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We study the adiabatic dynamics of the charge, spin, and energy of a quantum dot with a Coulomb interaction
under two-parameter driving, associated to time-dependent gate voltage and magnetic field. The quantum dot
is coupled to a single reservoir at temperature T = 0 and the dynamical Onsager matrix is fully symmetric,
hence, the net energy dynamics is fully dissipative. However, in the presence of many-body interactions, other
interesting mechanisms take place, like the net exchange of work between the two types of forces and the
nonequilibrium accumulation of charge with different spin orientations. The latter has a geometric nature. The
dissipation takes place in the form of an instantaneous Joule law with the universal resistance R0 = h/2e2. We
show the relation between this Joule law and instantaneous fluctuation-dissipation relations. The latter lead to
generalized Korringa-Shiba relations, valid in the Fermi-liquid regime.
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I. INTRODUCTION

Understanding the charge dynamics in driven quantum
dots motivates intense research activity for some years now.
Several developments took place after Büttiker and coworkers
discussed the dynamics of the quantum RC circuit composed
by a quantum capacitor in series with a resistor, which op-
erates under the driving by an ac voltage [1,2]. Not only the
charge but also the energy dynamics in this system deserves
attention. In fact, this is the minimal electronic system to ad-
dress fundamental questions on the energy transport and heat
production in the quantum regime, which is a subject under
active investigation across the areas of statistical mechanics,
condensed matter, cold atoms, and quantum information.

The minimal RC quantum circuit can be realized in a
quantum dot (QD). The charge dynamics of this circuit under
ac driving has been the subject of several experimental [3–6]
and theoretical [7–28] studies in the linear and nonlinear
regimes. The capacitive element is, precisely, the QD, while
the resistive element is the contact to a fermionic reservoir.
The dynamics of the charge in linear response is ruled by the
capacitance of the quantum dot and the universal Büttiker re-
sistance R0 = h/2e2. When the ac driving potential is applied
at the QD, a net amount of energy is dissipated in the form
of heat. Remarkably, several recent works indicate that for
adiabatic driving—when the characteristic time of the driving
is much larger than the one of the electrons in the QD—and
the reservoir is at temperature T = 0, such heat generation
follows an instantaneous Joule law (IJL) with the universal
resistance R0 per conducting channel. This result holds for
a noninteracting QD [22–24], as well as for a quantum dot
with Coulomb interactions [28], and extends to more complex
configurations containing normal and superconducting leads
[29]. In the case of QD with many-body interactions and
single-parameter driving, the proof of the universal IJL relies

on an identity known as the Korringa-Shiba relation [30],
derived for Fermi liquids. After Ref. [22], several studies
also focused on the distribution of the heat production along
the different pieces of the device and the role of the energy
reactance [23,24,31–35].

So far, all studies of the RC quantum circuit focus on
driving protocols with a single time-dependent parameter,
corresponding the an ac gate voltage at the quantum dot.
Adiabatically driven systems with several time-dependent
parameters enable more interesting effects. The most well
known example is the quantum pumping of charge between
two electron reservoirs in electron systems locally modulated
by two time-dependent parameters. The net transfer of charge
in this case can be characterized by a geometric quantity
akin to the Berry phase [36,37]. Other geometrical aspects
of adiabatically driven systems, like geometric magnetism
[38], adiabatic perturbation theory in closed systems [39], the
thermodynamic metric in q-bit systems [40], and rectification,
[41] have been recently analyzed. Topological properties of
the energy conversion have been so far considered only be-
yond the adiabatic regime [42,43]. In the present work, we
study the RC circuit under two-parameter driving. In addition
to the usual ac driving at the gate voltage, we include the effect
of an ac magnetic field. A sketch of the setup is presented
in Fig. 1. We solve this problem with the adiabatic approach
introduced in Ref. [44], which treats the nonequilibrium dy-
namics by expanding the evolution operator in powers of the
velocities of the time-dependent parameters. The coefficients
of such expansion depend on frozen equilibrium suscepti-
bilities. In our case, the latter can be numerically exactly
evaluated by recourse to numerical renormalization group
(NRG) [45,46], as in Ref. [28]. Alike to the case of single-
parameter driving, the only dissipative element is the contact
resistance. Hence, dissipation of energy follows an IJL with
the universal resistance R0 per spin channel. We show that
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FIG. 1. Sketch of the setup. A quantum dot connected to a single
electronic reservoir at T = 0 is driven by means of a gate voltage
Vg(t ) and a magnetic field B(t ). We model the device by an Anderson
Hamiltonian with a single level and Coulomb interaction U .

this fact, when analyzed from the perspective of a fluctuation-
dissipation relation, implies a series of relations between the
static and dynamical charge and spin susceptibilities, which
constitute generalizations of the usual Korringa-Shiba law.
We show that these relations are valid for both the inter-
acting and noninteracting cases. The interesting feature that
the two-parameter driving brings about is the nonequilibrium
accumulation of a polarized charge in the QD. The latter can
be characterized by a geometric quantity, akin to the pumped
charge in quantum pumps [36,37]. We show that many-body
interactions are crucial for this effect to be realized in the
present system. In fact, the noninteracting limit effectively
decouples into two single-parameter driven problems (one for
each spin orientation).

