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Extreme reductions of entropy in an electronic double dot
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We experimentally study negative fluctuations of stochastic entropy production in an electronic double dot
operating in nonequilibrium steady-state conditions. We record millions of random electron tunneling events at
different bias points, thus collecting extensive statistics. We show that for all bias voltages, the experimental
average values of the minima of stochastic entropy production lie above −kB, where kB is the Boltzmann
constant, in agreement with recent theoretical predictions for nonequilibrium steady states. Furthermore, we
also demonstrate that the experimental cumulative distribution of the entropy production minima is bounded, at
all times and for all bias voltages, by a universal expression predicted by the theory. We also extend our theory
by deriving a general bound for the average value of the maximum heat absorbed by a mesoscopic system from
the environment and compare this result with experimental data. Finally, we show by numerical simulations that
these results are not necessarily valid under nonstationary conditions.
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I. INTRODUCTION

According to the second law of thermodynamics, the en-
tropy production, given by the entropy change of a macro-
scopic system plus the entropy change of its environment,
can only grow in time. However, mesoscopic systems can
sometimes move against the tide due to fluctuations. As a
result, the entropy production in small systems, such as a
single-electron box, fluctuates and, while growing on average,
can decrease during short time intervals when an electron
tunnels in the direction opposite to the electric force [1–6].
The ratio of the probabilities for the entropy production to
take positive or negative values is determined by fluctuation
relations derived in theory and successfully demonstrated in
a plethora of experimental setups of different nature (e.g.,
DNA molecules, colloidal systems, RC circuits, and single-
electron boxes [7–14]). Recently, it was shown that applying
an appropriate periodic drive to a mesoscopic system in
combination with a feedback control, such as in mesoscopic
Maxwell-demon experiments [15–20], one can even achieve
the reduction in the average value of its entropy of the order
of kB per one cycle, where kB is Boltzmann’s constant.

In this paper, we experimentally study fluctuation-induced
negative changes of the entropy production in a hybrid nor-
mal metal–superconductor double dot in the strong Coulomb
blockade regime (see Fig. 1). We demonstrate that the
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average magnitude of such changes lies above the universal
negative lower bound −kB in agreement with the theoretical
prediction [21]. This remarkable result applies generally to
any system in nonequilibrium steady state. Furthermore, we
derive and test in the experiment an upper bound on the
average amount of energy, which the system extracts from the
environment during a negative entropy production fluctuation.
Interestingly, this bound is not universal and may significantly
exceed kBT , where T is the temperature. We also perform
more detailed comparisons between the theory and the exper-
iment on the level of statistical distributions of the minima of
the entropy production.

Theoretical results relevant for our experiment are based
on extreme-value statistics [23]. Understanding extreme-value
statistics of stochastic processes has attracted considerable
attention in several disciplines of science such as finance,
climate physics, and DNA replication [23–26]. Key concepts
are the maximum and minimum of a stochastic process X (t )
over a finite-time interval [0, t], which are given by Xmax(t ) ≡
maxt ′∈[0,t] X (t ′) and Xmin(t ) ≡ mint ′∈[0,t] X (t ′), respectively.
Note that Xmax(t ) and Xmin(t ) are, respectively, increasing and
decreasing stochastic processes. Universal extreme-value dis-
tributions in stationary stochastic processes have been found
in the context of random walks [27–33] and stochastic thermo-
dynamics [21,34,35]. Recent theory has investigated generic
bounds for the probability that the minimum of entropy pro-
duction falls below a certain value. This result was related
to statistics of the maximal number of steps that a hopping
process can move against a thermodynamic bias [21,36]. An
important experimental test bench for this physics are single-
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FIG. 1. Experimental realization of a double dot. (a) Scanning
electron micrograph of the sample with false color identifying its
different components. The device consists of two leads, left (purple)
and right (turquoise), two islands, left (green) and right (orange), and
two single-electron transistor (SET) detectors, left (blue) and right
(red). (b) Sketch of the circuit elements of the sample (N, normal
metal; S, superconductor; I, insulator) with colors corresponding to
the ones in (a). An external dc voltage Vb controls the net current
through the double dot. (c) Zoomed view of the yellow rectangular
region in (a). Electrons (yellow circles) can tunnel between the leads
and the islands in the directions indicated by the arrows. Details
on fabrication techniques and measurement setup can be found in
Appendices A and B, respectively.

electron devices in which stochastic transfer of electrons in
the presence of an electric bias can be measured [8,9,37,38].
However, the statistics of entropy-production extrema has not
been investigated in device physics and their implications to
single-electron transport remain yet unknown.

We measure nonequilibrium charge-state fluctuations in a
hybrid normal metal–superconductor double dot in the strong
Coulomb blockade regime subject to a time-independent bias
voltage (Fig. 1). The device is highly resistive, and electron
tunneling rates are therefore low (∼100 Hz) compared with
the sampling rate fs = 25 kHz. Two single-electron transis-
tor (SET) detectors, each one coupled to each of the two
dots, ensure a sufficient signal-to-noise ratio for a reliable
detection of every single-electron tunneling event, as has been
demonstrated before [9,37,39]. Counting charges in single-
island devices does not provide information on the direction
of electron transport, a key feature to measure entropy pro-
duction. Our double dot provides more information, enabling
the measurement of the direction of single-electron currents
[39,40] and thus of time traces of stochastic entropy pro-
duction S(t ), as we show below [41,42]. Using these data
we study the extreme-value statistics of S(t ) and relate it
to recent theoretical predictions [21,34,35]. We furthermore
discuss how the extreme-value statistics of S(t ) can be related
to the extreme-value statistics of heat exchanged by the device
with its environment under isothermal conditions.

This paper is organized as follows. In Sec. II we describe
how stochastic entropy production can be evaluated from
steady-state charge fluctuations of a double dot and report
on its experimental measurement. In Sec. III we discuss
experimental results on extreme-value statistics of stochastic
entropy production and compare our results with theoretical

predictions. In Sec. IV we extend our theory to describe
extreme-value statistics of heat and environmental entropy
changes and test our theory with experimental data. In Sec. V
we provide insights on how our theory can be extended to
nonequilibrium systems that are driven out of the steady-state
regime and relate this theory to our experimental results, and
Sec. VI contains the discussion. Finally, in the Appendices we
discuss the fabrication technique (Appendix A), measurement
setup (Appendix B), physics of double dot and detector back-
action (Appendix C), data analysis (Appendix D), and general
bounds for heat extrema (Appendix E).

II. EXPERIMENTAL MEASUREMENT OF STOCHASTIC
ENTROPY PRODUCTION

To quantify extreme statistics at high resolution, we use
a custom-built electronic double dot. Our experimental setup
consists of two metallic islands tunnel coupled to two leads
and to each other, and capacitively coupled to two charge
detectors [Fig. 1(a)]. An external dc bias voltage Vb is ap-
plied between the two leads and brings the system into a
nonequilibrium steady state [Fig. 1(b)]. The system exhibits
single-electron currents where electrons tunnel between leads
and islands [Fig. 1(c)]. In order to infer these fluctuating
currents from the experimental data, we describe the double
dot as a four-state system n = (nL, nR) with nL,R ∈ {0, 1} as
the left and right Coulomb blockaded islands can be occupied
by either zero or one extra electron (see Appendix B). The
charge state nL,R of each island is detected by the SET
coupled to the corresponding island [Fig. 2(a)] and thus each
single experimental realization is characterized by stochastic
trajectories of duration t of the charge state {n(t ′)}t

t ′=0. From
these Markovian trajectories (see Appendix D for details),
we quantify the mesoscopic time-integrated currents Jm,m′ (t )
[Fig. 2(b)]. These currents are defined as the net number of
transitions between states m and m′ during a time interval
[0, t] in the trajectory {n(t ′)}t

t ′=0 [43,44].
We analyze the nonequilibrium charge-transport fluctua-

tions in the double dot using the framework of stochastic ther-
modynamics. Specifically, we measure the stochastic entropy
production S(t ) associated with a given charge-state trajectory
of the double dot {n(t ′)}t

t ′=0. For stationary Markov jump
processes [45], S(t ) is defined as a linear combination of the
currents [41,42]

