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Topological classification of the single-wall carbon nanotube
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The single-wall carbon nanotube (SWNT) can be a one-dimensional topological insulator, which is character-
ized by a Z-topological invariant, winding number. Using the analytical expression for the winding number, we
classify the topology for all possible chiralities of SWNTs in the absence and presence of a magnetic field, which
belongs to the topological categories of BDI and AIII, respectively. We find that the majority of SWNTs are
nontrivial topological insulators in the absence of a magnetic field. In addition, the topological phase transition
takes place when the band gap is closed by applying a magnetic field along the tube axis, in all the SWNTs except
armchair nanotubes. The winding number determines the number of edge states localized at the tube ends by the
bulk-edge correspondence, the proof of which is given for SWNTs in general. This enables the identification of
the topology in experiments.
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I. INTRODUCTION

The single-wall carbon nanotube (SWNT) is a quasi-one-
dimensional (1D) material made by rolling up a graphene
sheet, which possesses two Dirac cones at K and K ′ points.
The circumference of nanotube is represented by the chiral
vector, Ch = na1 + ma2, on the graphene, where a1 and a2 are
the primitive lattice vectors and a set of two integers, (n, m), is
called chirality [1]. The SWNT is metallic (semiconducting)
for mod(2n + m, 3) = 0( �= 0), because some wave vectors
discretized in the circumference direction pass (do not pass)
through K or K ′ points when they are expressed in the two-
dimensional (2D) Brillouin zone (BZ) of graphene. Even for
metallic SWNTs, a narrow band gap opens due to the finite
curvature in the tube surface [2–4]. The curvature enhances
the spin-orbit (SO) interaction through the mixing between π

and σ orbitals, which also contributes to the band gap [5].
Recently, SWNTs have attracted attention from a view-

point of topology [6–15]. The neutral SWNT can be regarded
as a 1D insulator in the presence of band-gap and rota-
tional symmetry (see below). Due to the sublattice (or chiral)
symmetry between A and B lattice sites, the topology of a
SWNT is characterized by a Z-topological invariant, winding
number [16]. SWNTs can be 1D topological insulators in both
the absence and presence of a magnetic field, which belong
to classes BDI and AIII in the periodic table in Ref. [17],
respectively. Izumida et al. introduced the winding number
for semiconducting SWNTs for the first time [10]. They
also examined the edge states localized around the tube ends
with energy E = EF = 0, the number of which is related to
the winding number by the bulk-edge correspondence. This
enables us to know the winding number via the observation
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of local density of states at the tube ends by the scanning tun-
neling microscopy as already done for the graphene [18]. The
present authors generalized the theory for metallic SWNTs
[12]. The narrow band gap in metallic SWNTs can be closed
by applying a magnetic field of a few Tesla along the tube
axis. This results in the topological phase transition, where
the winding number changes discontinuously as a function
of the magnetic field. Independently, Lin et al. examined
the topological nature in a zigzag SWNT (n > 0 and m =
0) by using the Su-Schrieffer-Heeger model and topological
invariant called Zak phase [11]. They theoretically proposed
a possible manipulation of the edge states via the topological
phase transition, although it requires an unrealistically huge
magnetic field in the case of a semiconducting SWNT. There
also exist theoretical studies on topological phases in a SWNT
proximity coupled to a superconductor [6–9,13,14].

In the present study, we topologically classify all pos-
sible SWNTs. The winding number is analytically derived
for all possible chiralities. We also generalize the bulk-edge
correspondence to the cases of both semiconducting and
metallic SWNTs in a magnetic field along the tube axis,
which determines the number of edge states by the winding
number. Our main results are depicted in Fig. 3: (a) In the
absence of a magnetic field, the majority of SWNTs are
topological insulators with nonzero winding number. The
exceptions are metallic SWNTs of armchair type (n = m) and
semiconducting SWNTs with n = m + 1. (b) In the presence
of a magnetic field, the topological phase transition takes
place when the band gap is closed by applying a magnetic
field, for all SWNTs other than the armchairs. In other words,
the SWNT can be topologically nontrivial even for n = m + 1
when the magnetic field is tuned appropriately. Only armchair
nanotubes are topologically trivial regardless of the magnetic
field, which is due to the mirror symmetry with respect to a
plane including the tube axis [10]. Previously, some groups
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(a) (b)

FIG. 1. (a) The mapping of the (n, m)-SWNT to a graphene
sheet. The chiral vector, Ch = na1 + ma2, indicates the circumfer-
ence of the tube with a1 and a2 being the primitive lattice vectors
of graphene. The three vectors � j ( j = 1, 2, 3) connect the nearest-
neighbor atoms. The d-fold symmetry around the tube axis (helical
symmetry) corresponds to the translational symmetry of Ch/d (R =
pa1 + qa2), where d = gcd(n, m) and integers p and q are given
by Eq. (3). This figure shows the case of (n, m) = (6, 3) with d =
3, p = 1, and q = 0. (b) A 1D lattice model in which A and B lattice
sites are aligned in the axial direction.

theoretically predicted a change in the number of edge states
in a SWNT as a function of magnetic field [19–21]. Our theory
clearly explains their physical origin in terms of topology.

We noticed a theoretical study by Zang et al. [15] during
the preparation of this paper. They utilized a similar technique
to ours to analyze the winding number in SWNTs. They
showed that some SWNTs can have the edge states and that
the topological phase transition takes place by applying a
magnetic field. Their study, however, was only applicable
to semiconducting SWNTs, and they did not derive analytic
expression for the winding number.

This paper is organized as follows. In Sec. II, we introduce
a 1D lattice model for semiconducting SWNTs in the absence
of a magnetic field, utilizing the rotational symmetry. We
include a magnetic field along the tube axis in Sec. III. In
Sec. IV, we analytically evaluate the winding numbers in
the case of semiconducting SWNTs in both the absence and
presence of a magnetic field. The winding number determines
the number of edge states via the bulk-edge correspondence,
whose proof is given in Appendix B. In Sec. V, we examine
the topology in metallic SWNTs with small band gap induced
by the curvature effects. After the discussion on our theoreti-
cal study in Sec. VI, our conclusions are given in Sec. VII.

II. 1D LATTICE MODEL FOR SEMICONDUCTING
NANOTUBE

In this section, we derive a 1D lattice model for semi-
conducting SWNTs in the absence of a magnetic field. Nei-
ther the Aharonov-Bohm (AB) effect in a magnetic field
nor curvature-induced narrow gap in metallic SWNTs are
considered.

Throughout the paper, we consider the (n, m)-SWNT,
whose circumference is specified by chiral vector Ch = na1 +
ma2 on a graphene sheet, where a1/2 = (

√
3/2,±1/2)a with

the lattice constant a = 0.246 nm [see Fig. 1(a)]. Its diameter

is given by dt = |Ch|/π = a
√

n2 + nm + m2/π . The chiral
angle θ is defined as the angle between Ch and a1: θ =
tan−1[

√
3m/(2n + m)]. We restrict ourselves to the case of

0 � m � n without loss of generality, which corresponds to
0 � θ � π/6 with θ = 0 and π/6 for zigzag (m = 0) and
armchair (m = n) nanotubes, respectively.

