature gradient

At finite temperatures, and when the electrode Fermi en-
ergies are approximately in resonance with ε + ωq, the bidi-
rectional transport is dominated by thermal noise. A recent
experimental paper has shown, however, that electronic noise
distinct from the thermal noise can be generated from a tem-
perature gradient �T in the absence of a bias voltage, which
they label delta-T noise [95]. We finish our investigation by
exploring the effect a temperature gradient has on the first-
passage times for sequential tunneling through the Holstein
model.

Since the transport in this scenario is described by a stan-
dard master equation, the exact current matches the prediction
from the WTD in Eq. (22), which is shown in Fig. 5(a); all
black and blue lines coincide. The FPTD current prediction
from Eq. (44), on the other hand, differs from 〈I〉 at low
�T , implying nonrenewal behavior in this regime; other-
wise, the red FPTD lines coincide with all blue and black
lines. Interestingly, the equilibrium current is larger than the
nonequilibrium current, which is understood by examining
Xqq′ and the phonon occupation probabilities. For λ = 1 and
ω = 1 the Franck-Condon factor is largest for elastic q = 0
transitions. These transitions are more accessible to phonons
in equilibrium, as the q = 0 state has a larger relative occupa-
tion probability for equilibrium phonons than nonequilibrium
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FIG. 5. Current (a) and Fano factor (b) predicted from the WTD in (blue) and FPTD (red) and compared to the exact results (black)
for equilibrium and nonequilibrium vibrations, as a function of the temperature gradient �T . Again, the WTD prediction is 1

〈τ 〉F
− 1

〈τ 〉B
,

but R is calculated only from the forward WTD. The vibrationally adjusted energy level is ε = 1, the vibrational frequency is ω = 1, the
electron-phonon coupling strength is λ = 1, and the voltage is VSD = 0, γ α = γ

2 = 0.01. The average temperature across the molecule is
T̄ = TS+TD

2 = 0.75 and the electrode temperatures are symmetric around T̄ : TS = T̄ + �T/2 and TD = T̄ − �T/2. The equilibrium phonons
are kept at a vibrational temperature of TV = T̄ . Again, energy and current units are in ω.
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phonons:

Peq
q=0

Peq
q=1

>
Pne

0;q=0 + Pne
1;q=0

Pne
0;q=1 + Pne

1;q=1

. (77)

We note that for large �T the total current is the same order
as that induced by a voltage bias in Fig. 3(a).

In Fig. 5(b) F diverges as �T → 0, which is expected
since thermal processes dominate in this regime. At larger
�T the noise no longer diverges but is still super-Poissonian,
and distinct from the shot noise generated by a voltage bias.
We attribute this to the relatively large temperatures; even
the smallest drain temperature we consider is large enough
to cause backtunnelings from the drain, hence the super-
Poissonian partition noise normally associated with a voltage
bias.

It is evident that R∗ �= F at small �T , implying that the
transport is nonrenewal in this temperature range. Despite
this nonrenewal behavior, we have chosen not to display the
Pearson correlations: they are nonzero but small. At larger
�T when the renewal assumption is satisfied, R∗ successfully
predicts F , while R clearly does not as it only includes
unidirectional transitions.

V. CONCLUSION

In this paper we have compared the waiting time statistics
to the first-passage time statistics for a molecule with strong
electron-electron or electron-phonon interactions. All meth-
ods rely on a form of the master equation, in which the on-
site interactions are treated exactly and the coupling between
the molecule and electrode is treated perturbatively under
the Born-Markov approximation. In bidirectional transport
scenarios we have demonstrated the effectiveness of using
first-passage times as opposed to waiting times. In particu-
lar, we compared the total current to the current computed

from the WTD and FPTD, the Fano factor to the WTD and
FPTD randomness parameters, and the correlation between
subsequent waiting and first-passage times. We first examine
sequential tunneling and cotunneling through an Anderson
impurity. When a full transport description requires use of
the n-resolved master equation, the WTD can be calculated
in the forward-tunneling regime only. Such difficulties arise
when including elastic cotunneling, but do not apply to first-
passage times; we demonstrate that there are unexpected,
minor negative correlations between the first-passage times
even though the transport displays telegraphic switching.
Next, we analyzed the Holstein model at finite bias voltage, in
which correlations between successive first-passage times are
smaller than correlations between successive waiting times
when backtunneling events are present. Finally, we considered
transport through the Holstein model at zero bias voltage and a
finite-temperature gradient. The temperature gradient induces
a current, but also significant backtunneling events. Hence,
the forward waiting time τF was incapable of accurately
predicting the Fano factor, as opposed to the first-passage
time τ ∗.
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APPENDIX A: COTUNNELING RATES

