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Size effect of soft phonon dispersion in nanosized ferroics
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Using Landau-Ginsburg-Devonshire theory, we derive and analyze analytical expressions for the frequency
dispersion of soft phonon modes in nanosized ferroics and perform numerical calculations for a thin SrTiO3

film. We revealed the pronounced “true” size effect in the dependence of soft phonon spatial dispersion on
the film thickness and predict that it can lead to the “apparent” or “false” size effect of dynamic flexoelectric
coupling constants. Also, we derived analytical expressions describing the influence of finite size effect on the
appearance and properties of the incommensurate spatial modulation induced by the static flexoelectric effect in
ferroic thin films. To verify the theoretical predictions experimental measurements of the soft phonon dispersion
in nanosized ferroics seem urgent.
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I. INTRODUCTION

Microstructural, electrophysical, electromechanical, and
magnetoelectric properties of nanosized ferroics (shortly
“nanoferroics”), such as thin films and nanoparticles of proper
and incipient ferroelectric, quantum paraelectrics, ferroelas-
tics, and ferromagnetics with inherent phase transitions to
the long-range ordered phase(s), strongly attract the atten-
tion of researchers [1,2]. In particular, experimental and
theoretical studies of the lattice dynamics in nanoferroics
are an inexhaustible source of versatile valuable information
for fundamental physical research and advanced applications
[1,2]. Notably, in any phase transition that leads to the in-
stability of the definite phonon vibration modes, the static
displacements of atoms at the phase transition correspond
to frozen displacements of the soft phonon modes [3,4].
Basic experimental methods, which contain information about
the soft phonon modes and spatial modulation of the order
parameter in ferroics are dielectric measurements [5], inelastic
neutron scattering [3,6–10], x-ray [11–13], Raman [14], and
Brillouin [11,12,15–18] scatterings, and the ultrasonic pulse-
echo method [15,17], allowing hypersound spectroscopic
measurements.

The flexoelectric coupling is of great importance for
nanoscale objects [19,20] and especially for nanoferroics
[21,22], where the strong strain gradients are inevitably
present at the surfaces of thin films [23–25], domain walls, and
interfaces [26–28]. The static flexoelectric effect, introduced
by Mashkevich, Tolpygo [29], and Kogan [30], manifesting
itself in the appearance of electric polarization variation δPi
linearly proportional to the strain gradient ∂ukl/∂x j , exists in
all solids, making the effect universal [31–33]. The propor-
tionality coefficient fi jkl in the linear relation, δPi = fi jkl

∂ukl
∂x j

,
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is the component of the flexoelectric coupling tensor. Rel-
atively recently Kvasov and Tagantsev [34] predicted the
existence of a dynamic flexoelectric effect contributing to

the polarization variation as δPi = −Mi j

α

∂2Uj

∂t2 , where Uj are
the components of elastic displacement, Mi j are the com-
ponents of the dynamic flexoelectric tensor, and α is the
dielectric stiffness.

Considering the importance of the flexoelectric coupling
(shortly “flexocoupling”) for the physical understanding of
the gradient-driven couplings in mesoscale and nanoscale
solids, one has to determine its symmetry and numerical
values. The available experimental and theoretical data about
the flexocoupling tensor symmetry, specifically the amount
of independent components allowing for the point group
symmetry [35,36] and “hidden” permutation symmetry [37],
are contradictory [38]. The upper limits for the values fi jkl

established by Yudin et al. [39], as well as the values cal-
culated from first principles for bulk ferroics [40–43], can
be several orders of magnitude smaller than those measured
experimentally in ferroelectric ceramics [44–46] and thin
films [47], ferroelectric relaxor polymers [48] and electrets
[49], and incipient ferroelectrics [50,51] and biological mem-
branes [52,53]. To explain the paradox, Stengel [54] rea-
sonably argued that a significant difference (e.g., increase)
of flexoelectric response can originate from the different
electric boundary conditions. Recent papers suggest several
probable sources of “giant” flexoelectricity that is measured
sometimes. Namely, Abdollahi et al. [55] and Rahmati et al.
[56] revealed that asymmetric distribution of piezoelectric
sources in solids [55], as well as nonuniformly distributed
electric dipoles and charges in soft electrets [56], can produce
a remarkable flexoelectric-like response. Abdollahi et al. [55]
theoretically predicted that the giant flexoelectric response
can originate in a homogeneously poled piezoelectric beam
under bending [55]. Rahmati et al. [56] proposed a modern
theory of soft electrets electromechanical response predict-
ing that nonuniformly distributed dipoles and charges in the
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electrets reveal an apparent electromechanical response that
can be ambiguously and interchangeably interpreted as ei-
ther transverse piezoelectricity or flexoelectricity. They also
suggest the routes to engineer high transverse piezoelectric
and flexoelectric coefficients in appropriately designed soft
electrets, where a homogeneous external electric field can in-
duce curvature enabling the structure application as a bending
actuator.

Bersuker argued [57] that the anomalously high flexo-
electric coefficients in perovskite ceramics may be related to
the manifestation of the pseudo-Jahn-Teller effect. Steaming
from a vibronic nature [58], the pseudo-Jahn-Teller effect
can affect the dynamic flexoeffect in ferroics, and, indeed,
the available information about the numerical values of Mi j

is completely controversial, because, on one hand, there are
microscopic theories in which the effect is absent [54], and, on
the other hand, its determination from the soft phonon spectra
leads to nonzero Mi j [34,59,60], where the impact appeared
comparable to that of the static flexoelectric effect in, e.g.,
bulk SrTiO3.