A. Derivation

We start from the tight-binding model for graphene [1],
which consists of A and B sublattices, as depicted by filled and
empty circles, respectively, in Fig. 1(a). This model involves
an isotropic hopping integral γ between the nearest-neighbor
atoms. An A atom is connected to three B atoms by vectors
� j ( j = 1, 2, 3) in Fig. 1(a). The Hamiltonian reads

H =
∑

rA

3∑
j=1

(
γ c†

rA
crA+� j + H.c.

)
, (1)

where rσ is the position of σ = A or B atom on the graphene
sheet, and cr is the field operator for a π electron of atom
at position r. γ = −2h̄vF/(

√
3a) with vF = 8.32 × 105 m/s

being the Fermi velocity in the graphene. The spin index s is
omitted, which is irrelevant in Secs. II and III.

We derive a 1D lattice model of the SWNT along the lines
of Ref. [10], where the helical-angular construction [22,23]
is utilized. (n, m)-SWNT has the d-fold rotational symmetry
around the tube axis, where

d = gcd(n, m) (2)

is the greatest common divisor of n and m. The rotation by
2π/d corresponds to the translation by Ch/d on the graphene
sheet. The SWNT also has the helical symmetry represented
by the translation by R = pa1 + qa2 on the graphene sheet,
with integers p and q satisfying

mp − nq = d. (3)

This means that the SWNT is invariant under the translation
by az = √

3da2/(2πdt ) along the tube axis together with the
rotation by θz = 2π [(2n + m)p + (n + 2m)q]/[2(n2 + nm +
m2)] around it [see Fig. 1(a)].1Here, R and Ch/d are a new set
of primitive lattice vectors of graphene; the position of A and
B atoms can be expressed as

rA = �R + ν(Ch/d ), (4)

rB = �R + ν(Ch/d ) + �1, (5)

on the graphene sheet with site indices � and ν =
0, 1, 2, . . . , d − 1. By performing the Fourier transformation
for the ν coordinate, we obtain the Hamiltonian block di-
agonalized in the subspace of orbital angular momentum

1Note that there is an arbitrariness for the choice of p and q in
Eq. (3): R can be added by integer multiple of Ch/d . az is invariant
whereas θz → θz ± 2π/d when R → R ± Ch/d .
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μ = 0, 1, 2, . . . , d − 1 as H = ∑d−1
μ=0 Hμ,

Hμ =
∑

�

3∑
j=1

(
γ ei2πμ�′′

j /d c μ †
A,� c μ

B,�+�′
j
+ H.c.

)
. (6)

This is a 1D lattice model in which A and B lattice sites
are aligned in the axial direction with the lattice constant az,
as shown in Fig. 1(b). Here, c μ

σ,� is the field operator of an
electron with angular momentum μ and at sublattice σ of
site index �. The hopping to the jth nearest-neighbor atom
[vector in � j in Fig. 1(a)] gives rise to the hopping to the sites
separated by �′

j in Fig. 1(b) with phase factor �′′
j , where

� j − �1 = �′
jR + �′′

j (Ch/d ), (7)

or �′
1 = �′′

1 = 0, �′
2 = n/d, �′′

2 = −p, �′
3 = −m/d , and

�′′
3 = q.

B. Bulk properties

For the bulk system, the Fourier transformation of Hμ

along � direction yields the two-by-two Hamiltonian,

Hμ(k) = γ

[
0 fμ(k)

f ∗
μ (k) 0

]
, (8)

in the sublattice space for given wave number k. k runs
through the 1D BZ, −π � kaz < π , and

fμ(k) =
3∑

j=1

ei2πμ�′′
j /d eikaz�

′
j . (9)

The dispersion relation for subband μ is readily obtained as

Eμ(k) = ±|γ fμ(k)|. (10)

The system is an insulator for semiconducting SWNTs with
mod(2n + m, 3) �= 0, that is, fμ(k) �= 0 in the whole BZ.
Then, the positive and negative Eμ(k)’s form the conduction
and valence bands, respectively. On the other hand, for metal-
lic SWNTs with mod(2n + m, 3) = 0, fμ(k) becomes zero at
μ+ and k+ (μ− and k−) that correspond to the K (K ′) point on
the graphene sheet, as discussed in Sec. V.

C. Winding number and bulk-edge correspondence

The bulk Hamiltonian in Eq. (8) anticommutes with σz

in the sublattice space, which is called sublattice or chiral
symmetry. Thanks to this symmetry as well as the finite band
gap, we can define the winding number [16],

wμ =
∫ π/az

−π/az

dk

2π

∂

∂k
arg fμ(k) ≡ 1

2π

∮
BZ

d arg fμ(k), (11)

for subband with angular momentum μ in semiconducting
SWNTs [10]. The winding number is the number of times that
fμ(k) in Eq. (9) winds around the origin on the complex plane
when k runs through the 1D BZ. Note that wμ in Eq. (11)
is ill-defined for metallic SWNTs where fμ(k) is zero and
therefore arg fμ(k) cannot be defined at μτ and kτ (τ = ±1).
We will overcome this problem in Sec. V.

The bulk-edge correspondence holds between the winding
number and number of edge states, Nedge,

Nedge = 4
d−1∑
μ=0

|wμ| (12)

in a long but finite SWNT. The prefactor of 4 is ascribable
to the spin degeneracy and two edges at tube ends. This
relation was analytically shown for semiconducting SWNTs
in the absence of a magnetic field in Ref. [10]. We generalize
Eq. (12) [and Eq. (29)] for both semiconducting and metallic
SWNTs in a magnetic field in Appendix B. Here, we assume
that the tube is cut by a broken line in Fig. 1(a), which results
in so-called minimal boundary edges [24]. The case of the
other boundaries is discussed in Sec. VI.

III. 1D LATTICE MODEL WITH FINITE MAGNETIC
FIELD

We extend our theory to include a magnetic field B in the
axial direction of the SWNT. We neglect the spin-Zeeman
effect throughout the paper, which is justified unless the band
gap is closed in a huge magnetic field.2 Only the AB effect is
taken into account as the Peierls phase in the hopping integral.
We replace

γ ei2πμ�′′
j → γ ei2πμ�′′

j exp

(
i2πφ

aCC cos � j

πdt

)
(13)

in Hμ in Eq. (6) and Hμ(k) in Eq. (8). Here,

φ = Bπ (dt/2)2

h/e
(14)

is the AB phase, or number of flux quanta penetrating the
tube, aCC = a/

√
3 is the bond length |� j |, and � j is the

angle between � j and Ch on the graphene sheet: � j = θ −
(5π/6) + (2π/3) j.

