
PHYSICAL REVIEW B 99, 115419 (2019)

Signatures of multiple jumps in surface diffusion on honeycomb surfaces
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The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial
information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions
in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function
(ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable
testing the analytical expressions against experimental or simulated data, we develop a global fitting routine
that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis
method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of
two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and
analysis confirm that diffusion of Cp/Cu(111) at a surface temperature Ts = 135 K takes place in a regime
of predominantly single jumps. Classical simulations of D/Pd(111) at Ts = 350 K, with a realistic Langevin
friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters
that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal
surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen.

DOI: 10.1103/PhysRevB.99.115419

I. INTRODUCTION AND MOTIVATION

An understanding of diffusion-mediated atomic and molec-
ular self-assembly is a leading contribution of fundamental
surface science to practical applications of surfaces and in-
terfaces. Relevant areas of application include organic elec-
tronics [1] and the synthesis of diverse structures including
two-dimensional and nanostructured forms of carbon [2,3],
organic porous monolayers [4], and metal nanoclusters [5].
Studies of surface diffusion in model systems contribute by
elucidating key qualitative aspects of diffusion including in-
fluences of mutual interactions [6,7], rotational motion [8],
and quantum tunneling [9,10]. Furthermore, the study of
model systems allows benchmarking of theoretical treatments
of adsorbate-surface interactions, which makes a vital contri-
bution to the ongoing refinement of first-principles techniques
for treating adsorption systems [11,12]. Developing more
robust theoretical tools in turn is critical to provide reliable
insights for complex and applied systems.

Close-packed metal surfaces are a key arena for both the
self-assembly applications mentioned above, and also funda-
mental surface science studies of elementary processes includ-
ing adsorption [13,14], diffusion [10,15,16], vibration [17],
and reaction [18]. On the close-packed face, many atomic and
molecular species adsorb preferentially at threefold coordi-
nated hollow sites. A selection of such threefold adsorption
systems is collected together in Table I. The close-packed sur-
face presents two symmetrically inequivalent threefold sites,
arranged in a so-called honeycomb structure. The honeycomb
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arrangement will be widely recognized as the atomic struc-
ture of some well known two-dimensional materials such as
graphene [19] and hexagonal boron nitride [20]. Combined
with the preferential adsorption of carbon atoms at hollow
sites, the spatial arrangement of hollow sites on close-packed
surfaces is therefore a key factor in the prevalent synthesis
of graphene on close-packed surfaces [2,21–25]. Diffusion
on close-packed surfaces also displays notable features of
fundamental interest in surface dynamics. For example, long
jumps have been frequently observed in molecular dynamics
(MD) simulations of close-packed systems [26–29], despite
the curved transition path required for long jumps [30]. We
will return to long jumps shortly as a key topic in the present
work.

Experimental measurements of surface diffusion at the
atomic scale are necessarily constrained in time and energy
resolution. Real space imaging methods such as scanning tun-
neling microscopy (STM) typically operate on the timescale
of milliseconds to seconds, providing a window on hop-
ping processes that are particularly slow, either due to low
temperatures [15,39] or a large energy barrier to diffusion
[6]. By contrast quasielastic atom-surface scattering methods,
with resolution in reciprocal space rather than real space,
are capable of measuring surface dynamics on picosecond
time scales. The experimental focus of the present work
is on the helium-3 surface spin echo (HeSE) method [40]
which uses magnetic manipulations on a helium-3 beam to
enhance the energy exchange resolution in quasielastic scat-
tering, and therefore probe surface dynamics on time scales
from subpicosecond up to approximately 1 ns. The interested
reader is referred to the review article for further details on
the experimental method [40]. Since the HeSE experiment
operates in a regime where there is essentially no alternative
method, it is important to push the analysis of HeSE data to
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TABLE I. Adsorption systems in which the adsorption sites are
the two inequivalent hollow sites on close-packed metal surfaces,
to illustrate the wide variety of honeycomb adsorption systems in
practice. All the adsorbates shown are atomic except cyclopenta-
dienyl or Cp, which is the five-membered aromatic ring C5H5. By
definition, an fcc site is directly above a substrate atom in the first
subsurface layer; the hcp site is the other threefold site. The param-
eters listed are taken from theoretical studies where possible; values
with uncertainties indicate experimental measurements. Vb and �E
refer to properties of the adiabatic adsorbate-surface potential, either
computed with first-principles theoretical methods or constructed to
fit experimental data. Vb is the diffusion barrier for an adsorbate
to escape the lowest energy adsorption site, or the experimental
activation energy. �E is the nondegeneracy between the two hollow
sites. Quantities that are unknown are indicated by (?).

Adsorbate Substrate Stable site Vb (meV) �E (meV)

H Ru [31] fcc 120 40
H Pd [31] fcc 125 25
C Ru [32] fcc 870 740
C Ni [3,33,34] hcp 400–480 40
O Ru [35] hcp 700 400
Na Cu [16,36] (?) 12 ± 3 (?)
Cp Cu [37,38] (?) 41 ± 1 10.6 ± 1.7

its limits to maximize the information that can be gained from
the technique. In our present study we build upon a powerful
and sensitive method for analyzing jump diffusion on a close-
packed surface [10,38]. We apply the method to the output of
molecular dynamics simulations, establishing the potential for
application to experimental data in the near future.

Long jumps have frequently been inferred from MD simu-
lation by direct inspection of trajectories, along with a suitable
definition of what constitutes a jump [28,29,41]. However,
the HeSE technique is a reciprocal space method requiring
a different analysis approach, in which the key concept is the
intermediate scattering function (ISF). The ISF is routinely
computed from MD simulations in order to place simulation
and experiment on the same footing when analyzing HeSE
data [16,37,42], and we follow the same approach in the
present work. The ISF is the Fourier transform in space of
van Hove’s conditional probability function [43] convention-
ally called G(R, t ). Classically, G(R, t ) gives the conditional
probability of finding a particle at position R′ + R at time
t ′ + t given that there was a particle at position R′ at time
t ′, integrated over all R′, t ′. G(R, t ) therefore gives a powerful
and general statistical description of the equilibrium dynamics
of a set of scattering centers. The ISF I (�K, t ) represents the
same detailed information except in a spatial Fourier domain
where �K is the variable conjugate to R. The ISF is very
closely related to the raw data measured in HeSE experiments
[42], and hence by developing our analysis framework in
terms of the ISF, the resulting tools can be applied to analyze
HeSE data.