The impact of the static and dynamic flexoelectric effect
on the dispersion law ω(k) of the soft phonon frequency ω

in ferroics has been studied recently in Refs. [58,59], where
we used Landau-Ginzburg-Devonshire (LGD) approach to
model the properties of optic and acoustic phonons in the
ferroelectric and paraelectric phases of different ferroics. It
appeared that the joint action of static and dynamic flexoelec-
tric effects essentially broadens the k spectrum of generalized
susceptibility and leads to the additional “pushing away” of
the optical and acoustic soft mode phonons. The degeneration
of the transverse optic and acoustic modes disappears in the
ferroelectric phase in comparison with the paraelectric phase
due to the synergy of flexoelectric coupling and ferroelectric
nonlinearity. The soft acoustic modes and spatially modulated
phases (SPM) can be induced by the flexoelectric coupling
in ferroics [22,61,62] and the surface acoustic waves can
propagate in nonpiezoelectric solids due to the static and
dynamic flexoelectric effects [63].

Let us underline that the theoretical results [58–62], which
can be important for the theoretical analyses of the neutron,
Raman, and Brillouin scattering experiments [22], have been
obtained for unconfined [58–61] or semi-infinite [62] fer-
roics. However, to the best of our knowledge, a theoretical
description of the phonon dispersion in nanoferroics (e.g.,
in thin films or nanoparticles) is still absent. Therefore, in
this study we derive and analyze the dispersion ω(k) of soft
phonon modes in dependence on the thickness of ferroic
film allowing for the static and dynamic flexocoupling, and
perform numerical calculations for an incipient ferroelectric
SrTiO3 using LGD theory. The paper is structured in the
following way. The problem formulation, used approxima-
tions, and an analytical solution for the phonon dispersion
in a thin paraelectric film are presented in Sec. II. Obtained
analytical expressions for ω(k) are discussed and illustrated
on an example of a SrTiO3 thin film in Sec. III, where special
attention is paid to the “true” size effect of the soft phonon
dispersion and to the “apparent” or “false” size effect of the
dynamic flexocoupling, as well as to the influence of the film
thickness on the SPM appearance and critical values of the
static flexocoupling constants. Section IV is a brief summary.

FIG. 1. The geometry of the ferroic film confined in the z
direction. The fluctuations of electric polarization and mechanical
displacement, δ�P and δ�U , are shown by semitransparent ellipsoids.

The details of calculations are presented in the Supplemental
Material [64].

II. ANALYTICAL SOLUTION FOR A THIN
FERROELECTRIC FILM

A. Problem formulation

Let us consider a ferroic film of thickness 2h confined
in the z direction. The film surfaces are covered by two
ideally conducting “soft” electrodes, which do not affect its
mechanical state. The geometry of the problem is shown in
Fig. 1.

Below we calculate the phonon spectra using the well-
adopted procedure, when the polarization and displacement
variations appear as the response to the fluctuations of
applied electric field δ�E and elastic force δ�N (see, e.g.,
Refs. [19,58–60]). These fluctuations can be arbitrary, but
small enough to allow the linearization of a dynamic equation
of state. Also the polarization and displacement variations
should satisfy boundary conditions at the film surfaces. An-
other limitation is the so-called “one-component approxima-
tion” [59,60], when the considered fluctuations of the long-
range order parameters are one component of electric polar-
ization δPi and one component of mechanical displacement
δUj . The indexes i, j can be one of 1, 2 or 3 determining the
fluctuation direction.

Both in-plane and out-of-plane directions of polarization
fluctuations should be considered for a film in a ferroelectric
phase, i.e., when the spontaneous polarization is nonzero.
Below we consider a paraelectric film without the sponta-
neous polarization or strain, and so the direction of the polar-
ization and displacement variations are related with the vec-
tors δ�E and δ�N , respectively. The electric field δ�E is the
sum of depolarization (d) and small external (e) fields, δ�E =
δ�Ed + δ�Ee. The depolarization field δ�Ed is induced by the
fluctuations with div(δ�P) �= 0, since it satisfies the Poisson
equation εbε0div(δ�E ) = div(δ�P), where εb is a background
permittivity [19] and ε0 = 8.85 × 10−12 F/m is the universal
dielectric constant. It is well known that δ�Ed strongly sup-
presses all “longitudinal” fluctuations, for which div(δ�P) �=
0, and so the longitudinal phonons can be hardly detected
experimentally, especially the optic ones [58]. That is why
below we performed calculations for the most interesting case
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of transverse phonons with div(δ�P) = 0 and div(δ�U ) = 0,
which is valid for, e.g., δPy(x, z) and δUy(x, z).