As a result, fμ(k) in Eq. (9) changes to

fμ(k; φ) =
3∑

j=1

ei2πμ�′′
j /d exp

(
i2πφ

aCC cos � j

πdt

)
eikaz�

′
j

(15)

in a magnetic field. fμ(k; φ) can be zero even for semicon-
ducting SWNTs, that is, the band gap is closed at |φ| = φ∗ =
1/3 [25]. When |φ| �= φ∗, wμ in Eq. (11) can be defined in
terms of fμ(k; φ). As we will show later, a sudden change in
wμ takes place at |φ| = φ∗ = 1/3, which corresponds to the
topological phase transition.

Note that only the decimal part of φ is physically sig-
nificant. φ → φ + 1 compensates with μ → μ − 1 in the
definition of angular momentum. Therefore, we can restrict
ourselves to 0 � φ < 1 or −1/2 � φ < 1/2, depending on
the situations.

2The large Zeeman effect could overlap the conduction band for
one spin and valence band for the other spin, which makes the system
metallic.
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(a) (6, 4), μ = 0 (b) μ = 1
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FIG. 2. fμ(k) on the complex plane for the (6, 4)-SWNT with
(a) μ = 0 and (b) μ = 1. d = 2 and we choose p = q = −1. It draws
a flower-shaped trajectory centered at z = 1, with petal j = 1 to 5.
The distance from z = 1 takes its maximum, 2, when the argument
measured from z = 1 is 
 j in Eq. (17), whereas it is 1 for 
 j ± �/2.

IV. TOPOLOGICAL CLASSIFICATION
OF SEMICONDUCTING NANOTUBE

Now we topologically classify semiconducting SWNTs.
The winding number wμ is analytically evaluated as a function
of chirality (n, m) and magnetic field B in the axial direction.
The winding number wμ in Eq. (11) can be interpreted as the
number of times that fμ(k) or fμ(k; φ) circulates around the
origin on the complex plane when k runs through the 1D BZ,
−π � kaz < π .

A. Analysis without magnetic field

We begin with the case in the absence of a magnetic field
(AB phase φ = 0). From Eq. (9), we obtain

fμ(k) = 1 + 2 cos

[
n + m

2d
kaz − πμ

d
(p + q)

]

× exp

{
i

[
n − m

2d
kaz + πμ

d
(−p + q)

]}
. (16)

For armchair SWNTs of n = m [d = n in Eq. (2) and p = 1
and q = 0 in Eq. (3)], Eq. (16) indicates a line segment on
the complex plane. For SWNTs other than armchair type,
fμ(k) draws a “flower-shaped” closed loop, as depicted for
the (6, 4)-SWNT with μ = 0 and 1 in Figs. 2(a) and 2(b),
respectively. We can see that the former does not circulate the
origin, whereas the latter does. This results in wμ=0 = 0 and
wμ=1 = 1, respectively. In general, the trajectory is centered
at z = 1, and | fμ(k) − 1| takes the maximum value, 2, when

arg[ fμ(k) − 1] = 2πd

n + m

(
j − μ

d

)
≡ 
 j, (17)

TABLE I. The winding number wμ determined by the number
of times that fμ(k) winds around the origin on the complex plane
when k runs through the 1D BZ. We assume 0 � m � n, and d =
gcd(n, m). μ is an integer (angular momentum) in the absence of
a magnetic field while it is a real number in the presence of an
axial magnetic field (see text in Sec. IV B). For metallic SWNTs,
we disregard the number of times that fμ(k) passes the origin.

Type wμ

mod( 2n+m
d , 3) = 1 (semiconductor or metal-1)

(n−m)/d−2
3

(
d
3 � μ � 2d

3

)
(n−m)/d+1

3

(
0 � μ < d

3 or 2d
3 < μ < d

)
mod( 2n+m

d , 3) = 2 (semiconductor or metal-1)
(n−m)/d+2

3

(
d
3 < μ < 2d

3

)
(n−m)/d−1

3

(
0 � μ � d

3 or 2d
3 � μ < d

)
mod( 2n+m

d , 3) = 0 and n �= m (metal-2 other than armchair)
n−m
3d − 1 (μ = 0)

n−m
3d (0 < μ < d )

n = m (metal-2 of armchair type)
0 (0 � μ < d )

with j = 1, 2, . . . , n+m
d .3 Note that 0 < 
 j � 2π for 0 �

μ < d . | fμ(k) − 1| = 1 when arg[ fμ(k) − 1] = 
 j ± �/2
with � = 2π

3 (n − m)/(n + m). Therefore, the jth“petal” sur-
rounds the origin when 
 j − �/2 < π < 
 j + �/2, that is,

n + 2m

3d
+ μ

d
< j <

2n + m

3d
+ μ

d
. (18)

wμ is equal to the number of integers j that satisfy Eq. (18)
for given (n, m) and μ. We evaluate wμ for semiconducting
SWNTs [mod(2n + m, 3) �= 0] in Table I, which are cate-
gorized according to mod( 2n+m

d , 3) = 1 or 2. The table also
includes wμ for metallic SWNTs with mod(2n + m, 3) = 0
when the number of times that fμ(k) passes the origin is
neglected.

B. Analysis with finite magnetic field

When the axial magnetic field is present, the trajectory
of fμ(k; φ) is examined to evaluate wμ. We obtain 
 j in
Eq. (17) with μ replaced by μ + φ, which means that the
trajectory for each μ is rotated around z = 1 on the complex
plane [15]. As we mentioned earlier in Sec. III, only the
decimal part of φ is physically meaningful because φ → φ′ =
φ − �φ	 is equivalent to μ → μ′ = μ + �φ	 with �x	 being
the maximum integer not exceeding x. Thus we can make
the same analysis as in the previous subsection with μ′ =
0, 1, 2, . . . , d − 1, 0 � φ′ < 1, and 0 < 
 j � 2π . Then the
replacement of μ by μ′ + φ′ yields the same result as in
Table I.

3| fμ(k) − 1| = 2 when kaz = 2πd
n+m [ j ′ + μ

d (p + q)] with j′ =
1, 2, . . . , n+m

d . Then, arg[ fμ(k) − 1] = j ′π + n−m
2d kaz + πμ

d (−p +
q) = 2πd

n+m ( n
d j ′ − μ

d ). Since n+m
d and n

d are mutually prime, j = n
d j ′

can take any integer between 1 and n+m
d with j ′ = 1, 2, . . . , n+m

d .
This justifies 
 j in Eq. (17). In a similar manner, we can show that
the argument is 
 j ± �/2 when | fμ(k) − 1| = 1.
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TABLE II. Number of edge states Nedge in the (n, m)-SWNT. We
assume 0 � m � n. The number of flux quanta φ is restricted to
−1/2 � φ < 1/2. �(x) = 1 (0) for x > 0 (x < 0).