The work is organized as follows. We introduce the model
in Sec. II. The theoretical approach is presented in Sec. III.
Results are presented in Sec. IV. Section V contains summary
and conclusions. Technical details are presented in Appendix.

II. MODEL

We consider the following Hamiltonian for the full setup
of Fig. 1:

Ĥ (t ) = Ĥdot (t ) + Ĥres + Ĥcoupling, (1)

which consists of an Anderson impurity model with driving
at the impurity. The reservoir is modeled by free electrons
Ĥres = ∑

kσ εk ĉ†
kσ

ĉkσ and the coupling between the dot and the
reservoir is Ĥcoupling = wc

∑
kσ ĉ†

kσ
d̂σ + d†

σ ĉkσ . The Hamilto-
nian for the QD reads

Ĥdot =
∑

σ

Vσ (t )n̂σ + U (n̂↑ − 1/2)(n̂↓ − 1/2), (2)

where the effect of the driving is encoded in the parameters
Vσ (t ) = ε0 + eVg(t ) + sσμBB(t ) being sσ = ±1 for σ = {↑,

↓}. The latter includes the effect of the time-dependent gate
voltage Vg(t ), which shifts the energy levels of the quantum
dot as a function of time, and a time-dependent magnetic B(t ),
which introduces a time-dependent Zeeman splitting for the
two spin orientations within the quantum dot. The constants

e and μB are, respectively, the electron charge and the Bohr
magneton. The Coulomb repulsion is denoted by U and n̂σ

the dot number operator for electrons with spin σ .

III. ADIABATIC RESPONSE

The adiabatic regime refers to changes in the time-
dependent parameters within a time scale which is much
larger than the typical lifetime of the electrons in the quantum
dot. In the noninteracting case, the latter is determined by
the coupling wc and the density of states of the reservoir.
In systems with many-body interactions, this quantity can be
renormalized in a nontrivial way. Here, we follow Ref. [44],
and characterize the adiabatic dynamics as the linear-response
regime in the “velocities” V̇σ (t ).

A. Dynamics of charge, spin, and work

We denote nσ (t ) = 〈n̂σ 〉(t ) the mean occupancy of the dot
with electrons with spin σ at time t . Following Refs. [28,44],
the adiabatic dynamics for nσ (t ) is given by

nσ (t ) = n f σ (t ) +
∑
σ ′

�σσ ′
(t )V̇σ ′ (t ), (3)

where n f σ (t ) = 〈n̂σ 〉t is the frozen occupancy of the dot, i.e.,
the occupancy evaluated with the equilibrium density matrix,
corresponding to the Hamiltonian Ĥf ,t = Ĥ (t ) frozen at the
time t . In Appendix, we review the derivation of these results.
The adiabatic Onsager coefficients �σσ ′

(t ) can be computed
from

�σσ ′
(t ) = − lim

ω→0

Im
{
χσσ ′

t (ω)
}

h̄ω
. (4)

Here, χσσ ′
t (ω) is the Fourier transform of the susceptibility

χσσ ′
t (t − t ′) = −i�(t − t ′)〈[nσ (t ), nσ ′ (t ′)]〉t , evaluated with

the equilibrium frozen density matrix.
The local charge and magnetic moment at the QD are given

by

en(t ) = e
∑

σ

nσ (t ),

m(t ) = n↑(t ) − n↓(t ). (5)

Consequently, we can define the susceptibilities χ c
t (t −

t ′) = −iθ (t − t ′)〈[n(t ), n(t ′)]〉, χm
t (t − t ′) = −iθ (t − t ′)

〈[m(t ), m(t ′)]〉, and χ cm
t (t − t ′) = χmc

t (t − t ′) = −iθ (t −
t ′)〈[n(t ), m(t ′)]〉. From these susceptibilities, we can define
the transport coefficients in a similar way as in Eq. (4). These
coefficients can be collected into a dynamical Onsager matrix

�C (t ) =
(

�c(t ) �cm(t )
�mc(t ) �m(t )

)
. (6)