A key part of the analysis toolbox for HeSE experiments
is the existence of simple analytical forms for the ISF corre-
sponding to different qualitative types of adsorbate dynamics,
including ballistic motion, continuous diffusion, and jump
diffusion [40]. The relatively simple case where hopping takes

place over a Bravais lattice of adsorption sites is covered
by the Chudley-Elliott model [44], and has been shown to
apply in a number of HeSE experiments including diffusion
on close-packed surfaces where adsorption occurs on top sites
[7,45]. In the Chudley-Elliott model, the ISF is rigorously
described at fixed �K by a monoexponential decay in t . The
decay rate, conventionally called α(�K), is a sinusoidal func-
tion of �K which depends on the structure of the surface and
also on the relative rates of nearest-neighbor (single) jumps,
second-nearest-neighbor (double), and higher order jumps. In
Chudley-Elliott systems, the inference of a jump distribution
from either simulation or experiment is in principle relatively
straightforward, in the absence of complicating factors such
as strong mutual interactions. Broadly speaking, the α(�K)
can be obtained by least-squares fitting individual ISFs, and
the α(�K) itself can then be analyzed to yield information
about the jump distribution [46]. The Chudley-Elliott model
does not apply to diffusion on honeycomb surfaces, since not
all adsorption sites are equivalent. General expressions for the
ISF in non-Bravais systems have been worked out previously
[47,48], but their application to experimental data has been
limited to systems in which multiple jumps are negligible
[37,38]. The analytical details are recapped and extended in
Sec. II. From the point of view of data analysis, the most
notable feature of the analytical results for non-Bravais sys-
tems is their multiexponential form. Multiexponential func-
tions are famously difficult to fit reliably [49], which either
drastically increases the signal to noise requirements of the
experiment, or demands a more sophisticated data analysis
approach. A method with increased statistical power, based on
the Bayesian probability-based concept of data fitting, has pre-
viously been described and applied to analyze diffusion in the
honeycomb systems H/Ru(0001) [10] and Cp/Cu(111) [38].
However, the possibility of multiple jumps was neglected, and
incorporating multiple jumps into the analysis is a critical step
in studying systems where a low friction regime is plausible,
in order to arrive at a physically consistent interpretation of
the dynamics.

To that end, we present a framework for inferring the
presence of long jumps in diffusion on honeycomb surfaces,
where the statistical description of the motion is expressed
via the ISF. We demonstrate the relevance of the method to
physical systems, by studying the Langevin dynamics of two
model surface systems. In Sec. II we extend a previous deriva-
tion of the ISF for non-Bravais lattice adsorption systems, to
include long jumps up to fourth-nearest neighbor in length.
In Sec. III we give details of the numerical simulation and
analysis algorithms used in the study, namely Langevin MD
simulations, calculation of the ISF from those simulations,
and the marginalized global fitting method. We study the clas-
sical Langevin dynamics of the model systems Cp/Cu(111)
and D/Pd(111) and explore the effect of friction on long
jumps in a physically realistic parameter range.

II. THEORY

The unifying object of study in the present work is the
ISF, which connects MD simulations, hopping models, and
the HeSE experiment. In the Introduction, the ISF I (�K, t )
was defined as the spatial Fourier transform of a conditional
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probability function G(R, t ). However, I (�K, t ) can be given
an equivalent definition that allows a direct calculation from
MD or MC dynamics simulations. For a single particle mov-
ing in two dimensions with time-dependent position R(t ), the
ISF can be written as

I (�K, t ) = 〈eiK·R(t )e−i�K·R(0)〉, (1)

where angle brackets represent a time average. Additionally,
we perform several independent simulations, representing
an ensemble of noninteracting adsorbates, and average the
result over all the trajectories. For uncorrelated motion of
independent adsorbates, such a procedure is equivalent to
the more general definition of the ISF for a classical many-
particle system [50]. At fixed �K the ISF is a function of
a correlation time t , and the decay of the ISF represents a
loss of correlation as a result of aperiodic processes, including
random hopping but also the continuous aperiodic motion
within each adsorption site known as intracell diffusion or
vibrational dephasing [40,51]. The parameter �K is both the
Fourier variable conjugate to R, and the mean quasielastic
surface-parallel momentum transfer when the ISF is measured
in a HeSE experiment [40].

The ISF has previously been derived for jump systems
with multiple adsorption sites per unit cell [47,48], of which
honeycomb surfaces are a special case. The ISF for a particle
hopping on a surface with two adsorption sites per unit cell
takes the form of a biexponential decay, i.e.,

I (�K, t ) = A1(�K)e−α1(�K)t + A2(�K)e−α2(�K)t , (2)

where A1,2 and α1,2 are known as the amplitudes and decay
rates. The analytical solution for A1,2(�K) and α1,2(�K) can
be found by solving a master equation for the evolution of
the probability over the adsorption sites [48], assuming that
jumps from any given site are independent Poisson processes.
We assume further that, once multiple jumps are included in
the jump distribution, the jump process is Markovian. Instead
of working directly from the master equation, we begin our
main derivation starting from the recipe set down in previous
work [48].