Type Number of edge states Nedge

Semiconductor type-1 [mod(2n + m, 3) = 1]
4 n−m+1

3 (0 � |φ| < 1
3 )

4 n−m−2
3 ( 1

3 < |φ| � 1
2 )

Semiconductor type-2 [mod(2n + m, 3) = 2]
4 n−m−1

3 (0 � |φ| < 1
3 )

4 n−m+2
3 ( 1

3 < |φ| � 1
2 )

Metal other than armchair [mod(2n + m, 3) = 0 and n �= m]
4
(

n−m
3 − 1

) + 2
∑

τ,s �(�kc + τ s�kSO + τ�kφ )
Metal of armchair type (n = m)

0

C. Edge states and topological order

By summing up wμ in Eq. (12) carefully, we obtain the
number of edge states Nedge, as shown in Table II. Here, we
assume −1/2 � φ < 1/2 (μ should be shifted accordingly).
The semiconducting SWNTs are categorized into type-1 and
type-2 for mod(2n + m, 3) = 1 or 2.4 The results for Nedge

indicate that (i) the semiconducting SWNTs other than n =
m + 1 are topological nontrivial in the absence of a mag-
netic field (AB phase φ = 0) and (ii) all the semiconducting
SWNTs show the topological phase transition at |φ| = φ∗ =
1/3 when the energy gap is closed [25]. Note that |φ| = 1/3
corresponds to the magnetic field of more than 100 T when
the tube diameter dt ∼ 1 nm. Table II also includes the results
for metallic SWNTs, that are topological insulators except for
the armchair nanotubes, irrespectively of the magnetic field,
as discussed in the next section.

Figure 3(a) illustrates the number of edge states at B = 0,
where a hexagon from the leftmost one indicates the chiral
vector Ch = na1 + ma2. Almost all the SWNTs have edge
states except for the semiconducting SWNTs with n = m + 1
and metallic ones of armchair type. Figure 3(b) shows the
critical magnetic field for the topological phase transition,
where the number of edge states changes discontinuously. The
critical magnetic field should be experimentally accessible for
metallic SWNTs with dt � 1 nm (see Sec. V).

The number of edge states per diameter approaches
Nedge/dt → 4(n − m)/(3dt ) as dt increases. This agrees with
the result in Ref. [24] for the edge states of graphene. We thus
obtain an asymptotic form of Nedge for large dt ,

Nedge � 8πdt

3a
cos

(
θ + π

3

)
. (19)

This should be useful when a nanotube of large diameter is
examined in a continuum approximation.

4A comment is given for the classifications in Tables I and
II. Semiconducting SWNTs belong to type-1 in Table II when
mod( 2n+m

d , 3) = 1 and mod(d, 3) = 1, or mod( 2n+m
d , 3) = 2 and

mod(d, 3) = 2 in Table I. They belong to type-2 otherwise.

(9,0) (18,0) (27,0)

(6,6)

(12,12)

(18,18)

origin

topological

trivial 0

20

40

(a)

(9,0) (18,0) (27,0)

(6,6)

(12,12)

(18,18)

origin

phase transition capable

... incapable

(b)

FIG. 3. (a) Number of edge states in the absence of a magnetic
field (B = 0) and (b) critical magnetic field B∗ of topological phase
transition at which the number of edge states changes discontinu-
ously. A hexagon from the leftmost one indicates the chiral vector
Ch = na1 + ma2, where a1 and a2 are the primitive lattice vectors of
graphene, shown in Fig. 1.

V. ANALYSIS FOR METALLIC NANOTUBE

In this section, we discuss the topology of metallic SWNTs
with mod(2n + m, 3) = 0. Without the curvature-induced ef-
fects, a band of angular momentum μ+ (μ−) passes the Dirac
point K (K ′) with wave number k+ (k−) on the graphene sheet:

μ± = ±2n + m

3
= ±d

3
mod

(
2n + m

d
, 3

)
(mod d ), (20)

k± = ± 2π

3az
(2p + q), (21)

[10]. Metallic SWNTs are classified into metal-1 for
mod( 2n+m

d , 3) �= 0 and metal-2 for mod( 2n+m
d , 3) = 0. μ+ �=

μ− (mod d ) in the former, whereas μ+ = μ− = 0 in the latter.
In order to describe the narrow energy gap in metallic

SWNTs, we further extend our 1D lattice model to include the
curvature-induced effects besides the AB effect in a magnetic
field. As seen in Appendix A, our model is constructed so as
to reproduce the effective Hamiltonian for k · p theory, which
describes the curvature-induced effects and SO interaction
[26], in the vicinity of k± with angular momentum μ±.

115409-5



RIN OKUYAMA, WATARU IZUMIDA, AND MIKIO ETO PHYSICAL REVIEW B 99, 115409 (2019)

(a) (b)

FIG. 4. (a) An extension of Fig. 1(a) to include the hopping to the
second-nearest-neighbor atoms. The three vectors � j ( j = 1, 2, 3)
connect the nearest-neighbor atoms, whereas the six vectors �

(2)
j ( j =

1, 2, . . . , 6) connect the second-nearest-neighbor ones. (b) An ex-
tended 1D lattice model to describe the metallic SWNTs.

A. 1D lattice model with curvature effects

The effective Hamiltonian for k · p theory is given by

H =
∑
rA,s

3∑
j=1

(
γ

(1)
s, j c s †

rA
c s

rA+� j
+ H.c.

)

+
∑

σ=A,B

∑
rσ ,s

6∑
j=1

γ
(2)

s, j c s †
rσ

c s
rσ +�

(2)
j

(22)

with c s
r being the field operator for a π electron with spin

s at atom of position r [12]. The quantization axis for spin
s = ±1 is chosen in the tube direction [26]. This model
consists of anisotropic and spin-dependent hopping integrals
to the nearest-neighbor atoms and those to the second nearest
neighbors. As mentioned in Sec. II B, the former connects
A and B atoms that are depicted by three vectors � j ( j =
1, 2, 3), whereas the latter connects atoms of the same species
indicated by six vectors �

(2)
j ( j = 1, 2, . . . , 6) in Fig. 4(a).

The explicit forms of hopping integrals, γ
(i)

s, j (i = 1, 2), are
provided in Appendix A.

As described in Sec. II A, we use a set of primitive lattice
vectors, R and Ch/d . By performing the Fourier transfor-
mation for the ν coordinate in Eqs. (4) and (5), we obtain
H = ∑d−1

μ=0

∑
s=± Hμ,s with

Hμ,s =
∑

�

3∑
j=1

(
γ

(1)
s, j ei2πμ�′′

j /d c μ,s †
A,� c μ,s

B,�+�′
j
+ H.c.