In comparison with the three-component case [58], the
one-component approximation for polarization and displace-
ment allows considering only the lowest transverse optic and
transverse acoustic soft phonon modes in ferroics [59–61]. As
it was shown in Refs. [59,60], the one-component approxi-
mation can describe quantitatively the experimental data for
the soft phonon dispersion in paraelectric SrTiO3 [6], uniaxial
ferroelecrics Sn2P2S6 [65], and Sn2P2Se6 [66], and, quite un-
expectedly, the dispersion of the lowest modes in the paraelec-
tric phase of ferroelectric PbTiO3 [3] and organic ferroelec-
tric (CH3)3NCH2COO · CaCl2 · 2H2O [9]. However, strictly
speaking, the one-component approximation cannot describe
the soft phonon dispersion in multiaxial ferroelectrics, such as
perovskites BaTiO3 or (Pb, Zr)TiO3, wherein three acoustic
and several optic phonon modes are observed [58]. This is
because the simplified dispersion law, obtained within the ap-
proximation, cannot describe the interaction between different
transverse and longitudinal optic and three acoustic modes
induced by cooperative effects, flexoelectric, and electrostric-
tion couplings in multiaxial ferroelectrics (see e.g., the models
by Kappler, Walker [67], and Hlinka et al. [68]). Moreover,
the one-dimensional approximation cannot describe the be-
havior of dielectric susceptibility nondiagonal components in
a ferroelectric phase, which should originate from, e.g., the
flexoelectric component f13 in a three-dimensional case [59].
Unfortunately, it appeared impossible for us to derive ana-
lytical expressions for a phonon dispersion in thin films in a
general three-component case, and, for the sake of clarity, we
were limited ourselves by the one-component approximation.

Within the one-component approximation, dynamic equa-
tions for the order parameter component δPi(x, z), further de-
noted as η(x, z), and one component of mechanical displace-
ment δUj (x, z), further denoted as U (x, z), can be obtained by
the variation of the Lagrange function. The Lagrange function
of the ferroic film has the following form:

LV =
∫ ∞

0
dt

∫ ∞

−∞
dx

∫ h

−h
dz(FV − KV ), (1a)

FV = α(T )

2
η2 + β

4
η4 + γ

4
η6 − ηδE

+ gl

2

(
∂η

∂z

)2

+ g⊥
2

(
∂η

∂x

)2

− ql
∂ U

∂z
η2 − q⊥

∂ U

∂x
η2 − fl

2

(
η
∂2U

∂z2
− ∂U

∂z

∂η

∂z

)

− f⊥
2

(
η
∂2U

∂x2
− ∂U

∂x

∂η

∂x

)

+ cl

2

(
∂ U

∂z

)2

+ c⊥
2

(
∂ U

∂x

)2

+ v

2

(
∂2U

∂z2

)2

+ w

2

(
∂2U

∂x2

)2

+ δNl
∂ U

∂z
+ δN⊥

∂ U

∂x
(1b)

KV =
(

μ

2

(
∂η

∂t

)2

+ M
∂η

∂t

∂U

∂t
+ ρ

2

(
∂U

∂t

)2
)

. (1c)

According to Landau theory [69,70], the coefficient α in
Eq. (1b) linearly depends on the temperature T for proper
ferroelectrics, α(T ) = αT (T − TC ), where αT > 0 and TC >

0 is the Curie temperature. For incipient ferroelectrics (such
as SrTiO3) α obeys the Barrett-type formula [71], α(T ) =
αT (Tq coth(Tq/T ) − TC ), where TC � 0 is the “virtual” Curie
temperature, Tq > 0 is a characteristic temperature. Coeffi-
cients ql and q⊥ are the longitudinal and transverse compo-
nents of electrostriction tensor in the normal and transverse
directions with respect to the film surfaces (z = ±h), respec-
tively, fl are f⊥ the longitudinal and transverse components
of the static flexoelectric tensor, respectively [72]. The higher
order coefficient β (that can be positive or negative depending
on the ferroic order) and positive coefficient γ are regarded
temperature independent; gl and g⊥ are positive longitudi-
nal and transverse components of the polarization gradient
tensor, and cl and c⊥ are elastic compliances related to the
normal and transverse directions, respectively. The longitudi-
nal coefficients v and w of higher elastic gradients are not
negative, v � 0 and w � 0. M is the dynamic flexocoupling
coefficient; ρ is the ferroic mass density at normal conditions,
and μ is the kinetic coefficient in kinetic energy (1c).

The surface free energy related with the polar order param-
eter is

FS = ζ

2

∫ ∞

−∞
dx[η2(x,−h) + η2(x, h)]. (2)

The coefficient ζ � 0 in the surface energy (2) is weakly
temperature dependent.

Euler-Lagrange equations for η(x, z) and U (x, z), obtained
by varying Eq. (1a), are listed in the Supplemental mate-
rial. The boundary conditions for η(x, z) derived by varying
Eqs. (1) on η have the form:

−ζη − gl
∂η

∂z
− fl

2

(
∂ U

∂z

)∣∣∣∣
z=h

= 0,

ζη − gl
∂η

∂z
− fl

2

(
∂ U

∂z

)∣∣∣∣
z=−h

= 0. (3)

Supplementary boundary conditions for U (x, z) make
sense only in the case of positive v, and they are listed in the
Supplemental Material for the considered geometry. To obtain
and analyze relatively simple analytical expressions, one can
show that the conditions for U (x, z) can be neglected in the
case of small enough v and under the validity of strict equality
f 2 � cg regarded valid hereinafter (for details see Ref. [59]
and the criteria of upper bonds of flexoelectric coefficients in
Ref. [39]). The higher gradient terms v

2 ( ∂2U
∂z2 )2 + w

2 ( ∂2U
∂x2 )2 are

usually omitted, except in several papers, e.g., Eliseev et al.
[73], Yurkov [74], Mao and Purohit [75], and Stengel [43].
Notably, the supplementary conditions for U (x, z) become
redundant in the limit v = w = 0 considered hereinafter.