The honeycomb structure consists of two interleaved sub-
lattices, labeled 1 and 2. We write the jump rate from sublat-
tice μ to ν via jump vectors lμνk as 1/τμνk , where k is an index
running over all allowable jumps connecting sublattices μ

and ν. Define a 2 × 2 matrix A with elements

Aμν =
∑

k

1

τνμk
exp(−i�K · lμνk ) − δμν

∑
ν ′

1

τμν ′
, (3)

where 1/τμν is the total jump rate from sublattice μ to ν.
Let cμ be the relative equilibrium concentration of particles in
sublattice μ. c1 and c2 are related by a constant λ defined by
c2 = λc1. The absolute values of c1 and c2 do not affect the
final answer; only their ratio is important. Detailed balance
implies that any pair of hopping rates 1 → 2 and 2 → 1 are
also in the ratio λ. We define a matrix T with elements

Tμν = 1

cμ

δμν , (4)

and construct the (Hermitian) matrix B,

B = TAT−1, (5)

(a) Threefold adsorption sites
among surface atoms.

(b) Different classes of jump
represented by shells.

FIG. 1. Honeycomb arrangement of adsorption sites, and jumps
between the sites. (a) The arrangement of threefold adsorption sites
among the substrate atoms of a close-packed surface such as Cu(111)
or Pd(111). Substrate atoms are shown as unfilled circles, while
upward pointing (blue) and downward pointing (red) triangles show
the threefold adsorption sites. The two classes of adsorption site
form two inequivalent sublattices. (b) The different types of jump
available from a selected site. First through fourth order jumps are
represented by shells showing the available target sites. The black
triangle has as its vertices the final sites reachable by single jumps.
The green regular hexagon plays the same role for double jumps, and
the magenta regular hexagon for quadruple jumps. The target sites
associated with triple jumps, as defined in the present article, form
an irregular hexagon with threefold symmetry rather than sixfold.

with eigenvalues −αp (p = {1, 2}) and the associated nor-
malized eigenvectors bp, whose elements will be called bp

μ.
Defining the decay amplitudes as

Ap(�K) =
∣∣∣∣∣
∑

μ

√
cμbp

μ

∣∣∣∣∣
2

, (6)

the ISF is given by

I (�K, t ) =
∑

p

Ap(�K) exp[−αp(�K)t]. (7)

The result so far is valid for arbitrary long jumps, but pre-
viously explicit expressions were given for single jump pro-
cesses only. The rates associated with different types of jump
on the surface enter the derivation at the stage where A is
constructed. Next we give the associated jump vectors and use
them to construct A considering jumps of up to fourth-nearest
neighbor in length.

A. Jump vectors up to fourth order

We refer to nearest neighbor, next-nearest neighbor, third-
nearest neighbor, and fourth-nearest neighbor jumps as sin-
gle, double, triple, and quadruple jumps, respectively. The
arrangement of adsorption sites, and the jumps between them,
are represented in Fig. 1. Single jumps connect inequivalent
sites. For each site there are three possible single jumps.
We define sites of type μ = 1 as those where one of the
outbound single jumps is in the negative y direction. We define
a as the close-packing distance, the separation of nearest-
neighbor surface atoms. We will describe all jump vectors
in a Cartesian basis where the first basis vector (x, say)
points horizontally to the right in Fig. 1, and the second basis
vector (y) points in the positive y direction. By inspection of
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Fig. 1, the available single jump vectors from sublattice 1
are a(0,− 1√

3
), a( 1

2 , 1
2
√

3
), and a(− 1

2 , 1
2
√

3
). The destinations

available via single jumps, from a selected adsorption site,
are indicated by the black triangle in Fig. 1(b). The available
single jumps from sites of type 2 are their negatives. Double
jumps are between equivalent sites, and are indicated by the
green hexagonal shell in Fig. 1, the smaller of the two regular
hexagons in the figure. For sites of either hollow type, there
are six available double jumps and the jump vector sets are
identical for both types of site. In full, they are ±a(1, 0),
±a( 1

2 ,
√

3
2 ), and ±a( 1

2 ,−
√

3
2 ).

There exist two different lengths of triple jump, whose
target sites form the irregular cyan hexagon in Fig. 1. We
will follow previous work [52] and assume that the two
distinct types of triple jump occur at equal rates, on the basis
that the corresponding minimum-energy path (MEP) in the
continuous potential is very similar between the two cases: the
MEP possesses three approximately straight barrier-crossing
sections connected by wells (the hollow sites). The three
shorter triple jump vectors are to those target sites forming
the midpoints of the long sides of the irregular hexagon, and
are given by a(0, 2√

3
) and its two further threefold (120◦)

rotations. The six longer triple jump vectors, to the target
sites forming the vertices of the irregular hexagon, are given
by a( 3

2 , 1
2
√

3
) and its threefold rotations, and a(1, 2√

3
) and its

threefold rotations.
Finally, quadruple jumps connect equivalent sites. Each

site in the honeycomb has 12 fourth-nearest-neighbor sites,
defined by being connected to the current site by four suc-
cessive single jumps and not having a more direct jump path
available. The target sites from the selected site in Fig. 1
form the magenta regular hexagon, the larger of the two
regular hexagons in the figure. The associated jump vectors
are a(2, 0), a( 3

2 ,
√

3
2 ), a(1,

√
3), and a(0,

√
3), with all pairs

of ± allowed for both components. Six of the jump vectors,
for example those in the y direction, can be achieved by two
different paths, giving 18 types of quadruple jump in total.

B. Construction of the matrix A

It is convenient to write the total jump rate out of sublattice
μ = 1 as τ−1, which defines τ as a mean residence time.
Then we divide the jumps up into single (s), double (d), triple
(t), and quadruple (q) jumps in the proportions p1, p2, p3,
and p4, respectively, such that the total jump rates out of
sublattice μ = 1 due to s, d, t, and q jumps are given by
p1/τ , p2/τ , p3/τ , and p4/τ , respectively. The rates associated
with jumps along any specific jump vector are found by
dividing the total s/d/t/q jump rate by the number of jumps
of that class. For example, the rate of single jumps in the
negative y direction out of μ = 1 sites is p1/(3τ ). The third
and fourth order neighbors can both be divided up into two
subclasses, differing in their straight-line distance to the initial
site. In each case, the sites further away from the initial
site are those on the vertices of the hexagons in Fig. 1, and
are accessible by only one route with the given number of
intermediate sites. Those sites on the edges rather than the
vertices of the cyan (magenta) hexagon are accessible via two
distinct but equivalent triple (quadruple) jumps. We account

for the multiple routes by counting those jump vectors twice
[52]. The number of distinct types of triple (quadruple) jump
is therefore 12 (18), including repeated jump vectors, even
though the number of target sites is 9 (12).