)

+
∑

σ=A,B

∑
�

6∑
j=1

γ
(2)

s, j ei2πμ�
(2)′′
j /d c μ,s †

σ,� c μ,s

σ,�+�
(2)′
j

, (23)

where c μ,s
σ,� is the field operator of an electron with angular

momentum μ, spin s, and at sublattice σ of site index � in
Fig. 4(b). This is an extended 1D lattice model (see Appendix
A for �

(2)′
j and �

(2)′′
j ).

B. Bulk properties

For the bulk system, the Fourier transformation of Hμ,s

along the � direction yields the two-by-two Hamiltonian,

Hμ,s(k) = εμ,s(k; φ) + γ

[
0 fμ,s(k; φ)

f ∗
μ,s(k; φ) 0

]
, (24)

in the sublattice space for the 1D BZ, −π � kaz < π , where

fμ,s(k; φ) = 1

γ

3∑
j=1

γ
(1)

s, j ei2πμ�′′
j /d eikaz�

′
j , (25)

εμ,s(k; φ) =
6∑

j=1

γ
(2)

s, j ei2πμ�
(2)′′
j /d eikaz�

(2)′
j . (26)

The dispersion relation for subband (μ, s) is given by

Eμ,s(k; φ) = εμ,s(k; φ) ± |γ fμ,s(k; φ)|. (27)

The system is an insulator when |εμ,s(k; φ)| < |γ fμ,s(k; φ)| in
the whole BZ. Thanks to the curvature-induced fine structure,
this condition is satisfied even for metallic SWNTs except in
the vicinity of |φ| = φ∗, where the band gap is closed by a
magnetic field. Then positive and negative Eμ,s(k)’s form the
conduction and valence bands, respectively. It should be men-
tioned that φ∗ � 1/3 in metallic SWNTs, which corresponds
to the magnetic field of a few Tesla [12].

C. Winding number and bulk-edge correspondence

For any SWNT with finite band gap, we can define the
winding number as

wμ,s = 1

2π

∮
BZ

d arg fμ,s(k; φ), (28)

for subband (μ, s). Strictly speaking, it is a topological
invariant only if the sublattice symmetry holds [16,27]:
εμ,s(k; φ) = 0. However, as far as the system is an insulator,
i.e., |εμ,s(k; φ)| < |γ fμ,s(k; φ)| in the whole BZ, it is well
defined. We discuss the topology of metallic SWNTs using
wμ,s in Eq. (28) except for the vicinity of |φ| = φ∗.

The bulk-edge correspondence in Eq. (12) is generalized to

Nedge = 2
d−1∑
μ=0

∑
s=±

|wμ,s| (29)

in terms of wμ,s. The proof of this relation is given in
Appendix B. Although the energy levels of edge states are
slightly deviated from EF = 0 in the presence of εμ,s(k; φ),
they are within the band gap as long as the gap remains finite.

D. Classification with curvature effects

Now we come to classify the metallic SWNTs. fμ(k; φ) de-
fined in Secs. II and III passes the origin on the complex plane
for μ = μ± (at k = k±) corresponding to the Dirac points in
the absence of curvature-induced effects. We evaluate wμ,s

using Eq. (28) around the origin while we can use the results in
Table I otherwise since the topological nature does not change
by a small perturbation. As an example, we show fμ(k; φ) on
the complex plane for μ = 0 in the (7,1)-SWNT (metal-2 with
μ+ = μ− = 0) in Fig. 5(a). Petals j = 3 and 5 go through the
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(a)  (7, 1), μ = 0 (b)

O

Im

Re

O
r

armchair

zigzag
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FIG. 5. (a) fμ,s(k) on the complex plane for μ = 0 in a metallic
SWNT with chirality (7, 1). d = 1, p = 1, and q = 0. Petals j = 3
and 5 pass the origin in the absence of curvature effects, whereas
petal j = 4 rounds the origin. (b) fμ,s(k) around the origin on the
complex plane for μ = μ+ which passes the K point, in metallic
SWNTs with chiral angle θ . r = (�kc + s�kSO + �kφ )(

√
3a/2) >

0. The dotted line intersects the real axis orthogonally at r. The
trajectory for a zigzag SWNT (θ = 0) is obtained by rotating it by
−2π/3 around the origin (blue line), whereas that for an armchair
SWNT (θ = π/6) is obtained by rotating it by −π/2 (orange line).
Therefore the intercept of the real axis is always negative (pink
segment) for SWNTs of 0 � θ < π/6.

origin in the absence of curvature effects, whereas petal j = 4
winds the origin. The latter yields wμ = 1 in Table I. The
contribution from the former is discussed in the following.

In the vicinity of origin on the complex plane,

fμ±,s(k; φ) �
√

3

2
ae±i[θ−(2π/3)]

[
(�kc ± �kSO ± �kφ )

+ i(k − kτ ∓ �kz )
]

(30)

from Eq. (A8) in Appendix A. Here, �kφ represents the
AB effect in a magnetic field, �kc and �kz stem from
the mixing between π and σ orbitals, and �kSO is due to the
SO interaction (see Appendix A). Equation (30) indicates a
straight line made by the rotation of angle ±(θ − 2π

3 ) around
the origin, from a straight line which intersects orthogonally
the real axis at r = (�kc ± s�kSO ± �kφ )(

√
3a/2). It gives

rise to the winding number when the line intercepts the real
axis in the negative part. For armchair SWNTs of θ = π/6,
this condition is never satisfied since the line is parallel to the
real axis. For the other metallic SWNTs, the condition holds
if r > 0, as shown in Fig. 5(b).

In consequence, we obtain the complete expression for
wμ,s for metallic SWNTs. For μ �= μ±,

wμ,s = wμ (31)

in Table I. For μ = μ±,

wμ±,s = wμ± + �(�kc ± s�kSO ± �kφ ), (32)

where wμ± is given by Table I and �(x) = 1 (0) for x >

0 (x < 0). This explains the topological phase transition at
|φ| � 1/3, which was demonstrated in Ref. [12], for the
following reason. �kφ is proportional to B along the tube axis,
�kφ = −eBdt/(4h̄), in Eq. (A4) in Appendix A. For metallic

SWNTs other than the armchair, �kc ± s�kSO � �kc > 0
and thus Eq. (32) yields wμ±,s = wμ± + 1 at B = 0. When B is
increased beyond B∗, which satisfies �kc + s�kSO + �kφ =
0, wμ+,s becomes wμ+ .

We obtain the number of edge states Nedge through Eq. (29)
by the summation of wμ±,s in Eqs. (31) and (32). The ex-
pression for Nedge is common for metal-1 and -2, as shown
in Table II. All the metallic SWNTs but the armchair are
a topological insulator in the absence of a magnetic field
[Fig. 3(a)] and show the topological phase transition at B = B∗
[Fig. 3(b)]. The armchair SWNTs are always topologically
trivial: They are forbidden to have finite winding numbers
regardless of the strength of the magnetic field, which is
attributable to the mirror symmetry with respect to a plane
including the tube axis [10].