S(t ) = �Ssys(t ) + Se(t ), (1)

with the system entropy change [13,41]

�Ssys(t ) =
∑
m<m′

�Ssys
m,m′ Jm,m′ (t ), (2)

and the entropy flow to the environment [46]

Se(t ) =
∑
m<m′

Se
m,m′ Jm,m′ (t ). (3)

The parameters �Ssys
m,m′ and Se

m,m′ in Eqs. (1)–(3) are thermo-
dynamic forces

�Ssys
m,m′ = log

(
Pst

m

Pst
m′

)
, Se

m,m′ = log

(
�m,m′

�m′,m

)
(4)
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FIG. 2. Experimental measurements on a double dot. (a) Top:
time trace of left (Idet,L , blue) and right (Idet,R, red) detector currents
for Vb = 90 μV. Bottom: corresponding time trace for the charge
state (nL, nR) of the double dot, where nL (nR) = 0 or 1 implies the
absence or presence of one extra electron in the left (right) island,
respectively (see Appendix D for details). (b) Probability density of
the normalized detector currents (iL, iR) [22] obtained from a 15-s
time trace for Vb = 90 μV, showing four densely populated charge
states (nL, nR). The black arrows represent the possible transitions
between the states with the numbers indicating the number of jumps
per second averaged over 7.5 h.

defined as the change of mesoscopic system entropy and
mesoscopic entropy flow to the environment during the transi-
tion m → m′. Here, we have defined the stationary probability
to be in state m as Pst

m = 〈tm〉/t , where tm is the occupation
time in state m and t is the total duration of the trace. We
also define the transition rates from states m to m′ as �m,m′ =
〈Jm,m′ (t )〉/(Pst

m t ), where 〈 · 〉 denotes here an average over
many realizations. Here and further we use kB = 1 and denote
the natural logarithm by log.

The definition (1) implies that at thermodynamic equilib-
rium S(t ) = 0 whereas in a nonequilibrium steady state both
S(t ) and Se(t ) increase with time on average, 〈S(t )〉 > 0 and
〈Se(t )〉 > 0, in agreement with the second law of thermody-
namics. If the environment consists of several thermal reser-
voirs and local detailed balance holds, the mesoscopic en-
tropy flow to these reservoirs Se(t ) = −∑

k Qk (t )/Tk , where
−Qk (t ) is the heat dissipated to a thermal reservoir at temper-
ature Tk (see Appendix C). Fluctuations of entropy production
have also universal features. The most studied examples are
fluctuation theorems, which imply that negative values of S(t )
occur exponentially less often than events with positive S(t ):
the probability distribution of stochastic entropy production
at a given time t is asymmetric around zero, P(S(t ) = −s) =
P(S(t ) = s) exp(−s) [4]. As a consequence, the cumulative

distribution of the stochastic entropy production obeys the
inequality:

Pr(S(t ) � −s) � 1 − exp(−s), s � 0 (5)

where Pr(·) denotes the probability of an event [4]. For
Markovian systems, events of entropy reduction are associ-
ated with transitions m′ → m against the direction of ther-
modynamic forces [43,44] for which Jm,m′ (t ) decreases tran-
siently, e.g., when an electron travels in the direction opposite
to the electric force.

In our experiment, we first measure Pst
m and �m,m′ from

the counting statistics of a large ensemble of charge-state
traces. Note that the empirical estimates of Pst

m and �m,m′ are
affected by different sources of noise. First, they may vary
with time due to finite-time statistics. Another effect comes
from feedback control which ensures only approximatively
nonequilibrium stationary conditions as, for some experi-
ments, we observe residual drift effects. These two effects
may affect the counting statistics and therefore the estimation
of both the stationary probabilities and the transition rates [see
Fig. 3(a)]. We use time-averaged Pst

m and �m,m′ [Fig. 3(b)]
and fluctuating charge-state trajectories to quantify both S(t )
and Se(t ) using Eqs. (1)–(4). We remark that S(t ) is a func-
tional that associates to each charge-state trajectory {n(t ′)}t

t ′=0
another stochastic trajectory {S(t ′)}t

t ′=0, with the estimated
steady-state values of Pst

m and �m,m′ being parameters of the
functional.

We then plot traces {S(t ′)}t
t ′=0 of stochastic entropy produc-

tion from the experimental data of the double dot for different
values of the bias voltage Vb ranging from −50 to 90 μV
[Fig. 4(a)]. Trajectories {S(t ′)}t

t ′=0 exhibit transiently negative
values but increase with time on average, as expected from
the second law. The average rate of entropy production is
linearly proportional to the Joule dissipated power [47,48] in
the double dot

〈I〉Vb = Teff〈Ṡ〉 (6)

[see inset in Fig. 4(a)]. In Eq. (6) the average elec-
tric current between the two islands is defined as 〈I〉 =
e [Pst

(0,1)�(0,1),(1,0) − Pst
(1,0)�(1,0),(0,1)] with e the elementary

charge. The parameter Teff 	 1 K is an effective temperature
that characterizes the nonequilibrium nature of the environ-
ment. It is one order of magnitude larger than the base temper-
ature (T = 50 mK) and the electronic temperature of the su-
perconducting and normal-metal components Tel ≈ 170 mK
(see Appendix C). The main contribution to the difference
between Teff and Tel is given by back-action of the detectors,
strongly coupled to the sample and operated away from equi-
librium (see Appendix C). Note that in earlier experiments
where the detector back-action was minimized, temperatures
Teff ∼ Tel < 150 mK have been reported [8,18] with the same
type of detectors having weaker dot-detector coupling.

III. EXTREME VALUES OF STOCHASTIC ENTROPY
PRODUCTION

From the experimental traces of stochastic entropy pro-
duction, we measure the minimum value of stochastic en-
tropy production over a finite time t , Smin(t ) = mint ′∈[0,t] S(t ′),
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(a) (b)

FIG. 3. Fluctuations in transition rates over time. The transition rates �(1,0), (0,1) (solid lines) and �(0,1), (1,0) (dotted lines) as a function of
file numbers for different bias voltages [see legend in (a)]. Each file is a 15-s time evolution of system charge state. The transition rates are
evaluated using Eq. (D1) (as described in Sec. II and Appendix D) and the variables Nn→n′ , Pst (n) computed for the individual files with time
duration τ = 15 s. The solid line in (b) is the average transition rate (shown in Table I) used for computing the entropy production using
Eqs. (1)–(4).

(a)

(b)

FIG. 4. Experimental measurement of stochastic entropy produc-
tion. (a) Sample traces of stochastic entropy production as a function
of time, for different values of the bias voltage (see legend). The
straight red line is the average Joule heating for 90 μV normalized
by Teff . Inset: steady-state average Joule dissipation rate 〈I〉Vb as a
function of the steady-state entropy-production rate 〈Ṡ〉 for different
bias voltages. The dashed line is a linear fit with slope Teff = (1.01 ±
0.16) K, y intercept y0 = (0.14 ± 0.40) K/s, and R2 = 0.990 [see
Eq. (6)]. (b) Zoomed view of the shaded region in (a) with finite-time
minima Smin(t ) of each trace represented with symbols.

which is a negative random variable Smin(t ) � 0, since S(0) =
0 [Fig. 4(b)]. Next, we collect statistics of such negative
extreme values over many traces of fixed duration t , and plot
the cumulative distribution function of Smin(t ) for different
bias voltages, ranging from −50 to 90 μV. Remarkably, the
experimental cumulative distributions of the finite-time min-
ima of stochastic entropy production [Figs. 5(a)–5(e)], can be
bounded, for all the experimental conditions by a universal
exponential distribution