Let us seek for the solution of the problem for the para-
electrics phase, where α(T ) > 0 and the spontaneous po-
larization is zero. The expansion of the small variations,
η(x, z) and U (x, z), in Fourier integral in k-ω space have the
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form

η =
∫

dk⊥dkl exp (ik⊥x + ikl z + iωt )η̃(�k),

U =
∫

dk⊥dkl exp (ik⊥x + ikl z + iωt )Ũ (�k). (4)

Euler-Lagrange equations [Eqs. (A.1)–(A.2) in the Supple-
mental Material] linearized with respect to the polarization
and displacement fluctuations acquire the following form in
k-ω space

(−μω2 + α + g⊥k2
⊥ + glk

2
l

)
η̃ + (

fl k
2
l + f⊥k2

⊥ − Mω2
)
Ũ

= δẼ , (5a)(
c⊥k2

⊥ + cl k
2
l − ρω2

)
Ũ + (

fl k
2
l + f⊥k2

⊥ − Mω2
)
η̃

= −iklδÑl − ik⊥δÑ⊥. (5b)

As a result the Fourier images of the order parameter
η̃(�k) and elastic displacement Ũ (�k) are linearly proportional
to external electric field and mechanical force variations, δẼ
and δ �̃N .

Notethat electric field fluctuation δE in Eq. (1c) does not
contain contribution related with a depolarization field for
considered transverse phonons. However, in the general three-
component case δEi = δEd

i + δEe
i is the sum of depolariza-

tion δẼ d
i (�k) ≈ − kik jδP̃j (�k)

εbε0k2 and the small external δEe
i fields

(see supplemental material in Ref. [58]). The field δẼ d
i (�k)

is induced by longitudinal fluctuations with k jδP̃j �= 0 and it

leads to the substitution α → αδi j + kik j

εbε0k2 in three equations

for δP̃i analogous to Eq. (5a) (i = 1, 2, 3). Since almost
always 1

εbε0
� α, the longitudinal fluctuations δP̃i affected by

the depolarization field are very small, and their frequency
becomes very high in comparison with the frequency of
transverse modes [58]. That is why below we analyze results
for the transverse phonons only.

The formal solution of Eqs. (5) can be presented in a
matrix form and are listed in the Supplemental Material. The
condition when the determinant of the system (5) is zero leads
to the expression for the phonon frequency dispersion, ω(k),
in a bulk ferroic,

ω2
1,2(�k) = C(�k) ±

√
C2(�k) − 4(μρ − M2)B(�k)

2(μρ − M2)
, (6)

where the functions

C(�k) = αρ + (μc⊥ − 2 f⊥M + ρg⊥)k2
⊥

+ (clμ − 2 flM + gρ )k2
l

and

B(�k) = (
α + gl k

2
l + g⊥k2

⊥
)(

clk
2
l + c⊥k2

⊥
) − (

fl k
2
l + f⊥k2

⊥
)2

,

respectively (see the Supplemental Material for details). Dis-
persion relation (6) contains the transverse optical (O) and
acoustic (A) phonon modes, which corresponds to the signs
“+” and “−” before the radical, respectively.

B. Approximate analytical solution for thin films

For thin films the boundary conditions (3) makes the
kl -spectra of ω(�k) discrete, kl → km, where m are integer
numbers. The discrete eigenvalues km were determined from
the condition of the zero determinant ‖Dm‖ of the system
(5) along with the boundary conditions (3) (see Supplemental
Material). It turned outthat the condition ‖Dm‖ = 0 is equiva-
lent to the characteristic equation

Im[A(km, ω)] cos (2kmh) + Re[A(km, ω)] sin (2kmh) = 0,

(7)

where

A(km, ω) = −
(

ζ − ikmgl − ikm
fl

2

fl k2
m + f⊥k2

⊥ − Mω2

clk2
m + c⊥k2

⊥ − ρω2

)2

.

(8)

The soft phonons dispersion ω(km, k⊥) is given by Eq. (6),
but with discrete km, namely,

ω2
1,2(km, k⊥)

=
C(km, k⊥) ±

√
C2(km, k⊥) − 4

(
μρ − M2

)
B(km, k⊥)

2
(
μρ − M2

) ,

(9)

where the functions C(km, k⊥) = αρ + (μc⊥ − 2 f⊥M +
ρg⊥)k2

⊥ + (clμ − 2 flM + gρ )k2
m and B(km, k⊥) = (α +

glk2
m + g⊥k2

⊥)(clk2
m + c⊥k2

⊥) − ( fl k2
m + f⊥k2

⊥)2 also depend
on the film thickness h and parameter ζ in the boundary
conditions (3) due to the dependences of km on h and ζ per
Eq. (7).

C. Limiting cases of the boundary conditions

The limiting case of zero derivative of the order param-
eter and displacement at the film surfaces, ∂η

∂z |z=±h = 0 and
∂U
∂z |z=±h = 0, corresponds to ζ → 0 and leads to the expres-

sion A(km, ω) = (gl + fl

2
fl k2

m+ f⊥k2
⊥−Mω2

cl k2
m+c⊥k2

⊥−ρω2 )2k2
m in Eq. (8). Since

A(km, ω) � 0 for ζ → 0 and the variable k2
⊥ is independent,

Eq. (7) reduces to the equation sin(2kmh) = 0, where the
solution has the form km = πm

2h , where m = 0, 1, 2, .... How-
ever, for this case one should consider the lowest root m = 0
corresponding to the constant order parameter, η = ηS , and
obtain the bulk expressions (6) for the soft phonon spectra.