The matrix elements of A along an arbitrary direction
cannot be written down explicitly and concisely. As in pre-
vious studies [38,48], we instead evaluate A along the high
symmetry directions of the surface, namely the x direction
and the y direction. The restriction to specific high symmetry
surface directions could be lifted easily in principle, but the
expressions would be cumbersome to write down, and would
not reflect the typical data acquisition routine in experiments.

The matrix elements of A, when �K is parallel to x, can
be written down by evaluating the general prescription (3)
and using the jumps as described above. The top left diagonal
element of A contains contributions only from jumps between
equivalent sites, which is a double jump contribution A(d )

11 and
a quadruple jump contribution A(q)

11 . Additionally, the diagonal
elements of A contain the �K-independent term

∑
μ′ν ′ τ

−1
μ′ν ′

which, using the definition introduced for τ , is simply 1
τ

for
the A11 element. In total,

A11 = A(d )
11 + A(q)

11 − 1

τ
, (8)

A(d )
11 = p2

6τ

[
2 cos (�Ka) + 4 cos

(
�Ka

2

)]
, (9)

A(q)
11 = p4

18τ

[
4 + 4 cos (�Ka) + 8 cos

(
3�Ka

2

)

+ 2 cos(2�Ka)

]
. (10)

The second diagonal matrix element A22 can be plausibly
related to A11 by assuming that the jump proportions for jumps
out of type 1 sites and type 2 sites are the same. Under
that assumption, and by appealing to detailed balance [53]
between the two populations of adsorption sites such that, for
example τ12 = λτ21, we can write

A22 = A11/λ. (11)

If there was a very strong degeneracy between the two sites,
such that trapping of a particle was far more likely in the
deeper of the two adsorption wells, then assumption (11)
could lead to significant problems with the model. However,
the practical utility of the model is for systems where λ is
of order unity, the site energy difference is much less than
the diffusion barrier, and the probability of a particle to be
trapped when passing through either type of site is not much
different. Therefore, we make the assumption (11) throughout
the present work, but note that there are circumstances where
relaxing the assumption may be beneficial.

The top-right off-diagonal element A12 of A can be broken
down into a single jumps contribution A(s)

12 and a triple jumps
contribution A(t )

12 :

A12 = A(s)
12 + A(t )

12 , (12)

A(s)
12 = p1

3τλ

[
1 + 2 cos

(
�Ka

2

)]
, (13)
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A(t )
12 = p3

6τλ
[1 + 2 cos(�Ka)] + p3

12τλ

[
2 cos

(
3�Ka

2

)

+ 2 cos (�Ka) + 2 cos

(
�Ka

2

)]
. (14)

The remaining off-diagonal element A21 is related to A12 by
detailed balance,

A21 = λA∗
12. (15)

When �K is parallel to y, vertical on the page in Fig. 1, the
matrix elements of A are constructed in the same way as just
presented, except for inserting the y components of the jump
vectors instead of the x components. The diagonal elements
are again written in terms of a double jump rate, quadruple
jump rate, and total exit rate, and the results read

A11 = A(d )
11 + A(q)

11 − 1

τ
, (16)

Ad
11 = p2

6τ

[
2 + 4 cos

(√
3

2
�Ka

)]
, (17)

A(q)
11 = p4

18τ

[
2 + 8 cos

(√
3

2
�Ka

)
+ 8 cos(

√
3�Ka)

]
,

(18)

A22 = A11/λ. (19)

The off-diagonal elements are written as the sum of a single
jumps and triple jumps contribution:

A12 = A(s)
12 + A(t )

12 , (20)

A(s)
12 = p1

3τλ

[
2 exp

(
−√

3

2
i�Ka

)]
, (21)

A(t )
12 = p3

12τλ

[
2 exp

(
− 2i�Ka√

3

)
+ 4 exp

( i�Ka√
3

)]

+ p3

12τλ

[
2 exp

(
− i�Ka

2
√

3

)
+ 2 exp

(
− 2i�Ka√

3

)

+ 2 exp
(5i�Ka

2
√

3

)]
. (22)

A21 = λA∗
12. (23)

The matrix A can then be processed into the ISF as pre-
scribed by Eqs. (4) to (7). In principle, explicit closed forms
for the ISF could be written down, as done for the model
including only single jumps [48], since the diagonalization of
a 2 × 2 matrix can be carried out in closed form. However,
the resulting expressions would be significantly more cumber-
some than the individual elements of A, and so we leave the
analytical working in the form of an exact expression for A.
In practice, in the implementation accompanying the present
paper, the diagonalization of the matrix B is performed using
closed form expressions for the eigenvectors and eigenvalues
of a 2 × 2 matrix.

C. Survival probability model

Although the expressions developed so far for I (�K, t ) are
completely general with respect to the proportions p1 through
p4, it is reasonable to apply a constraint to the proportions,
both on physical grounds and in order to reduce the number
of free parameters of the model. Here we assume a survival
probability model [52], in which the rate of individual sin-
gle, double, triple, and quadruple jumps are in a geometric
sequence 1 : s : s2 : s3. There is no fundamental reason why
the jump rates must be related exactly in that way, and so
the introduction of s rather than three independent jump rates
is an approximation, but one that allows us to explore the
prevalence of long jumps via a single parameter. The net rates
of all single, all double, all triple, and all quadruple jumps are
then in the ratio p1 : p2 : p3 : p4 = 3 : 6s : 12s2 : 18s3. The
absolute proportions p1 are determined by the normalization
p1 + p2 + p3 + p4 = 1.