Pr(Smin(t ) � −s) � 1 − exp(−s), s � 0 (7)

for all values of t , in agreement with recent theory for
nonequilibrium steady states [21,34]. Thus, the tail of the
distribution of entropy-production minima is suppressed,
stronger than exponentially, in the thermodynamically forbid-
den region Smin(t ) < 0. Moreover, the experimental average
minimum of stochastic entropy production [Fig. 6(a)] obeys
the so-called infimum law [21]

〈Smin(t )〉 � −1, (8)

as follows from Eq. (7). Note that, for Vb = 25 μV, the em-
pirical long-time average minimum 〈Smin(∞)〉 	 (−1.01 ±
0.02) which is in agreement with Eq. (8). For this case, the
bound is tight because entropy-production jumps given by
Eq. (4) are �1 (see Appendix C) and the traces of S(t )
can be approximated by those of a continuous stochastic
process, for which 〈Smin(∞)〉 = −1 [21,35]. Interestingly, the
finite-time average minimum can be lower bounded, for all
bias voltages, by a master curve when rescaling time by the
entropy production rate τ = t〈Ṡ〉 [Fig. 6(a) inset]. Such master
curve is given by the average minimum of the position of a
one-dimensional (1D) drift-diffusion process with equal drift
and diffusion coefficients v = D = 1 [21,49].
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(a) (b) (c)

(d) (e)

FIG. 5. Experimental cumulative distribution of the finite-time entropy production minima in the double dot with bias voltage Vb =
−50 μV (a), −25 μV (b), 25 μV (c), 50 μV (d), and 90 μV (e) for different values of the observation time (see legend). A horizontal line
is set to one to guide the eye and corresponds to the cumulative distribution at t = 0. The black curve is the theoretical bound given by the
right-hand side in Eq. (7).

IV. EXTREME VALUES OF ENVIRONMENTAL ENTROPY
CHANGES AND HEAT

We now demonstrate that Eq. (8) implies also a bound for
the mean of the minimum mesoscopic entropy flow to the
environment, and test the implications of this theoretical result
with experimental data. First, from Eqs. (1) and (8), we derive
in Appendix E the following bound for the average minimum
of the entropy flow Se

min(t ) = mint ′∈[0,t] Se(t ′):

〈
Se

min(t )
〉
� −1 −

∑
n

Pst
n log

(
Pst

n

/
Pst

min

)
. (9)

Here, we have defined Pst
min = minn′ Pst

n′ . Since Pst
min � Pst

n for
all states n, the second term in Eq. (9) is negative and,
therefore, the average of the minimum value of Se(t ) can be
smaller than −1. Our experimental results are in agreement
with the bound (9), for all tested values of the bias voltage Vb

[see Fig. 6(b)]. Equation (9) implies that the average minimum
of the entropy flow can be below −1 for steady states with
heterogeneous probability distributions, as is the case for Vb =
±25 μV and Vb = 90 μV.

From Eq. (9) and using Se(t ) = −Q(t )/T , we predict that
the maximum value of the heat that an isothermal mesoscopic
system can absorb from its environment in a time interval
[0, t] cannot exceed on average

〈Qmax(t )〉 � T

[
1 +

∑
n

Pst
n log

(
Pst

n

/
Pst

min

)]
. (10)

Interestingly, the bound (10) holds for all mesoscopic systems
in a nonequilibrium steady state, regardless of the system size
and complexity. This fundamental limit, of the order of T , is
comparable to average work extracted by mesoscopic infor-
mation engine (e.g., Szilard) in a single cycle [13,15,18,19].
For systems in contact with nonequilibrium environments
where local detailed balance is approximatively satisfied at an
effective temperature, Se(t ) 	 −Q(t )/Teff , one can estimate
the average maximum heat replacing T by Teff in Eq. (10).

V. STATISTICS OF EXTREME ENTROPY REDUCTIONS
OUT OF STEADY STATE

In our experiment, the transition rates between different
charge states fluctuate over time as a result of the shot noise
in the detectors that are strongly coupled to the double dot
(Fig. 3). The results shown in Figs. 5 and 6 were obtained
using time-averaged values of the rates in Eqs. (1)–(4). The
agreement between the theoretical predictions and the exper-
imental results thus implies that the experiment realizes in
very good approximation a nonequilibrium steady state with
rates given by their time-average rates obtained from long
charge-state trajectories. If the nonequilibrium conditions are
far from stationary, extreme statistics of stochastic entropy
production may not obey the bound (8) as we show below.

First, we observe that the condition (7) follows from the
fact that for a Markovian and stationary process n(t ) the expo-
nential exp[−S(t )] is a martingale process. For nonstationary
processes exp[−S(t )] is no longer a martingale process, and
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(a)

(b)

FIG. 6. Finite-time average minimum of stochastic entropy pro-
duction 〈Smin(t )〉 (a) and entropy outflow 〈Se

min(t )〉 (b) in the double
dot as a function of time, for different values of the bias voltage
(shown in different colors). The gray area indicates the events where
entropy extrema are below −1 and the dashed lines in (b) are given
by the right-hand side of Eq. (9). The inset in (a) shows the value
of 〈Smin(τ )〉 as a function of τ = t〈Ṡ〉, where the black curve is the
average entropy-production minimum for a driven colloidal particle
in a ring with equal drift and diffusion coefficients v = D = 1, given
by −erf(

√
τ/2) + (τ/2)erfc(

√
τ/2) − √

τ/π exp(−τ/4).

therefore (7) does not hold in general. Next, by definition
Smin(t ) � S(t ), and hence

Pr(S(t ) � −s) � Pr(Smin(t ) � −s). (11)

Therefore, in a steady state the general bound for the entropy
distribution Pr(S(t ) = s) (5) follows from the condition (7)
for the distribution of the entropy infimum Pr(Smin(t ) = s),
but not vice versa.

To analyze the validity of the infimum law (8) in non-
stationary conditions, we perform numerical simulations of
a double dot with all the transition rates equal to those
experimentally measured for Vb = 25 μV except the rate
�(0,1),(1,0)(t ) that is changed over time. For simplicity, we
choose the time-dependent protocol �(0,1),(1,0)(t ) = �0[1 +
γ θ (N (t ))], with �0 given by the time-averaged value of the
rate �(0,1),(1,0) measured in the experiment, γ � 1 a factor that
controls the amplitude of the driving, and θ (N (t )) given by
the parity (±1) of the total number of jumps N (t ) that occur
between any two states up to time t . Therefore, we switch
after each jump the value of the rate (0, 1) → (1, 0) between
the values �0(1 ± γ ) and �0(1 ∓ γ ). We then calculate S(t )

FIG. 7. Finite-time average minimum of stochastic entropy
production 〈Smin(t )〉 as a function of time (symbols) obtained from
numerical simulations of a double dot driven out of equilibrium
and with time-dependent rate �(0,1),(1,0)(t ) = �0[1 + γ θ (N (t ))].
Here, �0 = 27.1 Hz, N (t ) is the total number of jumps between
any two states up to time t and θ (N ) denotes the parity of N ,
i.e., θ (N ) = 1 [θ (N ) = −1] for N even (odd). The parameter
γ > 0 is fixed in the simulations and controls the amplitude of the
variation of the time-dependent rate (see legend). The values of the
time-independent rates (in Hz) are �(0,0),(0,1) = 101.8, �(0,1),(0,0) =
2, �(0,0),(1,1) = 1.6, �(1,1),(0,0) = 74.1, �(0,0),(1,0) = 29.3, �(1,0),(0,0)

= 31, �(0,1),(1,1) = 22.5, �(1,1),(0,1) = 44, �(1,0),(1,1) = 73.9,

�(1,1),(1,0) = 101.4, �(0,1),(1,0) = 28 and the total number of
simulations is 5 × 104 for all cases.

associated to each trajectory of the system using in Eqs. (1)–
(4) the actual stationary distribution of the system and the
values of the rates, using the time-averaged value �0 =
〈�(0,1),(1,0)(t )〉 to calculate the entropy production associ-
ated with the jumps (0, 1) → (1, 0) and (1, 0) → (0, 1) [see
Eq. (4)]. Figure 7 shows that, when the amplitude of the driv-
ing increases (γ � 0.3), this procedure can yield values of the
average minimum of stochastic entropy production below −1.
This result suggests that one can use measurements of extreme
reductions of stochastic entropy production (evaluated using
time-averaged rates) to assess the quality of a nonequilibrium
steady state, i.e., to quantify whether the underlying dynamics
is stationary in good approximation.