For the limiting case of the zero order parameter at the film
surfaces, η|z=±h = 0, which is the most favorable case for the
observation of finite size effects, the constant ζ → ∞ in the
boundary conditions (3). Since A(km, ω) → −ζ 2 for ζ → ∞,
the condition sin(2kmh) = 0 should be valid for the validity of
Eq. (7). The equation sin(2kmh) = 0 gives a well-known solu-
tion for eigenwave numbers km = πm

2h , where m = 0, 1, 2, ....
Since m = 0 corresponds to identical zero solution for the
order parameter, one should consider m = 1 corresponding to
the lowest root. For this case the first harmonic in the order
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FIG. 2. (a) Dependence of the phonon frequency ω on the wave vector k⊥ calculated for SrTiO3 thin films with different thickness 2h = 6,
10, 14, 20, 30, 60 l. c. (curves 1–6) and bulk SrTiO3 (curve 7) at temperature 300 K. (b) Thickness dependences of ω1 (blue curve), ω2 (red
curve) and ω2 − ω1 (green curve) calculated at k⊥ = 0 and 300 K. The dashed vertical line indicates the thickness limit (∼6 lattice constants)
of LGD approach applicability. Parameters of SrTiO3 used in the calculation are listed in Table I.

parameter distribution is

η =
∫

dk⊥ exp (ik⊥x + iωt )η̃(k⊥, kl ) cos
[πz

2h

]
, kl = π

2h
,

(10)

The soft phonon dispersion ω(h,�k) given by Eq. (9) ac-
quires the form

ω2
1,2(h, k⊥)= C(h, k⊥) ±

√
C2(h, k⊥)−4(μρ−M2)B(h, k⊥)

2(μρ − M2)
,

(11)

where the functions C(h, k⊥) ≈ α(T )ρ + (μc⊥ − 2 f⊥M +
ρg⊥)k2

⊥ + (clμ − 2 flM + glρ )(π/2h)2 and B(h, k⊥) ≈
(α(T ) + gl (π/2h)2+g⊥k2

⊥)(cl (π/2h)2+c⊥k2
⊥)−( fl (π/2h)2

+ f⊥k2
⊥)2 depend on the film thickness h. Different signs

“−” and "+" correspond to the frequencies ω1(h, k⊥) and
ω2(h, k⊥), respectively.

III. RESULTS AND DISCUSSION

A. Size effect of the soft phonon dispersion

Figure 2(a) illustrates the dependences of the phonon fre-
quency ω on the wave vector k calculated for SrTiO3 thin films
with different thicknesses h = (6−60) lattice constants (l.c.)
(colored solid curves) in comparison with a thick film (black
dashed curve) calculated from Eq. (11) at room temperature.
Parameters of SrTiO3 used in the calculation are listed in
Table I. All numerical values in the table were obtained from
the fitting to experimental spectra of Shirane and Yamada [6]
(see Fig. 4(a) and Table I in Ref. [59]).

The frequency ω1(h, k⊥) monotonically decreases with
h increase, but it is nonzero at k⊥ = 0 for any thickness
and tends to the expression (6) for the “bulk” A mode
ω1(∞, k⊥ → 0) → k⊥

√
c/ρ only at h → ∞. This is a rem-

iniscent of the difference between the phonon spectrum in
a thin film with discrete kz values and the spectrum of a
bulk material with continuous kz values. In particular, for
finite thickness h and, k⊥ = 0 one obtains from Eq. (11)
that

ω2
1(h, 0) ≈ cl

ρ

( π

2h

)2
+ gl cl − f 2

l

αρ

( π

2h

)4
. (12a)

Approximate equality in Eq. (12) is valid for enough
high thicknesses h � a (a is a lattice constant) and α > 0
[see Eq. (A.29a) in the Supplemental Material]. Therefore,

ω1(h � a, k⊥ → 0) ∼
√

c⊥
ρ

k2
⊥ + cl

ρ
( π

2h )2 as anticipated.

As is obvious from the figure, the frequency ω2(h, k⊥)
also monotonically decreases with h increase and tends to
expression (6) for the “bulk” O mode ω1(∞, k⊥) for h >

30 l.c. For k⊥ = 0 the value ω2 significantly depends on
the thickness h until h < 30 l.c., namely one obtains from
Eq. (11) that

ω2
2(h, 0) ≈ α

μ
+

(
cl

μ
− 2 flM

μρ
+ gl

μ

)( π

2h

)2
. (12b)

Approximate equality in Eq. (12b) is valid in the case
h � a and μρ � M2 that is typical for paraelectrics (e.g., for
SrTiO3).

Figure 2(b) illustrates the thickness dependences of ω1
(blue curve), ω2 (red curve) and their difference ω2 − ω1

115412-5



ANNA N. MOROZOVSKA AND EUGENE A. ELISEEV PHYSICAL REVIEW B 99, 115412 (2019)

TABLE I. Description of the symbols in the Lagrange function (1), and their numerical values for SrTiO3.

