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Differential anharmonicity and thermal expansion coefficient in 3C-SiC nanowires
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Surface and core are two essential but distinct structural parts of a nanowire—but their individual effects on
overall thermal expansion coefficient of a nanowire have never been quantified. Here we present an average
bond-length based framework to determine the effects of the surface and core regimes of 3C-SiC nanowires on
their effective volumetric thermal expansion coefficient over a wide range of temperatures. Our results suggest
that the surface and core atoms exhibit differential anharmonic response at finite temperatures, which makes
the surface regime exhibit disparate expansion behavior compared to the core. While at lower temperatures the
differential anharmonicity is negligible, at temperatures higher than the room temperature there is a pronounced
differential anharmonicity in the nanowire. Furthermore, temperature-dependent expansion coefficients of the
nanowire and the surface and core regimes qualitatively follow the behavior of the bulk—but they vary
substantially quantitatively, with the maximum coefficient exhibited by the surface at higher temperatures. The
diameter-dependent expansion coefficients follow inverse power laws with their exponents varying from 0.95
to 2.5. In thinner nanowires the expansion coefficient is controlled by an intricate combination of mass inertia
and bond stiffness at the surface and core, whereas the expansion of thicker nanowires is dominated by the
anharmonic motion of the core atoms alone. The surface effects saturate with increasing diameter, but the core
effects decay nonlinearly with increasing diameter and approaches the bulk value as d → ∞.
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I. INTRODUCTION

Low-dimensional materials such as nanowires, nanotubes,
and nanoparticles have many critical applications in a variety
of fields including electronics, thermoelectrics, composites,
biomedicine, and nanoelectronics. Size has been shown to
play a significant role in altering thermal conductivity in
brittle nanowires [1–6] and melting temperature of metallic
nanoparticles [7,8]. Nonetheless it remains less understood
how diameter of a nanowire affects its thermal expansion co-
efficient (TEC), and more importantly how the surface versus
core regimes govern the overall thermal expansion behavior
of a nanowire remains unexplored. The main difficulty arises
from (i) defining the surface versus core regimes that are
relevant to thermal expansion and (ii) inadequacies in theoret-
ical frameworks that can capture the effects of nanostructural
features on thermal expansion in low-dimensional materials.
In this paper, we propose a bond-length-based approach to
calculate volumetric TEC in nanowires and use the approach
to determine the relative contributions of surface versus core
on effective volumetric TEC of nanowires.

Thermal expansion plays a crucial role in regulating for-
mation of defects and stress in multimaterial systems under
operating conditions involving finite temperatures. Also the
coefficient of thermal expansion is a critical property of a
material that governs a variety of thermomechanical state of a
solid including thermal stress, thermal shock, surface cracking
or crack nucleation, and thermal failure [9]. While the physics
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of thermal expansion is well-known for many materials in
their bulk configuration [10–17], analogous information re-
mains limited to a few nanostructured solids [18–23]. More
importantly, the effects of different characteristic structural
features (such as surface, core, and diameter) and their correl-
ative influence on macroscopic expansion behavior have never
been quantified. Consequently there is a knowledge gap in un-
derstanding if and how a surface behaves differently compared
to the core so that their differential response can be exploited
in sensing applications or in controlling the expansion of
a nanowire by engineering its surface. Moreover, a correct
measure of their contributions can enable engineering the ef-
fective thermal expansion in nanowire-reinforced composites
wherein surface atoms govern the mechanical compatibility
and coherence of a nanowire with a second material.

With an objective of determining the effect of surface
and core atoms on effective thermal expansion coefficient
of nanowires, we consider 3C-SiC as an example material
due to its high impact in a variety of applications [24–32].
The exceptional properties of SiC arise from high resis-
tance to thermal damage [33], large mechanical stability and
strength at high-temperatures [34], higher chemical inert-
ness [35], and outstanding insulating properties [36]. Similar
to bulk SiC, nanowire SiC has also drawn wide attention
in a number of applications areas including aerogel [37],
thermoelectrics [38], thermal barrier coatings [39], biomate-
rials [40], electronics [41], photochemistry [42], photolumi-
nescence [43], and hydrogen storage [44]. These versatile ap-
plications and promise in new emerging applications [45,46]
motivate an in-depth understanding of their atomic scale
expansion mechanisms for attaining improved, tailorable,
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and functional performance from nanowires in advanced
applications.