VI. DISCUSSION

We now discuss how the extreme statistics of entropy
production can be used to characterize electronic devices.
Consider, for example, a single-photon detector with a
photocurrent flowing in the direction opposite to the bias.
An absorbed photon would generate a negative current pulse
I (t ) < 0 in it. The same current pulse may be caused by
current fluctuations, which would result in a dark count.
The corresponding entropy production is negative, −S0 =∫ ∞

0 dt ′I (t ′)Vb/Tel = −q0Vb/Tel, where q0 is the absolute value
of the total transferred charge. The dark count occurs if the
entropy production minimum crosses the value −S0 during the
pulse. Hence, according to Eq. (7), the dark count probability
is limited by Pr(Smin(t ) � −S0) � exp(−q0Vb/Tel ). This
bound is restrictive for extreme fluctuations such that
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exp(−q0Vb/Tel ) � 1. This result complements the usual anal-
ysis of detector sensitivity that only accounts for weak (Gaus-
sian) current fluctuations and ignores extreme-value statistics.

Our experiment reveals that the probability for extreme
reductions of stochastic entropy production in an electronic
double dot is bounded in terms of an exponential distribution
with mean equal to minus the Boltzmann constant, for all
observed bias voltages, as predicted by recent theory. Interest-
ingly, the bound (7) for extreme entropy reductions becomes
tight in the linear response regime. Our results demonstrate
that, although the transition rates fluctuate in time, the experi-
mental setup realizes to very good approximation a Markovian
nonequilibrium stationary state.

Furthermore, we have shown with theory and experiment
that the average extreme reduction of the entropy flow from
the environment to a mesoscopic system is bounded in terms
of a system-independent quantity (9) that depends on the
heterogeneity in the stationary distribution. It would be in-
teresting to explore the relevance of extreme heat statistics
in periodically driven systems with feedback control such as
single-electron information engines working close to the Lan-
dauer limit [50]. One could also extend this theory to quan-
tum coherent systems, like quantum heat engines, providing
bounds for the extreme heat absorption and work extraction.1
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APPENDIX A: SAMPLE FABRICATION

The experimental sample (see Fig. 8) consists of a double-
dot structure [left normal metal (N) island and right super-
conducting (S) island] consisting of three NIS junctions and
of two single-electron transistors (SETs) used as detectors,
fabricated following the Fulton-Dolan method [51]. The fabri-
cation process described below consists of two electron beam
lithography (EBL) steps, each followed by deposition of thin
metal films by shadow evaporation [52].

1For purely quantum systems, there is a whole field of quantum
thermodynamics considering, in particular, quantum effects on the
efficiency of heat engines [1,62–72].

The first lithography step is needed for ground plane depo-
sition (orange structures in Fig. 8). This is done as follows: A
polymer resist (approximately 300-nm-thick layer of positive
e-beam resist ALLRESIST AR-P 6200) is prepared on top
of the wafer by spin coating a silicon substrate covered by
300-nm-thick layer of thermally grown silicon oxide. Then,
the wafer is exposed to 100-kV electron beam for defining
the gate electrodes and a continuous ground plane electrode
to facilitate on-chip filtering of spurious microwave photons
[53]. A low-beam current (1 nA) is used for small structures
(<6 μm) that will be located close to the junctions, and high
current (200 nA) is used for large structures (few 100 μm)
that form the pads for bonding different leads and gates. After
EBL, the exposed wafer is developed using developer AR
600-546, followed by isopropyl alcohol (IPA) rinse and N2

dry. The structures are metallized by evaporating 2 nm of Ti,
30 nm of Au, and then 2 nm of Ti. The bottom Ti helps the Au
to stick to the SiO2. Then, atomic layer deposition technique
is used to grow around 50-nm-thick Al2O3 dielectric layer on
the wafer to isolate the ground plane from the bias leads and
tunnel junction structures.

A second lithography step is applied for the fabrication of
tunnel junctions using multiangle shadow evaporation through
a suspended mask. For this step, a Ge-based mask is used [37].
The mask consists of three layers: the topmost layer is approx-
imately 50 nm polymethyl methacrylate (PMMA) (molecular
weight 2.2 million 1.8% in anisole), the middle layer is Ge
(22 nm), and the bottom layer is 400 nm methylmethacrylate
(MMA) (8.5)-methyl acrylic acid (MAA). After preparing the
resist stack, the final pattern is written on the wafer. The elec-
tron beam exposed wafer is then developed in a 1:3 solution
of methyl isobutyl ketone (MIBK) and IPA. After developing,
the pattern of the PMMA layer is transferred to the germanium
layer by reactive ion etching (RIE) with CF4 gas. After this, an
undercut is formed to the copolymer layer by oxygen plasma
etching in the RIE machine. This last phase also removes any
remaining PMMA. Now, the final structure can be deposited
through the holes in the Ge and copolymer layers.

To have different resistances for the detector and double
dot, one needs to have individual control over the junc-
tion transparencies, hence, three-angle shadow evaporation
is used. As the first step, 14 nm of Al (blue structures in
Fig. 8; middle replica of the pattern) is evaporated at nor-
mal incidence. Immediately following the deposition, without
breaking the vacuum, the chip is exposed to 2 mb of pure O2

for 2 min for in situ oxidation of the Al layer. The oxidation
is followed by the evaporation of 30 nm Cu (red structures
in Fig. 8) at an angle so that Al from the first evaporation
angle and Cu from this step form the junctions (with overlap
area of the order of 50 × 75 nm2) for both the right and left
detectors. The angles are adjusted so that the overlap in the
detectors is not affecting that of the double dot, and vice
versa. The detector is evaporated first to ensure that it has
lower resistance than the double dot, and to facilitate the
measurement of electrons tunneling in the double dot. Next,
pure O2 at 5 mb is used for further oxidation of Al layer.
As the final step, 50 nm of Cu (green structures in Fig. 8) is
evaporated at an angle such that the overlap between this layer
and the first Al layer forms the three double-dot junctions,
each with an overlap area of ≈25 × 50 nm2.

115422-7



SHILPI SINGH et al. PHYSICAL REVIEW B 99, 115422 (2019)

FIG. 8. Sample and measurement scheme. Left: sample micrograph with false color identifying the different stages of fabrication process.
Right: schematic of the electronic circuit corresponding to the sample together with the measurement setup. The orange colored structures
are ground plane, mainly 30 nm of Au, evaporated before the 50 nm of Al2O3 dielectric layer. The orange rectangles are capacitive couplers
between the double-dot islands and the detectors’ islands, with capacitances Cc,L and Cc,R. The remaining orange structures are gates to
the double-dot and detectors’ islands, each connected to a dc voltage source Vg,L , Vg,R, Vg,det,L , and Vg,det,R via the capacitances Cg,L , Cg,R,
Cg,det,L , and Cg,det,R, respectively. The blue colored structures are Al evaporated as a first layer on the top of Al2O3. This Al is oxidized and
covered by Cu (red) to make detectors’ junctions, with capacitances Cdet,L,1, Cdet,L,2, Cdet,R,1, and Cdet,R,2. The Cu (green) is evaporated last to
make high-resistance double-dot junctions, with capacitances CL , Cm, CR and resistances RL , Rm, RR, corresponding to left, middle, and right
junctions, respectively. During the measurement, dc voltages Vb, Vb,det,L , and Vb,det,R are applied across the double dot and detectors, through
their left lead. The currents Imeas

det,L and Imeas
det,R through detectors are recorded with sampling frequency fs = 25 kHz, by connecting an amplifier

(triangles) and analog to digital converter (ADC) to the right lead of each of the detectors. The circles represent the charge states of the dots
(nL and nR, yellow), the gates (ng,L and ng,R, orange), the detector dots (ndet,L and ndet,R, red), and the gates to the detectors (ng,det,L and ng,det,R,
brown).