Description Symbol and dimension Incipient ferroelectric SrTiO3
a

Coefficient at η2 α(T ) (×C−2 mJ) αT (Tq coth(Tq/T ) − TC )
Curie-Weiss constant αT (×105 C−2 mJ/K) 15
Curie temperature TC (K) TC = 30, Tq = 54
LGD-coefficient at η4 β (×108 J C−4 m5) 81
LGD-coefficient at η6 γ (×109 J C−6 m9) 0 (data is absent)
Electrostriction q (×109 J m/C2) ql = q⊥ = q44 = 2.4b

Elastic stiffness c (×1010 Pa) cl = c⊥ = c44 = 12.7
Gradient coefficient at (∇η)2 g (×10−10 C−2 m3 J) gl = g⊥ = g44 = 2
Strain gradient (∇u)2 v (×10−9 V s2/m2) 0 (data is absent)
Static flexocoupling f (V) fl = f⊥ = f44 = 2.2
Dynamic flexocoupling M(×10−8 V s2/m2) 2
Kinetic coefficient μ (×10−18 s2 mJ) 22
Material density at n. c. ρ (×103 kg/m3) 4.930
Lattice constant (l.c.) a (nm) 0.395

aAll numerical values in the table were obtained from the fitting to experimental data of Shirane and Yamada [6] (see Fig. 4(a) in Ref. [59]).
bThis parameter is not used in our calculations.

(black curve) calculated at k⊥ = 0 and 300 K. A dashed
vertical line indicates the estimate for the thickness limit
(∼5–10 l.c.) of the LGD approach applicability. Both ω1 and
ω2 rapidly increase with a 2h decrease below 20 nm and
tend to the thickness-independent constants at 2h > 50 nm.
The pronounced size effect (i.e., the minimum) is seen at
the dependence of ω2 − ω1 on the film thickness varying in
the range (6 – 20) nm. However, it is questionable whether the
prediction can be verified experimentally, because it can be
rather difficult to determine experimentally (e.g., by neutron
scattering) the phonon dispersion at very small k in ultrathin
SrTiO3 films. However the Brillouin or Raman scattering of
nanoferroics probably can give valuable information about the
dispersion law ω(h, k).

B. “Apparent” or “false” size effect of the dynamic
flexoelectric coupling

Let us underline that the available information about nu-
merical values of the static and especially dynamic flexoelec-
tric tensor components is still controversial (since calculations
and different experiments give different results) or even un-
known [38–49], but the analysis of soft phonon spectra can be
one of the most reliable way to define it. Note that expressions
(11) allows us to define the relationship between the “true”
static ( fl ) and “effective” dynamic (M) flexoelectric constants
(shortly “flexoconstants”) in thin ferroelectric films from the
interpolation of the soft phonon dispersion ω1,2(h, k⊥) in
the limit k⊥ → 0. Actually, elementary transformations of
Eqs. (11) lead to the expression for the constant M:

M1,2[h, ω] = fl

( π

2hω

)2
±

√
f 2
l

( π

2hω

)4
−

( π

2hω

)2
(clμ + glρ ) + ρ

(
μ − α

ω2

)
. (13a)

Hereafter ω2 ≡ ω2
1(h, 0) + ω2

2(h, 0). Derivation of Eq. (13a) is given at the end of the Supplemental Material. The
approximate expressions can be derived from Eq. (13a) in a deep paraelectric phase (α > 0) for the case μρ � M2 typical
for all known incipient and proper ferroelectric perovskites:

M1,2[h, ω] ≈
⎧⎨
⎩

1
2 fl

[
ρ
(
α − ω2μ

)(
2h
π

)2 + clμ + glρ
]
, h → 0

±
√

ρ
(
μ − α

ω2

)
, h → ∞ . (13b)

As it follows from Eq. (13b) the first line contains the evi-
dent dependence of M on h, M ∼ 1

fl
( 2h

π
)2, the determination of

ω2(h, 0) from experiments performed for a set of small h may
lead to the conclusion about the existence of the “apparent” or
“false” size effect of the dynamic flexocoupling at fixed other
parameters.

The apparent size effect of dynamic flexocoupling is illus-
trated in Fig. 3(a) at fixed frequency ω2 = const and room
temperature. The flexoconstants M1 (shown by red curve)
and M2 (shown by blue curve) significantly increase with 2h
increase from 14 to 30 nm and gradually tend to the “bulk”

values M1,2[∞, ω] = ±
√

ρ(μ − α
ω2 ) at 2h > 35 nm. At the

same time their sum M1 + M2 (shown by a magenta curve)
significantly decreases with 2h increase from 14 to 30 nm
and then tends to zero at 2h > 35 nm. The real physical roots
M1,2[h, ω] exist only for h > hcr , where the critical thickness
hcr depends on the frequency ω and is about 14 l.c. for ω =
4.5 THz.