The latter coefficients are related to the previously defined
ones through

�c(t ) = �↑↑(t ) + �↓↑(t ) + �↑↓(t ) + �↓↓(t ),

�cm(t ) = �mc(t ) = �↑↑(t ) − �↓↓(t ),

�m(t ) = �↑↑(t ) − �↓↑(t ) − �↑↓(t ) + �↓↓(t ). (7)
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The current between the QD and the reservoir can be
calculated from

Iσ (t ) = eṅσ (t ) (8)

and reads

Iσ (t ) = e
dn f σ (t )

dt
+ e

d
[∑

σ ′ �σσ ′
(t )V̇σ ′ (t )

]
dt

. (9)

The ac power associated to the driving is P(t ) = 〈∂Ĥ/∂t〉.
For the Hamiltonian (1), it can be expressed as P(t ) =∑

σ Pσ (t ), with

Pσ (t ) = nσ (t )V̇σ (t ). (10)

The instantaneous occupancies nσ (t ) play the role of conju-
gated forces to the driving potentials Vσ (t ). In fact, notice that
the latter satisfy nσ (t ) = 〈∂H/∂Vσ 〉. From Eq. (10), we see
that, in the present problem, the power is determined by the
dynamics of the charge with σ polarization. In the adiabatic
framework, Eq. (3) leads to

Pσ (t ) = n f σ (t )V̇σ (t ) +
∑
σ ′

�σσ ′
(t )V̇σ ′ (t )V̇σ (t ). (11)

B. Conservative and nonconservative geometric occupancies

Let us focus on a cyclic driving protocol, where both
driving fields depend on time with the same period τ =
�/2π , Vg(t + τ ) = Vg(t ), B(t + τ ) = B(t ), hence Vσ (t +
τ ) = Vσ (t ).

We can easily see that the first term ∝ V̇σ (t ) in Eq. (11) is a
conservative contribution, in the sense that it has a zero mean
when averaged over one period. Explicitly,

Pcons(t ) =
∑

σ

Pσ,cons(t ) =
∑

σ

n f σ (t )V̇σ (t ). (12)

To see this, we define V(t ) = (V↑(t ),V↓(t )) and n f (t ) =
(n f ↑(V), n f ↓(V)). These vectors are related to the mean value
of the frozen Hamiltonian Hf (V) = 〈Ĥf ,t 〉 through n f (t ) =
∂VHf (V). In these expressions we have introduced a notation
that highlights the fact that the time-dependence of n f σ (t ) is
because of the time-dependent parameters Vσ (t ). Then, we
can express the average over one period of the conservative
component of the power as follows:

Pcons = 1

τ

∫ τ

0
dt n f (t ) · V̇(t ) =

∮
C
∂VHf (V) · dV = 0,

(13)

where
∮
C denotes the integral over a closed contour in the

parameter space V. Therefore n f (t ) is the conservative term
of the force.

Similarly, the second term of Eq. (11) contributes to the
nonconservative component of the power. Introducing the
definition of the matrix �(t ), with matrix elements �σσ ′

(t ),
the corresponding component of the force reads

nnoncons(t ) = �(V) · V̇(t ). (14)

For a system with several parameters, this component has a
geometric character when averaged over one period,

nnoncons = 1

τ

∫ τ

0
dt�(V) · V̇(t ) =

∮
C
�(V) · dV. (15)

In the present problem, this implies a finite nonequilibrium
accumulation of charge and a finite magnetization induced
at the quantum dot, akin to the pumped charge in quantum
pumps driven by two or more parameters [36,37].

Quite generally, we can decompose the matrix �(t ) =
�s(t ) + �a(t ) into symmetric �s(t ) and antisymmetric �a(t )
parts. Consequently, the force can be split into two compo-
nents nnoncons(t ) = ns

noncons(t ) + na
noncons(t ). The latter compo-

nent is equivalent to a Lorentz force associated to a geometric
magnetic field, as discussed in Ref. [38]. Only the symmet-
ric component of the nonconservative force develops power,
which reads

Pnoncons(t ) = V̇T (t ) · �s(t ) · V̇(t ), (16)

where the superscript T stands for transposing the vector.

C. Dissipation and work exchange

We now turn to analyze the expected mechanisms in the
dynamics of the energy. In the adiabatic regime, we expect
that the evolution satisfies the second principle of thermody-
namics instantaneously, the matrix �s(t ) should be positive
definite, implying that its eigenvalues are λm(t ) � 0. The in-
stantaneously dissipated heat equals the total nonconservative
power and reads

Pnoncons(t ) =
∑

m

λm(t ) ˜̇V(t )2, (17)

where we have defined ˜̇V(t ) = UV̇(t ), being U the unitary
transformation that diagonalizes �s(t ).