APPENDIX B: MEASUREMENT SETUP

The sample chip is enclosed in a sample stage [54] with
12 measurement lines and placed in a homemade dilution
fridge with base temperature of 50 mK. All the signal lines
are filtered by a Thermocoax cable with temperature between
1 K and base temperature, and the sample stage is thermally
anchored to the mixing chamber.

The measurement setup used is shown schematically in
Fig. 8. The bias voltages Vb,det,α , α = L, R, across the leads
of detectors (in blue) and Vb, across the double-dot leads
(in blue and green), are applied using a commercial voltage
source (Agilent 33522B). The dc gate voltages Vg,det,α and
Vg,α tuning the offset charges on the normal-metal islands (in
red and green) and the superconducting island (blue) are also
applied using a commercial voltage source (Agilent 33522B).
The dc voltage signals are filtered with Thermocoax cables.
The single-electron currents Imeas

det,α (t ) in the double dot are
measured with a room-temperature current amplifier (Femto
DLPCA-200).

During the measurement, the bias voltage Vb of the dou-
ble dot is fixed to a prescribed value. The detector bias
Vb,det,α (α = L, R for the left and right detectors, respectively)
and gate Vg,det,α voltages are optimized to get the maximal
signal-to-noise ratio. The back-action is not optimized leading
to effective temperature of ≈1 K (see Appendix C).

The output currents from left and right detectors, Idet,L

and Idet,R, are passed through two amplifiers (DLPCA-200),
with an amplification factor of 1010. The amplifiers transform
currents into voltage signals and the amplified signal of dura-
tion 15 s is passed through an optoisolator and recorded by a
24-bit digitizer (NI 9239) at a sampling rate of f = 25 kHz.
For each value of the bias voltage Vb, we perform multiple
measurements of duration 15 s and combine the data into a
single stationary trace of duration of the order of hours.

To characterize detectors and the double dot separately,
their I-V characteristics are measured at different gate
voltages Vg,det,α and Vg,α . The resistances RT,det,L = 1 M	,
RT,det,R = 1.4 M	 and charging energies EC,det,L = 80 μeV,
EC,det,R = 90 μeV of the detectors, and the common super-
conducting gap � = 200 μeV are extracted from the I-V
characteristics using standard numerical simulations based on
the Fermi’s golden rule and the master equation [55].

To measure the I-V characteristics of the double-dot struc-
ture, we replace the grounding from the right end of the
structure by an amplifier (Femto LCA-2-10T), with amplifica-
tion coefficient 10−12 A/V, connected to a digital multimeter
(Agilent 34410A). Both the gate voltages Vg,L and Vg,R are
swept for each value of the bias voltage Vb. For the lowest
values of the bias voltage for which |eVb| � 3�, a direct
current measurement was not achievable due to its very low
value (∼10−18 A), thus the right end of the double dot was
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FIG. 9. Stability diagram of the double dot. Electric current
across the double-dot structure as a function of the two gate voltages
Vg,L and Vg,R measured at high magnetic field, H = 0.144 T, in which
superconductivity of aluminum is suppressed. (a) Bias voltage Vb is
close to zero. A honeycomb pattern typical for double-dot devices
[56] is visible. The high current spots correspond to the triple points
at which the energies of three charge states are degenerate and the
electric current can flow through the device. (b) Vb = 120 μV. The
triple points grow into triangles because finite bias allows electrons to
pass through the double dot away from degeneracy. The shape of the
honeycomb structure and of the triangles allows us to determine the
charging energies of the islands [56].

grounded as shown in Fig. 8 and the output currents Imeas
det,α (t )

from both the detectors were used to infer the current through
the double dot.

The charging energies and resistances of the double dot are
determined as follows:

(1) A magnetic field H = 0.144 T is applied to the super-
conducting part to increase the net current through the double
dot. The applied magnetic field H turns the superconductor
into normal, thus increasing the number of electron tunneling
events and the net current to ≈100 fA.

(2) We measure the current through the double dot for
the bias voltage Vb ≈ 0 μV and Vb = 120 μV, at different
gate voltages Vg,L and Vg,R to obtain the stability diagram
(see Fig. 9). Comparing this diagram to the theory from
[56] we extract the charging energies, EC1 = 60 μeV, EC,m =
10 μeV, and EC2 = 40 μeV, of left, middle, and right double-
dot junctions, respectively.

(3) We obtain the total resistance of all three double-dot
junctions in series to be RL + Rm + RR 	 55 M	, from room-
temperature I-V measurement. Here, RL, RM , and RR are the
resistances of left, middle, and right junctions of double-dot
structure, respectively.

APPENDIX C: DOUBLE QUANTUM DOT: CHARGING
ENERGIES, TUNNELING RATES, DETECTOR

BACK-ACTION, AND EFFECTIVE TEMPERATURE

The theory of charge transport through a double dot is
outlined in [56]. In this Appendix we use results relevant to
our experiment and adapt them to our particular setup, in
which a double dot is capacitively coupled to two detectors.
We also clarify the mechanism of detector back-action, which
leads to the enhanced effective temperature.

The Markovian dynamics of the system is governed by the
master equation

Ṗn =
∑
m �=n

�n
mPm −

⎛
⎝∑

m �=n

�m
n

⎞
⎠Pn. (C1)

Here, the indices m, n enumerate the four possible states of
the double dot: (0,0), (1,0), (0,1), and (1,1). For convenience,
we will use the shorthand notation �n

m instead of �m,n in this
appendix for the transition rate from the initial state m to
the final state n; and Pn is the occupation probability of the
state n.

The transition rates in Eq. (C1) are determined by the
resistances of three tunnel junctions, connecting the dots
and the leads, and by Coulomb energy barriers associated
with electron tunneling. In order to determine the latter, we
consider the energy of the whole system “double quantum dot
+ detectors” [see Figs. 1(a) and 8]:

E (n) = Edot (n) + EC,det,L(ndet,L − ng,det,L )2

+ EC,det,R(ndet,R − ng,det,)
2

+ Ec,L(nL − ng,L )(ndet,L − ng,det,L )

+ Ec,R(nR − ng,R)(ndet,R − ng,det,R) + NL − NR

2
eVb.

(C2)

The first term in Eq. (C2), Edot (n), is the electrostatic energy
of the double dot, the second and the third terms are the elec-
trostatic energies of the detectors, the fourth and fifth terms
describe the capacitive coupling between the dots and the
detectors, and the last term is the relevant part of the energy
of the voltage source. NL and NR, appearing in the last term in
Eq. (C2), are the total numbers of electrons in the left and right
leads, respectively. For simplicity, we have omitted similar
terms containing bias voltages applied to the detectors. We
have also assumed that the double dot is biased symmetrically,
i.e., the potential of the left lead is Vb/2, while the potential
of the right lead is −Vb/2. This assumption is not restrictive
since any asymmetry in the bias may be absorbed in the shifts
of gate voltages. The energy of the double dot has the form

Edot (n) = EC1

2
(nL − ng,L )2 + EC2

2
(nR − ng,R)2

+ EC,m(nL − ng,L )(nR − ng,R). (C3)

The charging energies of the islands EC1, EC2, of the detectors
EC,det,L, EC,det,R, and the coupling energies EC,m, Ec,L, Ec,R,
are defined as follows:

EC1 = e2C2

C2
0

, EC2 = e2C2

C2
0

,

EC,det,L = e2

2C
,L
, EC,det,R = e2

2C
,R
, EC,m = e2Cm

C2
0

,

Ec,L = 2e2Cc,L

C1C
,L +
√

C1C
,L
(
C1C
,L + 4C2

c,L

) ,

Ec,R = 2e2Cc,R

C2C
,R +
√

C2C
,R
(
C2C
,R + 4C2

c,R

) . (C4)