To calculate thermal expansion of a nanowire, the linear
thermal expansion coefficient (LTEC) is usually used, with
a number of simplifying assumptions in accounting for the
variations in diameter and associated heterogeneity in bond
deformation [47,48]. There is a general understanding that
presence of surface and associated mechanical phenomena
influences the thermomechanical properties of nanowires.
Existing explanations of thermal expansion coefficients are
developed primarily based on surface stress or eigenstrain.
Nonetheless, recent findings contradict surface-stress-based
explanations and show other factors such as nonlinear elas-
ticity at the core [49] and energy density at the surface [50]
to affect the mechanical state of a nanowire with a potential
influence on thermal expansion. To maintain the condition
of zero pressure, the macroscopic mechanical condition for a
solid under thermal expansion remains stress free, regardless
of the temperature of the system. The expansion of a solid
under temperature gradient but no mechanical constraint is
strictly controlled by the thermal gradient and associated
anharmonic response of the solid, prescribed by the coefficient
of volumetric thermal expansion. This therefore rules out the
possibility of surface stress as the key ingredient for con-
trolling thermal expansion in nanowires. Here we show that
variation in potential energy density affecting the softening
and stiffening state of the bonds plays the most important role
in governing thermal expansion of brittle nanowires.

Unlike the linear thermal expansion coefficient (denoted
here as α), the volumetric thermal expansion coefficient
(VTEC) requires the complete knowledge of the dimensional
change in all directions in a vector space—unless the solid
is isotropic possessing cubic symmetry and pertaining to the
uniform strain state so that strain invariance is applicable
regardless of the thermal state of the system. By definition
the mathematical form of volumetric thermal expansion coef-
ficient is written as [51]

β = 1

VT

∂VT

∂T

∣∣∣∣
p

= d ln VT

dT

∣∣∣∣
p

, (1)

where VT is volume at temperature T and the temperature
derivative is evaluated at constant pressure P.

For a bulk solid, Eq. (1) is a well-defined relation to
apply, as volume VT is easily calculable from the equilibrium
macroscopic dimension. However, for nanowires, the diffi-
culty in capturing their radial dimension at finite temperatures
makes it a nontrivial task to compute diameter or macroscopic
volume [52] and, therefore, β. For example, determination of
the diameter of a nanowire from the macroscopic projection of
the atomic coordinates (on the plane perpendicular to the axial
direction) invokes inaccuracies arising from thermal fluctua-
tions of the nanowire as well as the random movements of the
surface atoms [47,48]. The situation becomes more intricate
at higher temperatures. Although an estimation of α for the
nanowire can be extracted from the box dimension along
the axial direction, it does not provide information on the
individual roles of the surface and core atoms. Furthermore
identifying the surface and core regimes of a nanowire at finite
temperatures becomes another nontrivial issue to address. As

a result the relative contributions of surface and core atoms
are mostly unfeasible from macroscopic understanding of
thermal expansion. To address the difficulty, we propose to
calculate β directly from a bond-length-based approach that
eliminates the need for calculating diameter but yet enables
predicting VTEC for the core and surface atoms as well as
the nanowire. We applied the approach to investigate VTEC
of [111] 3C-SiC nanowires for 1.0–6.35 nm diameters at 1
to 1500 K. We find the nanowires to show higher thermal
expansion coefficient compared to the bulk—and the surface
atoms contribute to thermal expansion differently than the
core atoms. The underlying mechanisms are governed by
diameter-dependent potential energy density and differential
anharmonicity in atomic motion between the bulk and surface
atoms.