With a definite model for the proportions of the rates of
different lengths of jump, the analytical theory of the present
section can be confirmed by carrying out kinetic Monte Carlo
(KMC) simulations of the jump motion. The confirmatory
results of KMC calculations, and further background on the
KMC method [10,54–58], are provided in the Supplemental
Material [59].

D. Separation of timescales

To interpret continuous classical MD simulations in terms
of jump motion, we need to distinguish jumps from short-
timescale dynamics such as ballistic and frustrated transla-
tional motion. A well-defined separation of vibrational and
hopping timescales is not guaranteed for motion in a general
potential, but is compulsory in order to have a well-defined
jump rate [60]. The systems we study in the present work
possess sufficiently strongly corrugated potentials such that
the vibrational and jump motion are cleanly separated, on a
timescale of the inverse friction 1/γ , as clearly seen later in
Fig. 5. The analysis of all ISFs in the present work therefore
begins by retaining only the long-time tail of the correla-
tion function which contains information about jump motion
rather than intracell processes.

The long-time tail can be defined by introducing a cut-off
correlation time for each ISF, corresponding to a timescale
which delineates the fast intracell processes, and slower jump
processes, represented in the correlation function. The use of
a cut-off time is meaningful as long the results are insensitive
to the exact choice of the cutoff. In other words if the final
outputs of the analysis converge with respect to the cut-off
time then we can conclude that the ISF for times longer than
the parameters extracted from the tails of the ISF have a mean-
ingful interpretation in terms of a coarse-grained description
of the dynamics as a jump process. For both model systems
presented later on, the jump rates and survival probabilities
extracted by the global analysis routine typically vary by a
fraction of a percent if the cut-off time is varied by a factor of
5 from 1/γ to 5/γ .

The use of 1/γ as the default timescale of the cutoff is
expected based on a previous comparison of jump rates mea-
sured by analysis of ISFs compared to trajectory inspection in
a further hexagonal system [Xe/Ni(111)] displaying multiple
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jumps [61]. In our case of D/Pd(111), use of 1/γ as the cut-off
time leads to a small but significant drift in the fitted value of λ

the concentration ratio in the jump model, as a function of γ .
However, when the cut-off time is increased to 3/λ there is no
systematic drift in λ, showing that the underlying jump model
is consistent with the simulated dynamics at a range of γ , as
long as the cut-off time is chosen sufficiently long. By con-
trast, for Cp/Cu(111) choosing a cut-off time of 1/γ does not
lead to any spurious drift in λ. Together the results suggest that
1/γ provides an approximate minimum cut-off time, but may
be a little too short to obtain properly converged measures of
the jump process, depending on the other system parameters.

III. NUMERICAL METHODS

A. Langevin molecular dynamics

In the present work the Langevin equation (LE) is used
as a simple and largely physical model of fluctuation and
dissipation in surface dynamics. We use the Verlet algorithm
[62] to simulate the LE, which reads [50]

mR̈ = −∇V (R) − mγ Ṙ + F(t ), (24)

where m is the adsorbate mass, V (R) is the adiabatic potential
energy surface (PES) or potential of mean force, γ is the
dynamical friction (viscosity per unit mass) with units of
frequency, and F(t ) is a random force following a Gaus-
sian distribution with zero mean. Assuming the friction acts
isotropically, the autocorrelation of F is given by the standard
classical fluctuation-dissipation relation [63] 〈Fi(t )Fj (0)〉 =
2mkBT δ(t )δi, j with δ(t ) the Dirac delta function and δi, j a
Kronecker-δ symbol over the two Cartesian spatial directions
of the simulation. Our simulations are run with a fixed time
step �t , and the random force is constructed to have the
autocorrelation

〈Fi(t )Fj (0)〉 = 2mkBT

�t
δi, j . (25)

The LE maintains the simulation at temperature T and pro-
vides a single adjustable parameter to represent the strength
of dissipative coupling between the adsorbate and the sources
and sinks of energy present on the surface, including electron-
hole pair excitations and surface phonons [30].

The potential energy surface V (R) is implemented by
tabulating the associated force −∇V (R) on a very fine grid
within a primitive unit cell before the simulation begins, and
applying a wrap-and-lookup operation at every time step. For
potentials described by a simple Fourier series, the lookup
method can give a minor speed advantage with negligible
loss of accuracy. However, not all atom/surface interaction
potentials are well described by a low-order Fourier series,
and instead lend themselves to alternative representations
such as spline interpolation between samples on a grid. In
the two MD simulations of the present work, one potential
energy surface was constructed analytically, and one was con-
structed by interpolation of numerical data from the literature.
The ability to treat both simple Fourier-series potentials and
numerically interpolated potentials on the same footing, com-
bined with the speed advantage, is the motivation for using the
lookup method. The grid resolution in the present work was
approximately 1 × 10−3 Å, at which level the approximation

associated with the finite resolution and grid lookup has no
discernible influence on the results.

B. Construction of the PES

We describe the construction of the two-dimensional po-
tential energy surface V (R) for the Langevin molecular dy-
namics simulations of D/Pd(111) and Cp/Cu(111) described
in Sec. IV. For D/Pd(111), numerical values of V (R) on a
Cartesian grid were obtained from a density functional theory
(DFT) study of several hydrogen/metal systems [31]. The
data were mapped by symmetry operations onto a rectangular
(nonprimitive) surface unit cell containing two primitive unit
cells, and interpolated onto a fine grid of 400 × 700 points us-
ing the MATLAB function csape [64] with periodic boundary
conditions. The interpolation to a finer 2000 × 3500 grid, to
allow an accurate evaluation of the force by finite differences,
was then performed with interp2 [65]. The resulting poten-
tial energy surface is smooth and free of apparent artifacts.
The two-dimensional potential, and a one-dimensional slice
representing the diffusion pathway between hollow sites over
bridge sites, are shown in Fig. 2.