The capacitances between different metallic electrodes of the
system are defined in Fig. 8; the total capacitances of the
islands read as C1 = CL + Cg,L + Cm + [C−1

c,L + (Cdet,L,1 +
Cdet,L,2 + Cg,det,L )−1]−1, C2 = CR + Cg,R + Cm + [C−1

c,R +
(Cdet,R,1 + Cdet,R,2 + Cg,det,R)−1]−1; the total capacitances
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of the detectors are C
,L = Cdet,L,1 + Cdet,L,2 + Cg,det,L +
[C−1

c,L + (CL + Cg,L + Cm)−1]−1, C
,R = Cdet,R,1 + Cdet,R,2 +
Cg,det,R + [C−1

c,R + (CR + Cg,R + Cm)−1]−1; the capacitance C0

is defined as C2
0 = C1C2 − C2

m. Here, we have assumed that the
capacitance between the two dots is small, Cm � CL,CR. The
dimensionless gate-induced charges of the metallic islands
read as ng,det,L = Cg,det,LVg,det,L/e, ng,det,R = Cg,det,RVg,det,R/e,

ng,L = Cg,LVg,L

e
+ CLVb

2e
, ng,R = Cg,RVg,R

e
− CRVb

2e
. (C5)

Transitions between the charging states of the double dot
occur if an electron jumps through one of the three tunnel
junctions. After a transition from the initial state m to the

final state n, the electron acquires an energy −Qn
m = E (m) −

E (n) which equals to the difference of the system energy
(C2) before and after the jump. This energy gain is quickly
redistributed between electrons, phonons, etc., hence, it can
be viewed as Joule heat associated with the transition. Minus
sign in front of Qn

m comes from the convention used in the
main text, where Q is considered to be positive if energy
is extracted from the environment by the double dot. The
heat increments are antisymmetric, Qn

m = −Qm
n . Therefore,

only 6 heat increments are needed to characterize the en-
ergetics of all 12 possible transitions in our system. The
corresponding heat exchanges evaluated at fixed values of the
detector charges, which are indicated by the superscript ∼,
read as

−Q̃00
10 = EC1

(
1

2
− ng,L

)
− EC,mng,R + eVb

2
+ Ec,L(ndet,L − ng,det,L ),

−Q̃01
11 = EC1

(
1

2
− ng,L

)
+ EC,m

(
1 − ng,R

) + eVb

2
+ Ec,L(ndet,L − ng,det,L ),

−Q̃11
10 = −EC,m

(
1 − ng,L

) − EC2

(
1

2
− ng,R

)
+ eVb

2
− Ec,R(ndet,R − ng,det,R),

−Q̃01
00 = EC,mng,L − EC2

(
1

2
− ng,R

)
+ eVb

2
− Ec,R(ndet,R − ng,det,R),

−Q̃10
01 = −(EC1 − EC,m)

(
1

2
− ng,L

)
+ (EC2 − EC,m)

(
1

2
− ng,R

)
− Ec,L(ndet,L − ng,det,L ) + Ec,R(ndet,R − ng,det,R),

−Q̃11
00 = (EC1 + EC,m)

(
1

2
− ng,L

)
+ (EC2 + EC,m)

(
1

2
− ng,R

)
− Ec,L(ndet,L − ng,det,L ) + Ec,R(ndet,R − ng,det,R). (C6)

These heat exchanges depend on instantaneous values of the
charges of the detectors ndet,L and ndet,R. The latter fluctuate
in time with typical frequency Imeas

det,α/e � 0.1 GHz, which is
much higher than the sampling data acquisition rate f =
25 kHz. Hence, experimentally measurable heat increments
are given by expressions (C6) averaged over the detector
charges:

Qn
m = 〈

Q̃n
m

〉
ndet,L,ndet,R

. (C7)

The transition rate from the initial state (m) to the final state
(n) at fixed ndet,L, ndet,R is given by

�̃n
m = 1

e2Rnm

∫
dE Ni

(
E + Q̃n

m

)
Nf (E )

× fi
(
E + Q̃n

m

)
[1 − f f (E )]. (C8)

Here, Rnm is the resistance of the junction in which the
electron jump occurs, Ni(E ) and fi(E ) are, respectively, the
density of states and distribution function in the initial elec-
trode, Nf (E ) and f f (E ) are, respectively, the density of states
and the distribution function in the destination electrode. The
density of states in the normal metals equals to 1, while in
the superconductors it has the usual form NS (E ) = θ (|E | −
�)|E |/√E2 − �2, where � is the superconducting gap. The
transitions (0, 0) ↔ (1, 1) occur by simultaneous cotunneling
of two electrons through two junctions. The corresponding
rates are defined by more complicated integrals, which we

do not provide here for simplicity (for details of cotunnel-
ing calculations in various Coulomb blockaded systems, see
[57–59]).

According to our estimates, based on the measured transi-
tion rates in the interval Tel < Qn

m < �, where they almost do
not depend on Qn

m, the distribution functions in all electrodes
can be rather well approximated by Fermi function with
the electron temperature Tel ≈ 170 mK. This temperature is
higher than the base temperature 50 mK. The transition rates
measured in the experiment are given by the integrals (C8)
averaged over the fluctuations of the detector charges:

�n
m = 〈

�̃n
m

〉
ndet,L,ndet,R

. (C9)

In Table I we list all experimentally measured rates �n
m for

five different values of the bias voltage Vb. Nonaveraged rates
satisfy the detailed balance condition

�̃n
m/�̃m

n = exp
[−Q̃n

m/Tel
]
. (C10)

However, the detailed balance does not hold for the aver-
aged rates �n

m (C9) and average heat exchanges Qn
m (C7)

because it is broken by back-action of the detectors: �n
m/�m

n �=
exp [−Qn

m/Tel].
The transport of electrons through the double dot occurs

via two types of cyclic transitions between the charging
states. The cycle 1 involves the transitions (0, 0) → (0, 1) →
(1, 0) → (0, 0), while the cycle 2 the transitions (1, 1) →
(0, 1) → (1, 0) → (1, 1). In both cases, one electron is
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TABLE I. Transition rates between different charge states of the double dot, effective temperature, and affinities in the cycles of the double
dot for different values of the bias voltage. The empirical transition rates are calculated using Eq. (D1). For Teff we used Eqs. (C15) and (C16),
while for the cycle affinities A1,2 we used Eq. (C13). All the data are obtained from counting statistics of experimental traces of durations of
at least 1 h.

Bias voltages Transition rates (Hz) Teff (K) A1 A2

(μV) �01
00 �00

01 �11
00 �00

11 �10
00 �00

10 �11
01 �01

11 �11
10 �10

11 �10
01 �01

10

90.00 643.97 131.22 13.79 4.14 51.80 39.41 40.50 42.88 167.04 53.46 24.86 30.34 1.00 1.12 1.00
50.00 103.79 76.07 8.17 6.76 274.09 177.02 149.03 156.18 81.31 97.52 39.26 21.67 1.25 0.47 0.46
25.00 72.49 97.75 1.34 2.69 37.41 27.15 24.17 38.31 54.66 143.84 41.31 19.68 1.56 0.12 0.23

−25.00 90.89 81.84 1.64 2.21 36.21 27.64 25.86 39.85 67.40 113.97 25.13 31.66 0.79 0.40 0.32
−50.00 100.68 71.96 9.66 8.79 371.43 286.57 205.39 252.13 77.67 87.42 21.08 35.98 1.28 0.46 0.45

transferred from the right to the left lead. Thus, for sufficiently
long observation time, the total charge transferred from the
left lead to the right one reads as

q(t ) = eN1(t ) + eN2(t ) + δq(t ), (C11)

where we have used the fact that the electron charge is nega-
tive and equals to −e. In Eq. (C11), N1(t ) = N+

1 (t ) − N−
1 (t )

is the net number of completed cycles of the type 1 up to
time t , i.e., the total number of completed cycles of type 1,
N+

1 (t ), minus the total number of cycles of type 1 completed
in reverse order, N−

1 (t ). Similarly, N2(t ) and δq(t ) denote,
respectively, the net number of completed cycles of the type 2
and the contribution of incomplete cycles 1 or 2 up to time t .