Figure 3(b) shows the dependences of M1, M2, and M1 +
M2 on ω at fixed thickness 2h = 8 nm. The constants M1

(shown by a red curve) and M2 (shown by a blue curve)
significantly increase with ω increase from 4.9 to 9 THz,

115412-6



SIZE EFFECT OF SOFT PHONON DISPERSION IN … PHYSICAL REVIEW B 99, 115412 (2019)

-
-

-

--

FIG. 3. (a) The “apparent” dependences of the dynamic flexocoupling constants M1 (red curve), M2 (blue curve) and their sum M1 + M2

(magenta curve) on SrTiO3 film thickness 2h calculated from Eq. (13a) at frequency ω = 4.5 THz and T = 300 K. (b) The dependences of
M1 (red curve), M2 (blue curve) and M1 + M2 (magenta curve) on ω calculated from Eq. (13a) for SrTiO3 film thickness 2h = 8 nm. Contour
maps of the roots M1 (c) and M2 (d) calculated in coordinates ω and h. Other parameters of SrTiO3 used in the calculation are listed in Table I.

and then gradually tend to the “bulk” values M1,2[∞, ω] at
ω > 9 THz. At the same time their sum M1 + M2 (shown by
a magenta curve) significantly decreases with ω increase from
4.9 to 9 THz, and then gradually tends to zero at ω > 9 THz.
The real physical roots M1,2[h, ω] exist only for ω > ωcr ,
where the critical frequency ωcr depends on h and is about
4.9 THz for h = 8 nm.

Contour maps of the roots M1 and M2 plotted in coordi-
nates ω and h are shown in Figs. 3(c) and 3(d), respectively.
From the maps the apparent size effect exists in the thickness
range less than 25 nm. We would like to underline that the
“apparent” size effect of dynamic flexocoupling coefficients
(shown in Figs. 3) should be clearly distinguished from the
“true” size effect of the soft phonon frequency, predicted by
us and demonstrated on an example of SrTiO3 in Figs. 2.

On the other hand, it is not excluded that the origin of the
“giant” flexoelectric coefficients extracted by several authors
based on experimental results for a spatially confined or
strongly inhomogeneous samples is the apparent size effect
of a dynamic constant. Qualitatively, the dynamic flexoeffect
may arise from pseudo-Jahn-Teller vibrations [56].

C. Size effect of the spatially modulated structures

The spatially modulated structure (SMP) with the modula-
tion period 2π/k⊥ can appear under the condition of the static
dielectric susceptibility divergence [58–60]. For a thin film the
expression for the static susceptibility χ̃S (h, k⊥) is derived in
the Supplemental Material and has the form

1

χ̃S (h, k⊥)
= α(T ) + gl

( π

2h

)2
+ g⊥k2

⊥

− ( fl (π/2h)2 + f⊥k2
⊥)

2

cl (π/2h)2 + c⊥k2
⊥

→ 0, (14)

Equation (14) is equivalent to the conditions ω1(h, k⊥) =
0 ↔ B(h, k⊥) = 0 in Eq. (11). The condition (14) leads to the
biquadratic equation for k⊥, and the solutions are

k2
⊥ = B − √

B2 − 4AC

2A
and k2

⊥ = B + √
B2 − 4AC

2A
.

(15)
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Here the parameters A = c⊥g⊥ − f 2
⊥, B =

c⊥ + (c⊥gl + cl g⊥ − 2 fl f⊥)( π
2h )2 and C =

( π
2h )2(clα(T ) + (glcl − f 2

l )( π
2h )2) are introduced. The

solutions (15) can be essentially simplified in the case
cl = c⊥ = c, gl = g⊥ = g and fl = f⊥ = f corresponding
to cubic m3m paraelectric (see, e.g., Table I for SrTiO3)
allowing for the hidden permutation symmetry of the static
flexoelectric coupling [37]. For this case the inverse static
dielectric susceptibility

1

χ̃S (h, k⊥)
= α(T ) +

(
g − f 2

c

)(( π

2h

)2
+ k2

⊥

)
(16)

tends to zero at

kcr
⊥ (T, h) = 1

RC (T )

√
1(

f 2
/

gc
) − 1

−
(

πRC (T )

2h

)2

. (17)

Here the correlation radius RC (T ) =
√

g
α(T ) is introduced.

Since we consider the case α(T ) > 0, the solution (17) exists
and so the SMP can occur when the absolute value of the static
flexoelectric coupling constant is within the range

f min
cr < | f | < f max

cr (T, h). (18a)

The ends of the interval (18a) can be considered as the
“minimal” and “maximal” critical values of the static flexo-
constant, respectively. They are

f min
cr = √

gc, f max
cr (T, h) = f min

cr

√
1 +

(
2h

πRC (T )

)2

.

(18b)

Note that the value f min
cr obtained by us for v = 0 is in

agreement with criteria that Yudin et al. [39] obtained for
the stability of homogeneous bulk material. However, the
value f max

cr (T, h) is a temperature and thickness-dependent
parameter specific for thin ferroic films; it tends to infinity
with the thickness increase.

If the flexoconstant of the film is within the range f min
cr <

| f | < f max
cr , the SMP with a period kcr

⊥ (T, h) can occur in the
film. The dependence of the dimensionless wave vector kcr

⊥ RC

on the flexoconstant | f |/√gc was calculated from Eq. (17)
for several film thickness 2h = (8−80)RC [see Fig. 4(a)]. The
value of kcr

⊥ diverges at f → f min
cr , decreases with f increase,

and tends to zero at f = f max
cr . The dependence of the ratio

f max
cr /

√
gc on the dimensionless thickness 2h/RC is presented

in Fig. 4(b). As shown in the figure, the ratio f max
cr /

√
gc

increases monotonically with h increase. The dependence is
sublinear at 2h/RC � 1 and becomes linear ( f max

cr ∼ h) at
2h/RC � 1. When the flexoelectric coefficient is a known
constant the value of kcr

⊥ depends on the film thickness, as
shown in Fig. 4(c). As one can see, the value kcr