In a system with several driving parameters, it is possible to
have exchange of work between the different induced forces,
in addition to dissipation of energy. In fact, the nonconserva-
tive power developed by each force can be expressed as

Pnoncons,σ (t ) =
∑
σ ′

�σ,σ ′
V̇σ (t )V̇σ ′ (t ),

= Pdiss,σ (t ) + sσ Pexch(t ), (18)

with sσ = ±. Hence, while it is satisfied
∑

σ

Pnoncons,σ (t ) =
∑

σ

Pdiss,σ (t ), (19)

there is a finite amount of power Pexch(t ), which can be
exchanged between the two forces, associated to the charges
with different spin orientations. Interestingly, this exchange
may take place instantaneously, and also have a net finite
average over a period,

Pexch = 1

τ

∫ τ

0
Pexch(t ). (20)

D. Relations between the transport coefficients

Here we discuss the relations satisfied by the coefficients
�σ,σ ′

(t ), which rule the adiabatic dynamics of the occupancy
of the QD and the energy. These are Onsager relations,
symmetry relations, and fluctuation-dissipation relations. We
analyze them separately.
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1. Onsager relations

Since the susceptibilities entering the adiabatic dynamics
are evaluated with the frozen Hamiltonian Hf ,t corresponding
to the equilibrium condition at time t , they obey microre-
versibility [47], which leads to the following Onsager relation:

�σσ ′
(V, B) = �σ ′σ (V,−B). (21)

The derivation is presented in Appendix.

2. Symmetry relations

The Hamiltonian defined by Eqs. (1) and (2) is invariant
under the transformation {B,↓,↑} → {−B,↑,↓}. This leads
to the following relations satisfied by the Onsager coefficients:

�σ,σ ′
(V, B) = �σ̄,σ̄ ′

(V,−B), (22)

where ↓̄ =↑ and vice versa. Notice that the cross suscepti-
bilities, hence, the previous identity with σ 	= σ ′ vanish in
the noninteracting limit. Combining this property with the
Onsager relation Eq. (21), we find that the crossed coefficient
satisfies

�σσ̄ (V, B) = �σ̄σ (V, B). (23)

Notice that this relation implies that the matrix �(t ) is purely
symmetric, i.e., �(t ) ≡ �s(t ).

3. Fluctuation-dissipation relations at T = 0

Fluctuation-dissipation relations are usually explained by
the energy balance [48]. In the present problem, the only dis-
sipation mechanism is the instantaneous Joule law due to the
electron flow in the lead. This is characterized by a universal
resistance R0 per spin channel. Notice that in a system with
electron-electron interactions like the one considered here,
extra dissipation mechanisms might take place. However, the
present model is known to be a Fermi liquid and such effects
like inelastic scattering are irrelevant within the low-energy
regime, dominating the adiabatic dynamics [15,28,30]. We
conclude that the instantaneous net dissipation reads

Pdiss,σ (t ) = PJoule,σ (t ) = R0[Iσ (t )]2 = R0

[
e

dnσ (t )

dt

]2

. (24)

We now turn to calculate the flux of particles per unit time
with spin σ , dnσ (t )/dt at the first order in V̇σ (t ). From Eq. (3),
we see that this is directly related to the fluctuation of the
frozen occupation, δn f σ (t ), under a small variation of the
gates taking place in a small time interval δt , δVσ (t ) = Vσ (t +
δt ) − Vσ (t ). Hence,

dn f σ (t )

dt
= lim

δt→0

∑
σ

δn f σ (t )

δVσ ′ (t )

δVσ ′ (t )

δt
. (25)

Introducing the definition of the static frozen susceptibility

χσσ ′
t (0) = δn f σ (t )

δVσ ′ (t )
, (26)

Eq. (25) can be expressed as follows:

dn f σ (t )

dt
=

∑
σ

χσσ ′
t (0)V̇σ ′ (t ). (27)

Therefore, if we keep only terms up to second order in
V̇σ (t ) in Eq. (24), we get

Pdiss,σ (t ) = PJoule,σ (t ) = R0

[
e

dn f σ (t )

dt

]2

. (28)

Using Eqs. (18) and (19) and collecting the coefficients
proportional to the different combinations of V̇σ (t )V̇σ ′ (t ), we
find that the following identities should be satisfied:

1

2h

{[
χσσ

t (0)
]2 + [

χσσ
t (0)

]2} = �σσ (t ),

1

h
[χ↑↑

t (0)χ↑↓
t (0) + χ

↓↓
t (0)χ↓↑

t (0)] = �↑↓(t ) + �↓↑(t ).