VI. DISCUSSION

We comment on the previous studies which predicted an
increase in the number of edge states in metallic SWNTs
as the magnetic field increases [19–21]. At the first sight,
this seems contradictory against our results. However, this
is because they use parameters corresponding to �kc < 0 in
our model. We obtain positive �kc by fitting the dispersion
relation with that from the ab initio calculation known as the
extended tight-binding model [26]. However, its sign is quite
sensitive to the details in the model, and therefore it should
be experimentally confirmed which sign is favorable. Also,
others theoretically predicted no topological phase transition
for metallic SWNTs [11]. This is due to the oversimplification
with �kc = �kSO = 0.

A comment should be made on the boundary condition,
which is important for the edge states in 1D topological
insulators. Our calculations have been performed for finite
systems in which a SWNT is cut by a broken line in Fig. 1(a).
The angular momentum μ is a good quantum number in this
case. This is a minimal boundary edge, where every atom
at the ends has just one dangling bond [24]. The bulk-edge
correspondence in Eqs. (12) and (29) holds only for such
edges. Some other boundary conditions result in different
numbers of edge states, as discussed in Ref. [10]. Then
the winding number wμ is shifted from that in the case
of minimal boundary. Since the shift of wμ is independent
of magnetic field [10], the topological phase transition and
the critical magnetic field should not be influenced by the
boundary conditions. The number of edge states is changed
at the transition. For armchair SWNTs, the topological phase
transition does not take place with any boundary condition,
whereas the number of edge states may be finite. Although
the examined boundaries are limited, we speculate that the
topological phase transition is determined by the topological
nature of the bulk irrespectively of the boundaries in general.

VII. CONCLUSIONS

We have classified the topology for all possible chiralities
(n, m) of SWNTs in the absence and presence of a magnetic
field along the tube axis. First, we have studied semiconduct-
ing SWNTs using a 1D lattice model in Eq. (6) and depicted in
Fig. 1(b). We have found that (i) the semiconducting SWNTs
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other than n = m + 1 are topological nontrivial in the absence
of a magnetic field and (ii) all the semiconducting SWNTs
show the topological phase transition at AB phase |φ| = φ∗ =
1/3. The phase transition, however, should be hard to observe
since a magnetic field of more than 100 T is required when
the tube diameter dt ∼ 1 nm.

Next, we have examined metallic SWNTs with a small
band gap using an extended 1D lattice model in Eq. (23) and
depicted in Fig. 4(b). Although the winding number wμ,s is
not a topological invariant in the presence of γ

(2)
s, j in Eq. (23),

it is well defined except for the vicinity of topological phase
transition. Indeed we have proved the bulk-edge correspon-
dence for wμ,s in Eq. (29). We have observed that (i) all
the metallic SWNTs but the armchair type (n = m) are a
topological insulator in the absence of a magnetic field and
show the topological phase transition at a critical magnetic
field B∗. Since B∗ can be a few Tesla [12], the topological
phase transition could be observed for metallic SWNTs. (ii)
The armchair SWNTs are always topologically trivial.

In conclusion, the majority of SWNTs are a topological
insulator in the absence of a magnetic field and show a topo-
logical phase transition by applying a magnetic field along the
tube. Only metallic SWNTs of armchair type are topologically
trivial regardless of the magnetic field.
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APPENDIX A: EFFECTIVE LATTICE MODEL
FOR METALLIC SWNTs

We construct an effective 1D lattice model for a metallic
SWNT, starting from the Hamiltonian of k · p theory [26],
as discussed in Ref. [12]. In a magnetic field B in the axial
direction, the Hamiltonian in the vicinity of K and K ′ points
reads

Hτ,s(k) = h̄vF[
(
kc − τ�kc − s�kSO − �kφ

)
σx

+ τ
(
kz − τ�kz

)
σy] + τ sεSO, (A1)

with σx and σy being the Pauli matrices in the sublattice space
of A and B species. s = ±1 is the spin in the axial direction,
whereas τ = ±1 represents K or K ′ valleys. kc and kz are
the circumference and axial components of wave number
measured from K or K ′ points, respectively. kc is discretized
in units of 2π/|Ch| while kz is continuous.

In Hτ,s(k), the hybridization between π and σ orbitals
appears as the shift of Dirac points from K or K ′ points,

�kc = β ′ cos 3θ

d2
t

, �kz = ζ
sin 3θ

d2
t

, (A2)

with β ′ = 0.0436 nm and ζ = −0.185 nm. �kc opens a small
gap Eg except in armchair tubes (θ = π/6). The curvature-

TABLE III. Hopping distance and phase factor in the 1D lattice
model. Integers d, p, and q are given by Eqs. (2) and (3).

(a) (b)

j 1 2 3 j 1 2 3 4 5 6

�′
j 0 n

d − m
d �

(2)′
j

m
d

n+m
d

n
d − m

d − n+m
d − n

d

�′′
j 0 −p q �

(2)′′
j −q −(p + q) −p q p + q p

enhanced SO interaction yields

�kSO = α′
1VSO

1

dt
, εSO = α2VSO

cos 3θ

dt
, (A3)

with α′
1 = 8.8 × 10−5 meV−1, α2 = −0.045 nm, and VSO =

6 meV being the SO interaction for 2p orbitals in carbon
atoms. �kSO opens the gap in armchair tubes and gives a
correction to Eg in the others. The AB phase by the magnetic
field B appears as

�kφ = −eB

4h̄
dt. (A4)

The band gap is closed at B∗ when τ�kc + s�kSO + �kφ =
0. The last term in Hτ,s(k) yields the energy shift from EF = 0,
which is assumed to be small compared with the band gap
except in the vicinity of B = B∗.

The 2D lattice model in Eq. (22) is constructed to re-
produce Hτ,s(k) around the Dirac points [12]. The hopping
integral γ

(1)
s, j is given by

γ
(1)

s, j = γ exp(−i�kφaCC cos � j )[1 + �kcaCC sin � j

− (�kz + is�kSO)aCC cos � j], (A5)

whereas γ
(2)

s, j stems from the SO interaction as

γ
(2)

s, j = i
(−1) j+1

3
√

3
sεSO. (A6)

In a similar way to Sec. II A, we derive the 1D lattice
model in Eq. (23) from Eq. (22). The hopping distance �′

j

and phase factor �′′
j for the nearest-neighbor atoms are given

by Eq. (7). For the second-nearest-neighbor atoms, �
(2)′
j and

�
(2)′′
j are determined from

�
(2)
j = �

(2)′
j R + �

(2)′′
j (Ch/d ). (A7)

These quantities are provided in Table III.
We examine low-lying states near to the K and K ′ points.