Cotunneling rates calculated from the T-matrix approach
are regularized according to the procedure outlined by Koch
et al. [90,91]. Calculating cotunneling rates for transport
through an Anderson impurity, in particular, has been thor-
oughly covered in Refs. [18,37], to which we direct the reader
for a comprehensive overview.

The elastic cotunneling rates are

�αβ
nn = γ 2

2π
lim

η→0+

∫
dε

∣∣∣∣ 1

ε − E1 + iη
± 1

ε − E2 + iη

∣∣∣∣nF (ε − μα )[1 − nF (ε − μβ )], (A1)

where E1 and E2 are derived from the cotunneling pathways involved in the rate, and the ± is only positive for elastic tunneling
through an initially empty or initially doubly occupied system. Similarly, inelastic cotunneling rates have the general form

�
αβ
σ̄σ = γ 2

2π
lim

η→0+

∫
dε

∣∣∣∣ 1

ε − εσ̄ − U + iη
− 1

ε − εσ̄ − iη

∣∣∣∣nF (ε − μα )[1 − nF (ε − μβ + εσ − εσ̄ )], (A2)

where the broadening of the intermediate virtual state iη in Eq. (A1) and Eq. (A2) was first noted by Averin.
The rates are then split into a sum via

∣∣∣∣ 1

ε − E1 + iη
± 1

ε − E2 − iη

∣∣∣∣ = 1

(ε − E1)2 + η2
+ 1

(ε − E2)2 + η2
± 2Re

{
1

ε − E1 + iη
× 1

ε − E2 − iη

}
. (A3)

All that remains is to compute the two types of integrals:

lim
η→0

Re
∫

dε
nF (ε − μα )[1 − nF (ε − μβ )]

(ε − E1 − iη)(ε − E2 + iη)
= nB(μβ − μα )

E2 − E1
Re

{
ψ

(
Eα

−,2

) − ψ
(
Eα

+,1

) − ψ
(
Eβ

−,2

) + ψ
(
Eβ

+,1

)}
, (A4)

lim
η→0

∫
dε

nF (ε − μα )[1 − nF (ε − μβ )]

(ε − Ek )2 + η2
− O(η−1) = nB(μβ − μα )

2πT
Im

{
ψ (1)

(
Eβ

+,k

) − ψ (1)
(
Eα

+,k

)}
. (A5)
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Here, Eα
±,k = 1/2 ± i μα−Ek

2πT ; ψ (x) and ψ (1)(x) are the digamma and trigamma functions, respectively, and the Bose-Einstein
distribution is

nB(μβ − μα ) = 1

e(μβ−μα )/T − 1
. (A6)

APPENDIX B: JUMP OPERATORS FOR THE HOLSTEIN MODEL

The electronic current jump operators defined from the master equation in Eq. (68) and Eq. (69) are

JF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �D
00;10 0 �D

00;11 0 · · · · · · · · · �D
00;1N

0 0 0 0 0 0
0 �D

01;10 0 �D
01;11 0 �D

01;1N
...

. . .
...

...
. . .

...
...

. . .
...

0 0 0 0 0
0 0 �D

0N ;1(N−1) 0 �D
0N ;1N

0 · · · · · · · · · · · · 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

JB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · · · · · · · 0 0
�D

10;00 0 �D
10;01 0 �D

10;0N 0
0 0 0 0 0 0

�D
11;00 0 �D

11;01 0 �D
11;0N 0

...
. . .

...
...

. . .
...

...
. . .

...
0 0 0 0 0

�D
1N ;00 · · · · · · · · · · · · �D

1N ;0(N−1) 0 �D
1N ;0N 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B2)
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