(29)

The first of these identities has been discussed in
Refs. [22–24] for a noninteracting quantum dot, in which case,
χσσ

t (0) = �σσ (t ) = 0. In the interacting case, this identity
was originally derived by Shiba on the basis of Fermi liquid
theory in Ref. [30], for a system without magnetic field.
This was later generalized in Ref. [15] for a system with
magnetic field. The second identity is identically zero in the
noninteracting case and, to the best of our knowledge, it has
not been previously discussed in the literature. It is highly
nontrivial and are a consequence of the fact that in the present
model the spin fluctuations do not induce extra mechanisms
of dissipation to the Joule law expressed by Eq. (24).

4. Generalized Korringa-Shiba relations

These relations are basically combinations of the relations
expressed by Eq. (29). In fact, substituting the fluctuation-
dissipation relations presented in Eqs. (29) into the definitions
of Eq. (6), the following relations can be proved:

�c(t ) = h

2
[(χ↓↓

t (0) + χ
↓↑
t (0))2 + (χ↑↓

t (0) + χ
↑↑
t (0))2],

(30)

�m(t ) = h

2
[(χ↓↓

t (0) − χ
↓↑
t (0))2 + (−χ

↑↓
t (0) + χ

↑↑
t (0))2],

(31)

�cm(t ) = h

2
[(χ↑↑

t (0))2 − (χ↓↓
t (0))2 + (χ↓↑

t (0) − χ
↑↓
t (0))

× (χ↓↑
t (0) + χ

↑↓
t (0))]. (32)

Notice that Eq. (30) is the Korringa-shiba (KS) law presented
in Refs. [15,30]. Here, we show that the assumption of a
dissipation mechanism in the form of the universal IJL in the
driving problem with two parameters leads to the additional
relations expressed in Eqs. (31) and (32).

IV. RESULTS

A. Verifying the KS relations

The fluctuation dissipation relations, or, equivalently, the
generalized KS relations introduced in the previous section
have a very important outcome. Namely, the dynamics of
the driven quantum dot in contact to the reservoir at T = 0
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FIG. 2. Generalized KS relations computed by NRG for
U = 0.03 and � = 0.0008. The driving protocol is V (t ) =
V0 sin(�t ), B(t ) = B0 sin(�t + π/4) + 0.0005 with V0 = 0.006,
and B0 = 0.0003. Energies are expressed in units of the bandwidth
of the reservoir: (top) Eq. (30), (middle) Eq. (31), and (bottom)
Eq. (32). Solid lines correspond to the direct calculation of the
Onsager coefficients �C and symbols to the evaluations from the
frozen occupancies.

can be fully described by the knowledge of the frozen QD
occupancy per spin n f ,σ (t ). In fact, given these occupancies,
the static susceptibilities can be evaluated from Eq. (26).
Then, the fluctuation dissipation or KS relations lead to �(t )
or �C (t ). These coefficients enable the full characterization of
the charge, spin and energy dynamics. Therefore, we start by
verifying the fulfillment of the KS relations.

In the noninteracting case with U = 0, all local proper-
ties of the QD are characterized by the instantaneous spin-
resolved local density of states

ρσ (ε,Vσ ) = 2�

(ε − Vσ (t ))2 + �2
, (33)

where � depends on the hybridization between the QD and
the reservoir, assuming for the latter a constant density of
states. The frozen occupancy, the static susceptibility and the
adiabatic Onsager coefficients can be easily calculated. The
results are [23,24,28]

n f ,σ (t ) =
∫

dε

2π
f (ε)ρσ (ε,Vσ (t )),

χσσ ′
t (0) = δσ,σ ′ρσ (μ), �σσ ′

(t ) = δσ,σ ′[ρσ (μ)]2, (34)

where f (ε) = �(μ − ε) is the Fermi-Dirac distribution func-
tion at T = 0 and μ is the chemical potential of the reservoir.
From the previous expressions, we can readily verify that the
KS relations are explicitly satisfied.

For the interacting case, we rely on numerical results
obtained by numerical renormalization group (NRG) [45,46].
Results are shown in Fig. 2, where we see an excellent
agreement between the direct calculations of the Onsager co-
efficients �c(t ), �m(t ), �cm(t ), and the calculation of these
coefficients from the evaluation of the static susceptibilities
χσσ ′

t (0) and the identities of Eqs. (30), (31), and (32).

FIG. 3. Sketch of the evolution of the occupancy of the QD. The
energy of the singly and doubly occupied states have an energy gap
δ which depends on the Coulomb interaction and on the magnetic
field.