Although some first-principles data is available for the
Cp/Cu(111) system [66], there is not enough to repeat the
method used to construct the D/Pd(111) PES from DFT data.
Instead, the Cp/Cu(111) potential was constructed by adding
smooth localized functions to a low order Fourier series, in a
way that achieves consistency with prior experimental data.
The method is described in further detail in the Supplemental
Material [16,37,38,45,59,67]. Despite the different construc-
tion route, the Cp/Cu(111) PES is qualitatively similar to
the D/Pd(111) PES shown in Fig. 2. The analogous plot of
the Cp/Cu(111) potential is provided in the Supplemental
Material.

C. Numerical intermediate scattering function

The ISF for a single simulated trajectory R(t ) is calculated
using Eq. (1). The time average is computed efficiently using
the (discrete) Wiener-Khinchine theorem [68]. The incoherent
average over independent trajectories was performed after
the inverse Fourier transform so that as well as the mean of the
ISF, the variance of the ISF can also be recorded directly. The
variance of the ISF at each point in time is required input for
the global fitting method, to be described shortly.

A zero-padding scheme was used to avoid the spurious
measurement correlations between the two ends of the non-
periodic trajectories. However, for the analysis of ISFs within
the jump model, only 5% of the full time range of the ISF
was retained, making the difference between the two methods
minimal. For example, the simulations of D/Pd(111) were run
up to a simulation time of 1.2 ns but only points in the ISF up
to 60 ps were retained for analysis.

D. Global marginalized fitting

A key aspect of the analysis in the current study is the use
of a global fitting method. If the adsorption sites formed a
Bravais lattice, then the jump dynamics could be extracted by
the standard method of fitting I (�K, t ) to an exponentially
decaying function of t with decay rate α(�K), and comparing
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(b)

(a)

FIG. 2. (a) The two-dimensional potential energy surface for
D/Pd(111) interpolated from numerical DFT data as described in the
main text. The scale bar above the plot shows the potential in meV.
The bright yellow maxima are top sites, which are all equivalent.
The dark blue minima are hollow sites. There are two nondegenerate
hollow sites per primitive unit cell. (b) A one-dimensional cross
section at x = 0 showing the energy barrier to diffusion between
neighboring hollow sites. The nondegeneracy �E ≈ 25 meV of the
neighboring hollows is more clearly visible in the one-dimensional
plot. The diffusion barrier is seen to be approximately 150 meV from
the lower-energy hollow.

α(�K) to the analytical form of Chudley and Elliott [44].
However, that model does not apply to our honeycomb surface
where in general the ISF at fixed �K consists of a biexpo-
nential decay. Each biexponential is difficult to fit directly
unless given exceptionally favorable underlying parameters
and a very high signal-to-noise ratio. Therefore, we focus
here on establishing a robust global analysis method based on
analyzing the ISF over all available �K.

The core of our global fitting method is a function B
that returns the probability of obtaining a set of values {Ii}
for the ISF at fixed �K given a set of correlation times
{ti}, corresponding uncertainties {σi}, and a model function
f (�K, t ) for the normalized ISF. In the present investigation,
the function f (�K, t ) depends on the model parameters τ , λ,

and s. Therefore for a given simulation data set the function B
can be summarized as a function of the three model param-
eters B(τ, λ, s). The probability is marginalized over linear
combinations of the model function and a static level (u f +
v), for physical reasons as discussed in the Supplemental
Material [59], where we write down an explicit expression for
B based on previous formulations [38,69].

By Bayes’ theorem [38,49], B is proportional to the poste-
rior probability of (τ, λ, s) given the data set and model, under
the assumptions of independent normally distributed uncer-
tainties, uniform prior probability distributions in τ , λ, and s,
and that the choice of integration limits for marginalization
as ±∞ rather than their physical bounds of 0 to 1 makes no
significant difference to the result. In edge cases of extremely
noisy data or ISFs that decay very slowly compared to the
time window of the simulation or experiment, the integration
limits may need to be considered more carefully. However,
in test cases representative of the simulations analyzed in the
present work, there is no evidence for the choice of integration
limits, or the assumption about the prior probability, causing
any problems. The accuracy of the method for a reasonable
selection of input parameters is demonstrated in the Supple-
mental Material [59].

As well as marginalization, a second crucial feature of
the global fitting method, which provides a statistical ad-
vantage over ordinary least-squares fitting of each ISF, is
accumulation. By accumulation we mean that the probability
function B(τ, λ, s) is computed for ISFs at several �K and
the outputs multiplied together to give the relative probability
of obtaining all the ISFs given the model. In previous work
dealing with dynamics in the single-jumps limit [38], the end
result of such an analysis is a relative likelihood function for
the parameters τ and λ, which was represented as a surface
plot. The accumulated function we have just described simply
generalizes that function of two variables to include a third
variable, the survival ratio s.

The generalization of the previously documented analysis
method [38] to include a survival ratio s is in principle simply
the addition of the double, triple, and quadruple jump terms in
the matrix (3), as specified in Eqs. (8)–(23). However, the grid
search methods that were appropriate for the study of single-
jump processes become unwieldy with the addition of an extra
parameter s, and would become increasingly infeasible with
further generalization of the model. Therefore, writing the
accumulated probability as p, we use − ln(p) as the objective
function for a non-grid-based function minimization search, in
practice the MATLAB routine fminsearch [70]. The typical
number of iterations required to converge on the correct
parameter set is generally small compared to what would be
required in a grid search, illustrated by the iteration counts for
the test cases reported in the Supplemental Material [59].