By expanding the bulk Hamiltonian in Eqs. (24)–(26) around
μ = μτ and k = kτ in Eqs. (20) and (21), we obtain

γ fμ,s(k) = χτ h̄vF[(kc − τ�kc − s�kSO

− �kφ ) − iτ (kz − τ�kz )], (A8)

εμ,s(k) = τ sεSO, (A9)
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with χτ = τeiτ (θ−2π/3), kc = (μ − μτ )(2π/|Ch|), and kz =
k − kτ .5

The local band gap around K and K ′ points is evaluated
by using Eq. (A8). For metallic SWNTs, kc can be zero, and
therefore band gap is determined by the curvature effects as

Eg = h̄vF |�kc + τ s�kSO + τ�kφ|. (A10)

APPENDIX B: PROOF OF BULK-EDGE
CORRESPONDENCE

In this Appendix, we evaluate the number of edge states
from the Schrödinger equation, in a similar manner to
Ref. [10]. For semiconducting SWNTs, edge states have en-
ergy E = EF = 0. For metallic SWNTs, they still have E = 0
if we set εμ,s(k) = 0 in Eq. (26): The topological nature is
determined by γ

(1)
s, j , whereas the energy of the edge states is

shifted by γ
(2)

s, j in Hamiltonian (22). Here, we examine the

edge states at E = 0, neglecting γ
(2)

s, j .
We consider a long but finite SWNT using the 1D lattice

model with � = 0, 1, 2, . . . , L in Fig. 4(b). Using the Hamil-
tonian in Eq. (23), the time-independent Schrödinger equation
is written as

Hμ,s|φ〉 = E |φ〉, |φ〉 =
∑

σ=A,B

L∑
�=0

φσ,�|σ, �; μ, s〉, (B1)

where |σ, �; μ, s〉 is the electronic states at sublattice σ of
site index � with angular momentum μ and spin s. For E =
0, equations for {φA,�} and {φB,�} are decoupled from each
other. We find that the edge states consist of B sublattice (A
sublattice) only around � = 0 (� = L).6 Here, we examine
the former with the boundary conditions of φB,−1 = φB,−2 =
· · · = φB,−m/d = 0 because of the hopping integrals from �

to � + �′
3 = � − m/d (� � 0). The number of edge states

is given by the number of roots in the equation that decay
into the tube body, subtracted by the number of boundary
conditions, m/d .

If we assume a wave function in a form of φσ,� = λ�φσ,0

with a complex number λ, the equation for B sublattice reads

3∑
j=1

γ
(1)

s, j ei2πμ�′′
j /dλ�′

j = 0. (B2)

First, we neglect the curvature-induced effects
and only the AB phase is taken into account, i.e.,
γ

(1)
s, j = γ exp(i2πφ

aCC cos � j

πdt
) = γ exp(−i�kφaCC cos � j ).

From Eq. (B2), we obtain

1 + e−i2π pμ/d e−i(n+2m)φa2/(4S)λn/d

+ ei2πqμ/d e−i(2n+m)φa2/(4S)λ−m/d = 0, (B3)

5This agrees with the effective Hamiltonian of k · p theory in
Eq. (A1), up to an irrelevant phase factor χτ .

6The edge states consisting of A (B) sublattice around � = 0 (� =
L) do not exist because the number of boundary conditions n/d is
larger than the number of solutions of Eq. (B2).

1

1

−1

−1

FIG. 6. Zero-energy modes at B sublattice in the (6, 4)-SWNT
on the complex plane of λ′ in Eq. (B5). Circles and squares corre-
spond to modes of μ = 0 and 1, respectively. The solid line shows
Eq. (B6), whereas the broken line shows a unit circle centered at the
origin. They are crossed at λ′

± = ei2π/3.

with S = π (dt/2)2 being the cross section of a SWNT. Then
a straightforward calculation yields

ei2π (μ+φ)/d
(
λ′)m/d = (−1 − λ′)(n+m)/d

, (B4)

where

λ′ = e−i2π (p+q)μ/d ei(n−m)φa2/(4S)λ(n+m)/d . (B5)

Equation (B4) yields two equations for absolute and phase
values as

∣∣λ′∣∣m/d = ∣∣−1 − λ′∣∣(n+m)/d
, (B6)

n + m

d
arg(−1 − λ′) − m

d
arg λ′ − 2π (μ + φ)

d
= 2π j,

(B7)

with j being an arbitrary integer. The condition Eq. (B6) gives
a closed loop on the complex plane of λ′, which crosses the
unit circle of |λ′| = 1 at λ′

± = e±i2π/3, as shown in Fig. 6.
On the loop, Eq. (B7) indicates n+m

d points, which are the
solution of Eq. (B4). Among them, decaying modes from
� = 0 correspond to the points of |λ| = |λ′| < 1. We obtain
the number of such modes by counting integers between j+
and j−, where

j+ = 2n + m

3d
− μ + φ

d
, j− = n − m

3d
− μ + φ

d
(B8)

satisfy Eq. (B7) with λ′
±.

For metallic SWNTs, j± in Eq. (B8) can be integers for
φ = 0, which correspond to K and K ′ points. We neglect their
contribution for now, and examine later.

The above-mentioned analysis yields the number of roots
of Eq. (B2). The subtraction of m/d determines the number of
edge states around � = 0 with angular momentum μ, Nedge,μ,
for each spin. Nedge,μ coincides with |wμ| in Table I. The same
calculation can be applied for the edge states around � = L,
which consist of A sublattice. In consequence, 4Nedge, μ gives
the total number of edge states, which yields the bulk-edge
correspondence in Eq. (12).
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As an example, Fig. 6 depicts the edge modes around
� = 0 in the (6, 4)-SWNT (d = 2) on the λ′ plane. Circles
and squares are modes of μ = 0 and 1, respectively. Solid
and broken lines show Eq. (B6) and the unit circle |λ′| = 1,
respectively. For μ = 0, the number of the modes inside the
broken line is two. Since the number of boundary conditions is
m/d = 2, we have 2 − 2 = 0 edge states, which corresponds
to wμ=0 = 0. For μ = 1, on the other hand, we have three
decaying modes and hence one edge state, which is consistent
with wμ=1 = 1.

Finally, we examine the contribution from K and K ′ points
in metallic SWNTs. Note that if we write λ = e(ik−κ )az ,
Eq. (B2) results in the condition of fμ,s(k)|k→k+iκ = 0.

Without the curvature-induced effects, a plane wave gives
its solution. Thus we examine how the wave function is
modified when the curvature-induced effects are included.
From Eq. (A8), we find a solution near K and K ′ points with
λ = e(ik−κ )az ,

k = kτ + τ�kz, κ = �kc + τ s�kSO + τ�kφ. (B9)

Then we find that there is one additional edge state at B
sublattice around � = 0 if κ > 0. This ends up the conclusion
that Nedge in Table II is valid also for metallic SWNTs.
Thus the bulk-edge correspondence is established for both
semiconducting and metallic SWNTs in an arbitrary magnetic
field.
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[21] M. Margańska, M. del Valle, S. H. Jhang, C. Strunk,
and M. Grifoni, Localization induced by magnetic
fields in carbon nanotubes, Phys. Rev. B 83, 193407
(2011).