B. Instantaneous occupancy

The dynamics of the occupancy in the present system can
be qualitatively understood in terms of a mean-field picture,
where the Coulomb interaction term is replaced by U {(n f ,↓ −
1/2)n̂↑ + (n f ,↑ − 1/2)n̂↓}. This leads to a local spin-resolved
density of states obeying Eq. (33) upon the replacement Vσ →
Ṽσ (t ) = ε0 + eV (t ) + sσμBB(t ) + U (n f ,σ̄ − 1/2), with the
self-consistent relation

nMF
f ,σ (t ) =

∫
dε

2π
f (ε)ρσ (ε, Ṽσ ). (35)

It is important to notice that this quantity effectively depends
on two parameters entering the definition of Ṽσ : Vσ and Vσ .
This is in contrast to the noninteracting case given by Eq. (34),
which depends only on Vσ .

A sketch of the evolution is indicated in Fig. 3, where the
levels corresponding to the up and down occupancies are rep-
resented in red and blue, respectively. For fixed B, assuming
a configuration where the dot is initially singly occupied as in
the left panel of the figure, there is an energy gap between the
occupied state with a given spin orientation (down spin in this
configuration) and the state with the opposite spin orientation.
Such energy gap depends, not only on the magnitude of the
Zeeman splitting (equal to 2μBB), but also on the Coulomb
energy (equal to Un f ,σ̄ , in the mean-field description). The
effect of changing the gate voltage is to move these two levels
upwards or downwards rigidly in energy, until a change in the
occupation takes place. The sketch shown in the right panel
of Fig. 3 corresponds to a protocol where Vg(t ) decreases,
lowering the energy of the levels and enabling the doubly
occupancy. Changing in time the magnetic field implies a
change in time of the Zeeman splitting.

Results for the occupancy with down spin orientation, n f ,↓
as function of the frozen parameters Vg(t ) and B(t ) are shown
in Fig. 4, where the results obtained within the mean field
description are compared with the ones calculated numeri-
cally with the NRG method of Refs. [45,46], considering a
reservoir with a constant density of states and a bandwidth
D Notice that the occupancy with the opposite spin orienta-
tion is given by n f ,↑(Vg, B) = n f ,↓(Vg,−B). We see that the
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FIG. 4. Occupancy map of nf ,↓ in the mean field approximation
for U = 0.01 and � = 0.0008. The green ellipse indicates the driv-
ing protocol V (t ) = V0 sin(�t ), B(t ) = B0 sin(�t + π/4) + 0.0005
with V0 = 0.02 and B0 = 0.001. Left and right panels correspond to
results computed with mean field and NRG, respectively. Energies
are expressed in units of the bandwidth D of the reservoir.

mean-field approximation is in very good qualitative agree-
ment with the exact numerical calculation, which means that
the exact results may be interpreted in terms of simple pictures
of two moving levels as the ones sketched in Fig. 3.

The up and down frozen occupancies along the green
curve in the previous figure are presented in Fig. 5. Here, we
also notice the good agreement between the NRG and mean-
field description. This is because for the parameters chosen,
the amplitude of the Zeeman splitting 2μB is larger than
the Kondo energy kBTK = √

w2
cπU/2D2 exp (−π2w2

cU/8D)
[45,46]. Under these conditions, the Kondo effect is not
robust, and the physics is dominated by Coulomb blockade
in combination with the magnetic field, as described by the
sketch of Fig. 3. This regime can be properly described by a
simple mean-field approximation.
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FIG. 5. Frozen occupation along the curve of Fig. 4. Solid line
(blue: nf ↓(t ) computed by NRG. Dashed line (black) nf ↓(t ) com-
puted in mean field approximation for parameters along the green
curve of Fig. 4. Circles (red) nf ↑(t ) computed by NRG.
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FIG. 6. Computed powers with NRG. U = 0.03 and � =
0.0008, under the driving protocol Vg(t ) = V0 sin(�t ), B(t ) =
B0 sin(�t + π/4) + 0.0005) with V0 = 0.006 and B0 = 0.0003. En-
ergies are expressed in units of the bandwidth of the reservoir.
(Top) Plots in solid red, dashed blue, green circles, and black stars
correspond, respectively, to P↑(t ), P↓(t ), PJoule,↑(t ), and PJoule,↓(t ).
(Middle) Plots in solid line red and dashed blue correspond to
P↑(t ) − PJoule,↑(t ) and P↓(t ) − PJoule,↓(t ), respectively. (Bottom) The
total power P↑(t ) + P↓(t ) is plotted in solid black and coincides
with the total total Joule dissipation. PJoule,↑(t ) + PJoule,↓(t ), which
is plotted in red circles.