IV. RESULTS AND APPLICATIONS

A. Dynamics at high friction: Cp/Cu(111)

Experimental studies of Cp/Cu(111) with HeSE were a
major factor in the original development of the global fitting
concept used in the present work [37,38]. Cp is an anionic
five-membered ring formed upon dissociative adsorption of
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cyclopentadiene (C5H6) on Cu(111). It was previously argued
that rotational motion would be essentially invisible to helium
atom scattering methods given the high rotational symmetry
of the species, and therefore both experiments and simulations
have been analyzed within the framework of effective center-
of-mass motion. Scan-by-scan analysis of the experimental
data was sufficient to demonstrate that the diffusion dynamics
do not occur on a Bravais lattice of adsorption sites [37],
but the extra statistical power afforded by the global analysis
allowed the nondegeneracy of the adsorption sites to be de-
termined to high precision [38]. The friction of γ = 2.5 ps−1

that was used to fit the experimental data predicts an absolute
jump rate near the maximum of the Kramers turnover [71]
and the dynamics can therefore be reasonably assumed to be
dominated by single jumps [60]. The very sharply defined
probability maxima of the experimental Bayesian analysis
also strongly suggest that a single-jump model was suitable.
Here we confirm explicitly that the friction previously inferred
does give predominantly but not exclusively single jumps, but
that reducing the friction slightly leads to a take-off in the
proportional of multiple jumps.

Simulations were performed on the potential energy sur-
face whose construction was described in Sec. III B, and
which is visualized in the Supplemental Material [59]. A
sample simulated trajectory is also shown in the Supplemental
Material. To find the jump statistics, MD simulations of
duration 12 ns were performed with a time step of 5 fs,
for 200 independent particles. The ISF was calculated for
0 < t < 600 ps a range of �K from 0.1 Å−1 along the x and y
directions, and the collection of simulated ISFs was analyzed
with the global fitting method (Sec. III) to extract the most
likely values of τ , λ, and s. The MD simulations and analysis
were repeated for different values of the friction 0.5 < γ <

5.0 ps−1. The resulting λ and s as a function of the friction are
shown in Fig. 3. As expected, increasing the friction leads to
a monotonic decrease in the survival parameter s representing
the proportion of long jumps, while the concentration ratio λ

remains essentially constant. The behavior of the inverse mean
residence time τ−1 is nonmonotonic, and is plotted in the
Supplemental Material. The maximum rate τ−1 is obtained
near the experimentally determined value of the friction γ =
2.5 ps−1 in agreement with previous simulation studies [71].

B. Dynamics at low friction: D/Pd(111)

The interaction of hydrogen with palladium (Pd) surfaces is
an extremely significant topic in applied fields including cat-
alytic hydrogenation [74], reversible hydrogen storage [75],
and a range of renewable energy technologies [76]. More
generally, hydrogen dynamics on close-packed metal surfaces
is a widely studied example of diffusion over a honeycomb
arrangement of adsorption sites, often with a focus on quan-
tum effects at low temperatures [10,39]. The study of rapid
surface diffusion on well-defined Pd surfaces has an important
contribution to make to the bottom-up understanding of the
hydrogen/surface interaction including both the adiabatic,
average interaction, and the dissipative coupling. We explore
the classical dynamics of heavy hydrogen (deuterium, D)
atoms on Pd(111) at elevated surface temperature Ts = 350 K.
The influence of nuclear quantum effects on the absolute

FIG. 3. Dependence of s and λ on the friction γ , for the model
simulations representing center-of-mass dynamics of Cp/Cu(111).
The survival parameter s exhibits a monotonic decay with increasing
friction. The solid curve is an exponential fit for s(γ ), which gives a
good description of the trend. The stable fitted value of λ is shown
in the inset, which confirms that despite the various assumptions in
the survival ratio model (Sec. II), the model is providing a good
description of the jump dynamics. The variation of the mean inverse
residence time extracted from the same simulation data is expected
to show a maximum [60,72,73] around the experimental value of the
friction γ = 2.5 ps−1 [71], which is verified by a plot of τ−1(γ ) in
the Supplemental Material [59].

jump rate and jump distribution in multidimensional quantum
diffusion is not comprehensively and quantitatively settled,
due to the fundamental difficulties in dynamical treatment
of dissipative nonlinear quantum systems [77]. However, ev-
idence from a range of sources suggests that the activated
hopping dynamics of D/Pd(111) at elevated temperatures can
plausibly be described classically with modest corrections;
a detailed discussion is given in the Supplemental Material
[31,59,60,77–83]. Here we model the dynamics classically.

To estimate a plausible range of Langevin γ to simulate,
we can use evidence from theoretical studies of the damping
effect of the free electron gas at metal surfaces. Coupling
to electron-hole pair excitations on metal surfaces is a well
known mechanism that gives rise to an effective Langevin
friction [16,84,85]. One route to estimating the electronic
friction is to perform a linear response analysis of the electron
gas within density functional theory, which for example leads
to a predicted vibrational lifetime of τ = 0.8 ps for a hydrogen
atom adsorbed at hollow sites on Cu(111) [86]. In a different
formulation, calculations of the electron-induced transition
rates between different vibrational states of hydrogen on the
Pd(111) surface reveal a typical transition rate of 2 ps−1

[87], implying a similar lifetime on both surfaces. Vibrational
spectroscopy measurements on various metal surfaces do not
contradict the theoretical picture, but experimental resolution
and additional broadening effects limit the measurement of
very sharp vibrational lines [88,89], which re-emphasises the
importance of alternative measures of the friction, such as the
jump distribution. Therefore we simulate the regime 0.5 <

γ < 5 ps−1 to examine the effect of low friction (γ � ω0)
on the jump distribution. Although the primary function of
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FIG. 4. Simulated 100 ps trajectory for a deuterium atom on the
potential energy surface shown in Fig. 2, at a temperature T = 350 K
and a Langevin friction γ = 1.0 ps−1. The simulation is just long
enough to show a handful of jumps. The trajectories used for the
statistical analysis of hopping dynamics were considerably longer as
described in the main text.

the simulations is to illustrate the application of the Bayesian
fitting routine, we have given reasonable grounds to believe
the simulation results have a basis in reality, and therefore
have significant implications for the study of dissipation in
hydrogen diffusion.