[22] C. T. White, D. H. Robertson, and J. W. Mintmire, Helical and
rotational symmetries of nanoscale graphitic tubules, Phys. Rev.
B 47, 5485 (1993).

[23] R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, Symmetry
properties of chiral carbon nanotube, Phys. Rev. B 47, 16671
(1993).

[24] A. R. Akhmerov and C. W. J. Beenakker, Boundary conditions
for Dirac fermions on a terminated honeycomb lattice, Phys.
Rev. B 77, 085423 (2008).

[25] H. Ajiki and T. Ando, Electronic states of carbon nanotubes,
J. Phys. Soc. Jpn. 62, 1255 (1993).

[26] W. Izumida, K. Sato, and R. Saito, Spin-orbit interaction in
single wall carbon nanotubes: Symmetry adapted tight-binding
calculation and effective model analysis, J. Phys. Soc. Jpn. 78,
074707 (2009).

[27] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course
on Topological Insulators: Band-Structure Topology and Edge
States in One and Two Dimensions (Springer, Berlin, 2015).

115409-10

https://doi.org/10.1103/PhysRevLett.68.1579
https://doi.org/10.1103/PhysRevLett.68.1579
https://doi.org/10.1103/PhysRevLett.68.1579
https://doi.org/10.1103/PhysRevLett.68.1579
https://doi.org/10.1103/PhysRevB.46.1804
https://doi.org/10.1103/PhysRevB.46.1804
https://doi.org/10.1103/PhysRevB.46.1804
https://doi.org/10.1103/PhysRevB.46.1804
https://doi.org/10.1103/PhysRevLett.78.1932
https://doi.org/10.1103/PhysRevLett.78.1932
https://doi.org/10.1103/PhysRevLett.78.1932
https://doi.org/10.1103/PhysRevLett.78.1932
https://doi.org/10.1143/JPSJ.69.1757
https://doi.org/10.1143/JPSJ.69.1757
https://doi.org/10.1143/JPSJ.69.1757
https://doi.org/10.1143/JPSJ.69.1757
https://doi.org/10.1103/PhysRevLett.108.196804
https://doi.org/10.1103/PhysRevLett.108.196804
https://doi.org/10.1103/PhysRevLett.108.196804
https://doi.org/10.1103/PhysRevLett.108.196804
https://doi.org/10.1103/PhysRevB.85.235462
https://doi.org/10.1103/PhysRevB.85.235462
https://doi.org/10.1103/PhysRevB.85.235462
https://doi.org/10.1103/PhysRevB.85.235462
https://doi.org/10.1103/PhysRevB.88.054503
https://doi.org/10.1103/PhysRevB.88.054503
https://doi.org/10.1103/PhysRevB.88.054503
https://doi.org/10.1103/PhysRevB.88.054503
https://doi.org/10.1103/PhysRevB.92.235435
https://doi.org/10.1103/PhysRevB.92.235435
https://doi.org/10.1103/PhysRevB.92.235435
https://doi.org/10.1103/PhysRevB.92.235435
https://doi.org/10.1103/PhysRevB.93.195442
https://doi.org/10.1103/PhysRevB.93.195442
https://doi.org/10.1103/PhysRevB.93.195442
https://doi.org/10.1103/PhysRevB.93.195442
https://doi.org/10.1038/srep31953
https://doi.org/10.1038/srep31953
https://doi.org/10.1038/srep31953
https://doi.org/10.1038/srep31953
https://doi.org/10.7566/JPSJ.86.013702
https://doi.org/10.7566/JPSJ.86.013702
https://doi.org/10.7566/JPSJ.86.013702
https://doi.org/10.7566/JPSJ.86.013702
https://doi.org/10.1103/PhysRevB.96.125414
https://doi.org/10.1103/PhysRevB.96.125414
https://doi.org/10.1103/PhysRevB.96.125414
https://doi.org/10.1103/PhysRevB.96.125414
https://doi.org/10.1103/PhysRevB.97.075141
https://doi.org/10.1103/PhysRevB.97.075141
https://doi.org/10.1103/PhysRevB.97.075141
https://doi.org/10.1103/PhysRevB.97.075141
https://doi.org/10.1088/1361-648X/aad21f
https://doi.org/10.1088/1361-648X/aad21f
https://doi.org/10.1088/1361-648X/aad21f
https://doi.org/10.1088/1361-648X/aad21f
https://doi.org/10.1016/0550-3213(89)90062-X
https://doi.org/10.1016/0550-3213(89)90062-X
https://doi.org/10.1016/0550-3213(89)90062-X
https://doi.org/10.1016/0550-3213(89)90062-X
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.71.193406
https://doi.org/10.1103/PhysRevB.71.193406
https://doi.org/10.1103/PhysRevB.71.193406
https://doi.org/10.1103/PhysRevB.71.193406
https://doi.org/10.1103/PhysRevB.71.195401
https://doi.org/10.1103/PhysRevB.71.195401
https://doi.org/10.1103/PhysRevB.71.195401
https://doi.org/10.1103/PhysRevB.71.195401
https://doi.org/10.1103/PhysRevB.77.045138
https://doi.org/10.1103/PhysRevB.77.045138
https://doi.org/10.1103/PhysRevB.77.045138
https://doi.org/10.1103/PhysRevB.77.045138
https://doi.org/10.1103/PhysRevB.83.193407
https://doi.org/10.1103/PhysRevB.83.193407
https://doi.org/10.1103/PhysRevB.83.193407
https://doi.org/10.1103/PhysRevB.83.193407
https://doi.org/10.1103/PhysRevB.47.5485
https://doi.org/10.1103/PhysRevB.47.5485
https://doi.org/10.1103/PhysRevB.47.5485
https://doi.org/10.1103/PhysRevB.47.5485
https://doi.org/10.1103/PhysRevB.47.16671
https://doi.org/10.1103/PhysRevB.47.16671
https://doi.org/10.1103/PhysRevB.47.16671
https://doi.org/10.1103/PhysRevB.47.16671
https://doi.org/10.1103/PhysRevB.77.085423
https://doi.org/10.1103/PhysRevB.77.085423
https://doi.org/10.1103/PhysRevB.77.085423
https://doi.org/10.1103/PhysRevB.77.085423
https://doi.org/10.1143/JPSJ.62.1255
https://doi.org/10.1143/JPSJ.62.1255
https://doi.org/10.1143/JPSJ.62.1255
https://doi.org/10.1143/JPSJ.62.1255
https://doi.org/10.1143/JPSJ.78.074707
https://doi.org/10.1143/JPSJ.78.074707
https://doi.org/10.1143/JPSJ.78.074707
https://doi.org/10.1143/JPSJ.78.074707