We can appreciate an interesting mechanism, which takes
place just at the moment where the occupancy change takes
place (see arrows in the figure). This consists in a counter
fluctuation in one of the occupancies when the other one
changes from a filled to an empty configuration. This effect is
a consequence of the shift in energy Un f ,σ̄ (t ) experienced by
the electrons with spin σ , as n f ,σ̄ (t ) changes, which induces
a concomitant change in n f ,σ (t ). A similar effect was found
for driving only in Vg(t ) and constant magnetic field (see
Ref. [28]).

C. Instantaneous Joule law and work exchange

The fact that the KS relations are satisfied implies that the
rate at which the total energy is dissipated follows an IJL with
the universal resistance R0. This is, precisely, expressed in
Eq. (24).

This does not necessarily mean that the total power de-
veloped in each spin channel follows the Joule law (24).
However, it can be directly verified from Eqs. (33) and (34)
that each spin component of the nonconservative power is
purely dissipative, and follows the instantaneous Joule law per
spin channel in the noninteracting limit (U = 0):

Pnoncons,σ (t ) = Pdiss,σ (t ) = PJoule,σ (t ), U = 0. (36)

For the interacting system (U 	= 0), the fulfillment of the
KS relations discussed previously, indicate that the dissipative
component of the nonconservative power per spin channel
follows a IJL, as expressed in Eq. (24). However, in the
interacting case, the nonconservative components may contain
an extra term, denoted by Pexch(t ) in Eq. (18). Figure 6 shows
the behavior of the spin-resolved nonconservative power
Pnoncons,σ (t ) in the interacting system with two-parameter
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FIG. 7. Minimal eigenvalue (in log scale) of the matrix �(V) for
U = 0.01 and � = 0.0008. Energies are expressed in units of the
bandwidth of the reservoir.

driving. In the upper panel of the figure, this power is shown,
along with the dissipative component PJoule,σ (t ) for the two
spin orientations. We can see that, although Pnoncons,σ (t )
differs from PJoule,σ (t ), the corresponding difference is,
precisely, the exchanged power between the two spin
orientations Pexch(t ), which is shown in the middle panel. The
lower panel of the figure displays the total nonconservative
power, where we see that it is fully dissipative and coincides
with

∑
σ PJoule,σ (t ). Interestingly, we can see in Fig. 6 that

Pexch(t ) has a nonvanishing mean value when integrated over
a period, as indicated in Eq. (20).

We now turn to analyze the structure of the matrix �(V)
for the interacting QD. As discussed in relation to Eq. (17),
all the eigenvalues of this matrix are positive in the dissipative
system and we can directly verify this property. Figure 7
shows the minimum eigenvalue �(V).

It is interesting to notice that the largest values of the
minimal eigenvalue correspond to parameters favoring the
charge fluctuation of the QD. Notice that the highest values
are concentrated on values of Vg(t ) for which the two many-
body levels of the quantum dot, which separated in the energy
δ indicated in Fig. 3, become aligned with the Fermi energy
of the reservoir. For those parameters, the change in the
occupation for small changes in Vσ (t ), thus the charge current
Iσ (t ) achieves high values. Hence, the dissipation following
the Joule law is also large.

D. Nonequilibrium polarized charge population

In contrast to the case where the QD is driven by a single
parameter, it is possible in the present case to induce a net
nonequilibrium polarized charge in the quantum dot. Akin to
the pumped charge between two reservoirs in quantum dots
driven by two parameters, this quantity has a geometric char-
acter, as expressed by Eq. (15). Importantly, for the dynamics
to depend actually on two parameters, it is necessary to have a
many-body interaction in the quantum dot. In fact, notice that
in the noninteracting case, Eqs. (33) and (34) make it explicit
that the dynamics of n f ,σ (t ) depends only on the single
parameter Vσ (t ) and it is completely independent from Vσ (t ).
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FIG. 8. Mean charge accumulation for each spin orientation
for U = 0.03 and � = 0.0008, computed with NRG, as a func-
tion of the phase difference φ of the driving protocol Vg(t ) =
V0 sin(�t ), B(t ) = B0 sin(�t + φ) + 0.0005) for V0 = 0.006 and
B0 = 0.0003. Dashed line (blue) σ =↓. Solid line (red) σ =↑.