Figure 4 shows a single particle trajectory, of duration
100 ps, simulated on the PES of Fig. 2 using the LE with
γ = 1.0 ps−1, at a simulation temperature of 350 K. The time
step is 0.2 fs, which is substantially smaller than any other
timescale of the simulation and correctly maintains the target
simulation temperature.

ISFs were calculated at �K = {0.1, 0.2, . . . , 3.5} Å
−1

from simulations lasting 1.2 ns for 200 independent particles,
and truncated at a correlation time of 60 ps. The truncation in
time is a realistic feature of the HeSE experiment where only

FIG. 5. ISF derived from simulated trajectories. The simulation
conditions were the same as used to produce the trajectory illustrated
in Fig. 4, i.e., T = 350 K and γ = 1.0 ps−1. However, the total
simulation time is now 1.2 ns, and the results are averaged over 200
independent particles. The momentum transfer is �K = 1.5 Å−1,
directed along the x direction. In the inset, the short time behavior
of the ISF is shown at the time resolution of the simulations. The ISF
exhibits complete vibrational dephasing over the timescale 1/γ , and
matches on to the monotonic decay at longer times.

a finite spin echo time is available. Figure 5 shows an ISF at
�K = 1.5 Å−1, derived from a set of simulated trajectories at
temperature Ts = 350 K, with γ = 1.0 ps−1. The momentum
transfer is directed along the x direction. The ISF undergoes
a nonbiexponential decay at short correlation times, before
matching on to a biexponential decay (with an amplitude
less than unity) at long times. The nonbiexponential decay is
caused by features of the dynamics in the continuous potential
that are not captured by a hopping model, such as intracell dif-
fusion and the finite time taken to cross the diffusion barrier.

(a) Inverse residence time

(a) Survival ratio

FIG. 6. Dependence of τ , s, and λ on the friction γ , for the
Langevin simulations of D/Pd(111). The inverse mean residence
time 1/τ is shown in (a). 1/τ increases approximately linearly with
γ at the lowest γ , as expected theoretically. The solid curve is a guide
to the eye. The survival ratio s(γ ) is a monotonically decreasing
function of γ . The solid curve is an exponential decay, which again
provides a reasonable description of the dependence of s on γ . The
stable fitted value of λ, shown in the inset, confirms that the survival
model introduced in Sec. II provides a good description of the jump
dynamics in the Langevin simulations, despite the inherent approx-
imations. At γ = 1, a reasonable estimate of electronic friction as
outlined in the main text, multiple jumps are extremely prevalent
which suggests that even in the presence of quantum corrections
a significant proportion of multiple jumps is likely to occur in the
physical system at elevated temperatures.
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The inset shows the detail of the fast initial loss of correlation
including oscillations due to frustrated translational motion in
the adsorption well. However, in the main plot the fast initial
drop occurs over the space of one point.

Simulations were performed at different friction strength,
0.5 < γ < 5.0 ps−1. For each value of γ , the global fitting
method described in Sec. III D was applied to determine the
most likely set of τ , λ, and s. The best fit parameters are
shown as a function of γ in Fig. 6. Because the friction is sub-
stantially lower than the frustrated translation frequency, the
jump rate increases approximately linearly with the friction,
in accordance with Kramers’ well-known analytical result
[60,72]. Additionally, at the lower end of the friction range, we
can see that there is a high proportion of multiple jumps. De-
spite the approximation of completely classical dynamics, the
result is highly significant for studies of hydrogen diffusion,
whether with helium scattering or any other method capable
of operating in a regime where multiple jumps are a strong
possibility. Our numerical results make a dual contribution.
First, we have established a detailed global fitting framework
for inferring long jumps from ISFs and therefore HeSE data.
Second, we have gathered theoretical and experimental evi-
dence suggesting that hydrogen diffusion takes place in a low
friction regime γ � ω0, and used Langevin simulations on
a realistic model potential to confirmed the associated high
proportion of long jumps in the classical limit.

V. CONCLUSIONS

We have derived new analytical expressions for the inter-
mediate scattering function of an adsorbate in a jump diffusion
model. In the model, the adsorbate performs long jumps on a
honeycomb arrangement of adsorption sites, including jumps
up to fourth-nearest neighbor in length. The model is relevant
for adsorbates diffusing between hollow sites on close-packed

surfaces as exemplified by the (111) faces of fcc metals. A
survival-ratio model of the jump distribution was introduced
in order to characterize the proportion of long jumps with
a single parameter. The analytical scattering functions have
been verified with kinetic Monte Carlo simulations, which
define the survival ratio via the rates of allowed jumps in
a process table. The analytical model, and the previously
published Bayesian analysis concept, have been synthesised
into a global marginalized fitting routine capable of inferring
the jump distribution from simulations.

Classical molecular dynamics simulations in the Langevin
framework have been carried out, using model potentials
representing the diffusion of cyclopentadienyl (Cp) anions on
Cu(111), and deuterium atoms on Pd(111). The molecular
dynamics simulations have been analyzed via ISFs and the
global fitting framework to extract jump distributions for both
systems. The results for Cp/Cu(111) confirm the dominance
of single jumps, which was assumed but not explicitly ana-
lyzed in previous studies. For D/Pd(111) we find that at an
elevated surface temperature (Ts = 350 K) and for theoreti-
cally realistic estimates of the Langevin friction based on the
electron-hole pair mechanism, the jump distribution contains
a significant fraction of long jumps fitted with a survival prob-
ability of approximately 20% at γ = 1.0 ps−1. Inferring the
presence of multiple jumps in experimental helium-scattering
studies of hydrogen diffusion, is therefore highly feasible and
would verify the low-friction regime experimentally.
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