⊥ appears
at the critical thickness 2h = H f

cr , rapidly increases with h
increase, and then saturates to the “bulk” value kcr

⊥ (T,∞) =
1

RC (T )

√
1

( f 2/gc)−1
. The critical thickness H f

cr can be derived from

Eq. (17) and is equal to

H f
cr (T ) = πRC (T )

√
f 2

gc
− 1. (19)

The dependence of the dimensionless ratio H f
cr/RC on the

flexoconstant | f |/√gc is shown in Fig. 4(d). The ratio critical
thickness appears at f = f min

cr and monotonically increases
with f increase. In fact, Fig. 4(d) is a 90° rotated version of
Fig. 4(c), as it should be

Note that all thickness dependences shown in Figs. 4 can be
considered as “true” size effects of the corresponding physical
quantities. Figures 4(a)–4(d) are not material specific, because
they are plotted in dimensionless variables,| f |/√gc, kcr

⊥ RC and
2h/RC . For the considered case of SrTiO3 the correlation ra-
dius RC is about 0.7 nm at 300 K, and the experimentally mea-
sured flexoelectric coefficient f is about 2 V, much smaller
than the minimal critical value f min

cr = 5.0 V. Thus, there is
no possibility to observe SMPs in SrTiO3 thin films, since
f � f min

cr , however, it can be induced by flexoelectric effect
in other ferroic films with higher flexoconstants (5 – 10)V.
Note that the analytical expressions (17)–(19) can describe the
influence of finite size effect on the appearance and properties
of incommensurate spatial modulation in ferroic thin films.

IV. CONCLUSION

Using Landau-Ginsburg-Devonshire theory and the one-
dimensional approximation describing two lowest transverse
phonon modes, we derive and analyze analytical expressions
for the frequency dispersion ω1,2(k) of soft phonon modes
in nanoferroics and perform numerical calculations for a thin
SrTiO3 film of thickness 2h.

The frequency ω1(h, k⊥) monotonically decreases with h
increase, but it is nonzero at k⊥ = 0 for any thickness and
tends to the expression [59] for the “bulk” acoustic mode
only at h → ∞. The result illustrates a reminiscent difference
between the phonon spectra in thin films with discrete kz

values and the spectra of the bulk material with continuous kz

values. The frequency ω2(h, k⊥) also monotonically decreases
with h increase and tends to the expression [59] for the “bulk”
optic mode at h → ∞.

The pronounced size effect (i.e., the minimum) occurs at
the dependence of ω2 − ω1 on the film thickness h, and the
minimum are localized in the range (6 – 20) nm for SrTiO3

film. However, it is questionable whether the prediction can
be verified experimentally, because it may be impossible to
determine experimentally the phonon dispersion law at very
small k in ultrathin films by inelastic neutron scattering, but
probably possible by Raman or Brillouin scattering.

We derived analytical expressions describing the influence
of the size effect on the appearance and properties of in-
commensurate spatial modulation in ferroic thin films. We
revealed that a SMP can exist in a thin film when the absolute
value of the static flexoelectric coupling constant | f | is within
the range f min

cr < | f | < f max
cr (T, h). It turned out that there is

no possibility to observe SMPs in SrTiO3 thin films, since
corresponding flexoconstant | f | ∼ 2 V is significantly smaller
than the minimal critical value f min

cr ∼ 5 V. However a SMP
can be induced by flexoelectric effect in other paraelectric
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FIG. 4. (a) The dependence of kcr
⊥ (in RC units) on the dimensionless flexoconstant | f |/√gc calculated for several film thicknesses 2h = 8,

26 and 80RC (red, magenta, and blue curves). (b) The dependences of the dimensionless critical flexoconstants f max
cr /

√
gc (red curve) and

f min
cr /

√
gc (blue horizontal line) on the dimensionless thickness 2h/RC . (c) The dependence of kcr

⊥ (in RC units) on the dimensionless ratio
2h/RC calculated for several flexoconstants | f |/√gc =1.3, 2 and 3 (red, magenta, and blue curves). (d) The dependence of the dimensionless
critical thickness H f

cr/RC on the flexoconstant | f |/√gc. Dashed vertical lines in plots (b) and (c) indicate the thickness limit of LGD approach
applicability.

films with higher flexoconstants, and the prediction can be
verified experimentally by dielectric measurements and x-ray
diffraction.

We revealed the pronounced “true” size effect in the de-
pendence of soft phonon dispersion on the film thickness that
can lead to the “apparent” or “false” size effect of dynamic
flexoelectric coupling constants. The true and apparent size
effects should be clearly distinguished from each other by
experiment. It may be that the origin of the “giant” flex-
oelectric coefficients extracted by several authors based on
experimental results for spatially inhomogeneous samples is
the apparent size effect of the dynamic constant. However,
the sample must not be necessarily nanosized to reveal the
apparent size effect, alternatively, the nanoscale spatial inho-
mogeneities of polarization or strain should be enough strong.
In this sense the apparent size effect of the dynamic flex-
oelectric constant may effect the flexoelectric-like response
of soft electrets and bended piezoelectric bimorphs [56] at

high frequencies. Consequently the dynamic flexoelectric ef-
fect may contribute to the giant static flexoelectric response
considered in Refs. [55,56]. To verify the predictions made in
this paper the measurements of the soft phonon dispersion in
nanoferroics seem urgent.
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