An expression similar to Eq. (C11) can be derived for
stochastic entropy production. Namely, one finds

S(t ) = N1(t )A1 + N2(t )A2 + δS(t ), (C12)

where A1,A2 are the affinities of the cycles 1 and 2 intro-
duced before:

A1 = log
�01

00

�00
01

�10
01

�01
10

�00
10

�10
00

, A2 = log
�01

11

�11
01

�10
01

�01
10

�11
10

�10
11

. (C13)

We have verified that for all bias voltages, the cycles 1 and 2
give the dominating contribution to the entropy production.
The contribution of other cycles is suppressed by the low
transition rates between the states (0,0) and (1,1). Hence,
with a good accuracy we can omit the nonextensive terms
δq(t ), δS(t ) in Eqs. (C11) and (C12) in the long-time limit,
when the contribution of incomplete cycles 1 or 2 also be-
comes small.

In the absence of detector back-action, the detailed bal-
ance condition (C10), in combination with the identities for
the heat exchanges (C6), Q̃01

00 + Q̃10
01 + Q̃00

10 = −eVb, Q̃01
11 +

Q̃10
01 + Q̃11

10 = −eVb, imply that A1 = A2 = eVb/Tel. Compar-
ing Eqs. (C11) and (C12), we find that in this ideal case a
simple relation between Joule heat and entropy production
holds: 〈I〉Vb = Tel〈Ṡ〉. However, in the experiment, detailed
balance is broken by detector back-action. Under these con-
ditions, the Joule heat and the entropy production are related
via a proportionality constant

〈I〉Vb = Teff〈Ṡ〉, (C14)

defined as

Teff ≡ lim
t→∞

q(t )Vb

S(t )
= 〈N1〉 + 〈N2〉

〈N1〉A1 + 〈N2〉A2
eVb. (C15)

Applying usual full counting statistics methods [60] to the
master equation (C1), one can find the average numbers of
cycles in the long-time limit, and under the assumption that
�11

00 = �00
11 = 0, 〈N1〉 and 〈N2〉 are given by

〈N1〉
t

	 N−1
0

∣∣(�01
00�

10
01�

00
10 − �00

01�
01
10�

10
00

)(
�10

11 + �01
11

)
+�00

01�
01
11�

11
10�

10
00 − �01

00�
11
01�

10
11�

00
10

∣∣,
〈N2〉

t
	 N−1

0

∣∣(�01
11�

10
01�

11
10 − �11

01�
01
10�

10
11

)(
�10

00 + �01
00

)
−�00

01�
01
11�

11
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The normalization factor N0 is the same in both equations: it
is the sum of various triple products of the rates. Equations
(C15) and (C16) fix the ratio 〈N1〉/〈N2〉 and allow us to
calculate Teff counting cycles in the double-dot experiment.
The values of Teff obtained using Eq. (C16) for different bias
voltages are listed in Table I. They vary from 0.79 to 1.56 K
with the average value around 1 K, in agreement with the
linear fit in the inset of Fig. 4(a) in the main text. We also
find that the cycle affinities A1 and A2 are rather close to each
other for all bias voltages except for Vb = 25 μV, where they
differ by a factor of 2 (see Table I).

We now demonstrate that the value Teff = 1 K can be at
least partially explained by the back-action of the detectors
on the double dot. Detailed analysis of back-action is not the
main focus of this paper, therefore, we here restrict ourselves
to simple estimates. We note that averaging the rates (C8) over
detector charge fluctuations results in the replacement of the
distribution function in the normal metal by an effective dis-
tribution function. For example, if an electron jumps through
the left junction, one should replace the distribution function
in the left normal dot by the following combination:

f L
eff (E ) =

∑
ndet,L

PL(ndet,L ) fF (E − Ec,Lδndet,L, Tel ).

Here,

fF (E , T ) = 1/[1 + eE/T ] (C17)

is Fermi function, δndet,L = ndet,L − 〈ndet,L〉, PL(ndet,L ) is the
probability for the left detector island to have ndet,L extra
electrons. Next, one can roughly approximate the function
f L
eff (E ) by a Fermi function with the same average energy

of an electron fF (E , Teff ). Imposing the condition of equal
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average energies in the form∫
dE E

[
f L
eff (E ) − fF (E , Teff )

] = 0, (C18)

we arrive at the following expression for the effective temper-
ature of the left normal island:

T L
eff =

√
T 2

el + 12

π2
η2

LE2
C,det,L

〈
δn2

det,L

〉
. (C19)

Here, we have defined the average squared fluctuations of the
detector charge〈

δn2
det,L

〉 =
∑
ndet,L

PL(ndet,L ) δn2
det,L,

and introduced the efficiency of the left detector ηL =
Ec,L/2EC,det,L. The latter is defined as the shift of dimension-
less gate charge of the detector induced by one extra electron
in the left dot. Repeating the same procedure, we find the
effective temperatures of the normal leads adjacent to the
middle and right junctions:

T m
eff =

√
T 2

el + 12

π2

∑
s=L,R

η2
s E2

C,det,s

〈
δn2

det,s

〉
, (C20)

T R
eff =

√
T 2

el + 12

π2
η2

RE2
C,det,R

〈
δn2

det,R

〉
. (C21)

In the experiment we find ηL ≈ ηR ≈ 0.3, EC,det,L = 80 μeV,
EC,det,R = 90 μeV. The detectors are biased a little bit above
the conductance threshold 2(� + EC,det,α )/e. At this bias, and
for high current state of the detector, corresponding to one
extra electron in the dot which the detector monitors, only two
allowed charging states of the detector island are populated,
let us say ndet,α = 0 and ndet,α = 1. Their occupation probabil-
ities are approximately the same and equal to 1

2 . The average
value of the detector charge then equals to 0.5. Hence, for both
detectors we find 〈δn2

det,L〉 = 〈δn2
det,R〉 = [(0 − 0.5)2 + (1 −

0.5)2]/2 = 0.25. With these parameters we find the following
values of the effective temperatures:

T L
eff = 0.23 K, T m

eff = 0.29 K, and T R
eff = 0.24 K.

(C22)

These effective temperatures significantly exceed the elec-
tronic temperature of the double dot Tel ≈ 170 mK. The value
of Teff for the whole device (C15) is even larger than the effec-
tive temperatures of the leads adjacent to the left, middle, and
right junctions given by (C22). This is because Teff is rather
sensitive to the gate voltages Vg,L,Vg,R. This dependence was
ignored in our calculations. Other back-action mechanisms,
like, for example, emission of nonequilibrium phonons by
the detectors may also contribute to increase Teff and may
require separate theoretical analysis. Thus, our theoretical
model reveals the significant contribution of the detector back-
action to the experimental value of Teff .