Instead, in the interacting case, even at the simple mean-field
level it can be seen that the evolution of the occupation
n f ,σ (t ) depends on the two parameters Vσ (t ) and Vσ (t ) [see
Eq. (35)]. Results for the net charge accumulation with each
spin orientation, calculated with NRG, are shown in Fig. 8.
It is important to notice, that such a nonequilibrium charge
accumulation takes place against the condition imposed by
the chemical potential of the reservoir. As stressed before, this
quantity has a geometric nature, similar to the pumped charge
in two-parameter two-terminal driven systems [36,37]. This
also bears resemblance to the geometric magnetism discussed
in Ref. [38] and it is interesting at this point to discuss
similarities and differences between that work and the present
contribution. Both works have a common point of view in the
general approach, in the sense that in both cases, the adiabatic
dynamics is addressed as a linear-response treatment in the
velocities V̇. In Ref. [38], the name “geometric magnetism” is
used to characterize the antisymmetric component of Onsager
matrix �. This is because the resulting induced force in that
case has the formal structure of a Lorentz force, like the one
experienced by a charged particle in a magnetic field. In such
adiabatic dynamics the field is not a real, but a fictitious one.
In the system we analyze here, the adiabatic dynamics has
a purely symmetric �. Since the induced force is associated
to a real spin polarization in the quantum dot, we have real
magnetism in the present problem. In both cases, the induced
net forces can be expressed in terms of a geometric quantity,
like the contour integral of Eq. (15). The latter is conceptually
similar to the pumped charge considered in Refs. [36,37].
Importantly, the dynamics ruled by an antisymmetric Onsager
matrix is nondissipative, while the one ruled by a symmetric
� is dissipative.

V. SUMMARY AND CONCLUSIONS

We have investigated the adiabatic dynamics of a QD with
many-body interactions connected to a single reservoir at T =
0 and under the effect of two-parameter driving with a gate

115424-7



TERRÉN ALONSO, ROMERO, AND ARRACHEA PHYSICAL REVIEW B 99, 115424 (2019)

voltage and a magnetic field. This induces time-dependent
flow of charge, spin and energy through the contact between
the QD and the reservoir. Under these conditions, the net dy-
namics is fully dissipative. [49] We have verified that energy
is instantaneously dissipated in the form of a Joule law with a
universal resistance R0. This was previously discussed in the
framework of noninteracting, [22–24], as well as interacting
systems under single-parameter driving [28].

Here, we have derived fluctuation-dissipation relations for
the adiabatic responses in the framework of Ref. [44], which
constitute generalizations of the so-called Korringa-Shiba law,
previously derived for Fermi liquids [30,38]. We showed that
in the presence of many-body interactions, other interesting
effects take place as a consequence of the two-parameter
driving. These are the net work exchange between forces as
well as the nonequilibrium polarized charge population with
geometric nature, akin to quantum pumps [36,37]. These fea-
tures are amenable to be explored experimentally in quantum
capacitors like those studied in Refs. [3–6]. In fact, these
systems are constructed in the quantum Hall regime, under
the effect of a strong magnetic field. By introducing a time-
dependent component in this magnetic field, along with the
variation of the gate voltage would lead to a scenario like
the one studied in the present work. At finite T , the effects
we have studied could be relevant in the implementation of
driving protocols for thermal machines, [50–56] as well as in
the discussion of shortcuts to adiabaticity [57–59].

ACKNOWLEDGMENTS

We acknowledge support from CONICET, Argentina and
the Alexander von Humboldt Foundation, Germany (LA). We

are sponsored by PIP-RD 20141216-4905 of CONICET and
PICT-2014-2049 (LA and PTA).

APPENDIX: ADIABATIC DYNAMICS

At first order in the driving parameters, the expectation
value of an operator Â(t ) is given by (see Eq. (5) of Ref. [44]):

〈Â(t )〉 = 〈Â〉t − i
∫ ∞

−∞
dt ′�(t − t ′)〈[Â(t ), F̂(t ′)]〉t V̇(t ),

(A1)

where 〈A〉t means the expectation value of Â computed with
the equilibrium density matrix of the frozen Hamiltonian
Ĥ (t ), and F̂ = −∂Ĥ/∂V.

Applying this theory to the n̂σ (t ) operators with the dot
Hamiltonian Ĥdot = ∑

σ (ε0 + Vσ (t ))n̂σ + U (n̂↑ − 1/2)(n̂↓ −
1/2) (with {s↑, s↓ = 1,−1}), we define the values

�σσ ′
(t ) = −i

∫ ∞

−∞
dt ′�(t − t ′)〈[n̂σ (t ), n̂σ ′ (t ′)]〉

= −i
∫ ∞

−∞
dττ�(τ )〈[n̂σ (τ ), n̂σ ′ (0)]〉. (A2)

And so we have that

nσ (t ) = n f σ (t ) + e
∑
σ ′

�σ ′σ (t )Vσ ′ (t ) (A3)

with the notation n f σ (t ) = 〈n̂σ 〉t .
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