APPENDIX D: DATA ANALYSIS

The measured detector currents Imeas
det,α (t ) (α = L, R for the

left and right detectors, respectively) are filtered using a digital
low-pass filter from MATLAB. We use a fourth-order infinite

(a) (b)

FIG. 10. Filtering effect on current and use of dwell time as a cor-
rective measure. (a) Smearing of detector output currents introduced
by filtering high-frequency noise. Top: measured detector currents
Imeas for left detector in blue and right detector in red. Middle: the
corresponding filtered current. Bottom: the corresponding charge
state of the system island n. Close to 2 ms, both the detector currents
jump instantaneously from higher state to the lower state in the
measured current Imeas but, after filtering, there is a delay introduced
in the left detector current (blue curve) because of smearing of the
transition point. (b) Jump counts for each transition (see legend) as a
function of the dwell-time threshold used to correct for the stochastic
jitter in the traces {n̂(t )} of the charge state of the double dot. The
dwell-time threshold τth is determined empirically as the minimal
time threshold beyond which the jump counts for all transitions are
barely affected upon small increments of the threshold. For bias
voltage Vb = 50 μV shown in the figure, the dwell-time threshold is
estimated to be τth = 0.28 ms, illustrated by the black vertical dashed
line. Duration of the time trace analyzed here is 15 s.

impulse response (IIR) low-pass filter with a cutoff frequency
of fcut = 2 kHz because the changes in the detector signals,
due to electron jumps, occur at a rate of ∼100 Hz. We then
discretize the filtered current Idet,α (t ) of each detector by
assigning values 0 or 1 at each time as follows: (i) first,
we compute the histogram of each detector current; (ii) we
introduce a current threshold I th

det,α for each detector whose
value is set at the local minimum between the two peaks of
each histogram of the current (Imin

α and Imax
α ); (iii) we set the

value of the charge state of the island α = L, R at time t ,
nα (t ), to the value nα (t ) = 1 if the filtered current exceeds the
threshold Idet,α (t ) > I th

det,α and we set nα (t ) = 0 if the filtered
current is below the threshold value Idet,α (t ) < I th

det,α . Such
procedure is repeated systematically in each experiment for
each detector current. This is illustrated in Fig. 10(a) for a
2.5-ms time trace.

Next, we combine nα (t ) into a trace n̂(t ) = (nL(t ), nR(t ))
describing the states of the double dot. The low-pass filtering
applied to the current signal Imeas

det,α (t ) introduces slight shifts
of the time instants by the intervals of order of 1/ fcut = 0.5
ms, at which the jumps occur. This jitter influences coincident
jump events in both detectors corresponding to the transitions
(0, 0) ↔ (1, 1) and (0, 1) ↔ (1, 0). An example of such an
influence is illustrated in Fig. 10(a). The two jumps in the
detector currents, which occur simultaneously (top panel),
become slightly separated in time after the low-pass filtering
(middle panel). As a result, the apparent state trajectory
evolves in time as (1, 1) → (1, 0) → (0, 0) (see the lower
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FIG. 11. Experimental waiting-time distributions ψ(nL ,nR )(t ) for
the different states (nL, nR ) in the double dot. Empirical waiting-
time distributions (symbols) calculated from the traces {ntot (t )} for
Vb = 25 μV (top) and Vb = 90 μV (bottom). The solid lines are
exponential fits.

panel). The state (1,0) is this sequence is clearly spurious,
it did not exist in the original noisy signal shown in the
top panel of Fig. 10(a). The above-mentioned jitter can be
compensated by the introduction of some ignorance in time
shifts between signals of left and right detectors of order of

1/ fcut = 0.5 ms. Indeed, in order to eliminate these spurious
states, we first identify the events in the low-pass-filtered
time traces n̂(t ) in which the two jumps in the left and right
detectors occur close in time. Next, we remove intermediate
states between the initial and final states, for example (1,1)
and (0,0), if the dwell time in those states is shorter than a
threshold value τth [61]. After that, we treat the original two
jumps as a single transition (1, 1) → (0, 0) occurring at time
corresponding to the average value between the times of the
two jumps. We have varied the threshold time τth and then
taken the shortest value above which the number of counts
did not change significantly [see Fig. 10(b)]. This value was
found to be τth = 0.28 ms in agreement with the estimated
effect 1/ fcut = 0.5 ms of the jitter.

To increase the statistics of jumps in the recorded traces, we
use the Markov properties of the state traces {n(t )} and merge
all N 15-s traces obtained for the same value of Vb into a single
trace {ntot (t )} of total duration τ = 15N s. This single trace
{ntot (t )} is used both for calculation of stationary transition
rates �n,n′ from state n to state n′ and occupation probabilities
Pst

n of the state n and for calculation of traces and statistics
of the stochastic entropy production S(t ) and the entropy flow
Se(t ).

To obtain the stationary transition rates �n,n′ from the time
trace {ntot (t )}, we count the number of transitions Nn→n′ that
occur from state n to state n′ for each bias voltage Vb value. We
calculate the transition rate between the states n and n′ using
[40]

�n,n′ = Nn→n′

Pst
n τ

, (D1)

where τ is the time duration of the experiment and

Pst
n = τn/τ (D2)

is the empirical steady-state occupation probability of the state
n, calculated as the fraction of the total time when the double
dot stays in state n. The traces of stochastic entropy production
S(t ) and of the entropy flow Se(t ) are calculated using the
empirical transitions rates (D1), occupation probabilities Pst

n
(D2) from the time trace {ntot (t )}. The general formula for
stochastic entropy production [4] is given by

S(t ) = log
P({n(t )})

P({n(−t )})
, (D3)

where P({n(t )}) denotes the probability to observe the tra-
jectory {n(t )} and P({n(−t )}) the probability to observe the
corresponding time-reversed trajectory {n(−t )}. If the process

TABLE II. Entropy change corresponding to the jump between different charge state. |Sn,n′ | implies the absolute change in total entropy
(Eq. (1)) for the system jumping from state n → n′.

Bias voltages Entropy jumps

(μV ) |S(0,0),(0,1)| |S(0,0),(1,1)| |S(0,0),(1,0)| |S(0,1),(1,1)| |S(1,0),(1,1)| |S(0,1),(1,0)|
90.00 0.05 0.43 0.35 0.15 0.13 0.72
50.00 0.08 0.03 0.03 0.04 0.06 0.36
25.00 0.01 0.04 0.02 0.11 0.03 0.10

−25.00 0.05 0.07 0.13 0.08 0.03 0.21
−50.00 0.07 0.08 0.02 0.02 0.06 0.37
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FIG. 12. Maximum entropy jump for different bias. The max-
imum entropy change in a jump, |Sn,n′ |max = maxn,n′ |Sn,n′ |, as a
function of bias voltage. Table II lists |Sn,n′ | for all possible jumps
for different bias voltages.

{n(t )} is Markovian, Eq. (D3) reduces to Eq. (1) in the
main text which we use for all our calculations of records
of S(t ). Figure 11 shows that the waiting-time distributions
ψ(nL,nR )(t ) for all the states of the double dot (nL, nR) =
{(0, 0), (0, 1), (1, 0), (1, 1)} are exponential for Vb = 25 μV
and Vb = 90 μV thus confirming that the dynamics of the
charge state of the double dot is indeed Markovian. The
entropy jumps corresponding to transition between different
system states for different bias voltages are listed in Table II.
As seen here, the most dominant contribution to entropy is
from electron jump between the island. In Fig. 12, we present
the maximum jump in entropy resulting from the system state
change for different bias voltage.

To achieve an optimal statistical usage of the data for
calculating entropy production and the entropy flow to the
environment records, we apply a sliding window procedure:
For a certain time window duration τw, we use (possibly)
overlapping subtraces of {ntot (t )} with time intervals m�t <

t < m�t + τw for the mth sample trace. The value �t of a
time shift is chosen to be 10 times larger than the decay time
of the autocorrelation function of {ntot (t )} to avoid unwanted
correlations in different sample traces.

APPENDIX E: LOWER BOUND FOR THE AVERAGE
NEGATIVE RECORD OF THE ENTROPY FLOW

We now demonstrate that the average negative record of
the entropy flow is given by Eq. (9) in the main text. Equation
(1) of the main text can be rewritten as

S(t ) = log
Pst

n0

Pst
nN (t )

+ Se(t ), (E1)

where we have used the definition of the entropy flow Se(t ) =
log

∏N (t )
j=1 �n j−1,n j /�n j ,n j−1 . Equations (E1) and (8) imply

〈
min

τ∈[0,t]

{
Se(τ ) + log Pst

n0
− log Pst

nN (τ )

}〉
� −1.

Since 〈
Se

min(t )
〉 + ∑

n

Pst
n log Pst

n − log Pst
min

�
〈

min
τ∈[0,t]

{
Se(τ ) + log Pst

n0
− log Pst

nN (τ )

}〉
,

then Eq. (9) of the main text follows.
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