The paper is organized as follows. In Sec. II, we describe
and discuss the theoretical approach introduced to study β; in
Sec. III, we validate that approach for bulk SiC and investigate
the role of core and surface atoms on overall macroscopic
thermal expansion behavior of the nanowires.

II. THEORETICAL APPROACH

Thermal expansion of a solid arises from the asymme-
try in vibrational energy versus atomic separation, and the
coefficient of thermal expansion is a measure of vibrational
amplitude difference due to increase in temperature. Based on
the quasiharmonic approximation [53,54], the linear expan-
sion coefficient is calculated from the phonon band structures
as [55–57]

α(T ) = 1

3B0

∑
γn(�q)Cn(�q), (2)

where B0 is the bulk modulus, γ = −d ln ωn(�q)/d (ln V ) is
the mode-dependent Gruneisen parameter, Cn(�q) the mode-
dependent specific heat, and the sum runs over the phonon
modes n with wave vector �q. The mode-dependent Cn(�q) is
defined as

Cn(�q) = h̄2ω2
n(�q)

V kbT 2

exp h̄ωn(�q)
kbT(

exp hωn(�q)
kbT − 1

)2 . (3)

The above relation can be simplified to

Cn(�q) = 1

2V kb

( ∑
i=2,4,6

h̄i−2ωi−2
n (�q)

i!ki
bT i−2

)−1

(4)

by expanding the sum up to the sixth order in T (and consider-
ing that the terms with orders equal to or higher than the eight
order have negligible effect, particularly at higher tempera-
tures). In this model, temperature dependence of α appears
through Cn; and its effect on α is inversely proportional to the
inverse of a sum of T i−2 terms, and their combined effects
approach a constant value at higher temperatures. Thus, for
most materials, the asymptotic trend of α at higher T is
governed primarily by the derivative of the Bose-Einstein
factor.

Application of Eq. (4) for nanowires is however a difficult
task, because of the large computational cost required for
phonon calculations from first-principles calculations as well
as in determining γn at different volumes of the nanowires.
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Furthermore, identifying the contributions of the core atoms
and surface atoms on the expansion coefficient of a nanowire
involves a tedious task of decomposing the corresponding
phonon modes and deriving their influence on the Gruneisen
parameter and specific heat. As an alternative, classical molec-
ular dynamics simulations can be performed. It has been suc-
cessfully applied to obtain reliable thermal properties of semi-
conductors [1–4] as well as to determine the linear thermal
expansion coefficient α for a number of cubic solids including
Si [51], SiC [58], and C [59,60] for their bulk configuration,
where α is obtained from the macroscopic change in length
or ∂ ln l/∂T . It is straightforward to calculate dimensional
change of a bulk and α. However, it is a difficult to compute β

of a NW from its macroscopic geometric information particu-
larly at higher temperatures, due to random fluctuations of the
atoms at the surface and the difficulty in capturing diameter.

To address the difficulties, we propose to exploit the rela-
tionship between macroscopic volume and bond length: V =
NAr̄3, where V is the macroscopic volume, N is the number of
atoms in the system, A is a proportionality parameter (which
depends on the crystal structure of a lattice), and r̄ is the
ensemble average bond length. At equilibrium, an analytical
estimate of A can be obtained from the structural parameters
of the unit cell. The volume of the unit cell with lattice
constant a containing eight atoms is Vmacro = a3 = (4r̄/

√
3)3,

where Vmacro denotes the volume of the unit cell obtained from
the macroscopic or cell dimension. If we are to calculate the
same volume from the average bond length r̄, we can write
Vatomistic = NAr̄3 = 8Ar̄3, where Vatomistic is the volume of the
same unit cell obtained from the atomistic information or bond
length, and the constant N = 8 is the number of atoms in
the unit cell. Since both Vmacro and Vatomistic refer to the same
volume of the unit cell, we set Vmacro = Vatomistic and obtain
A = 1.5396. It should be noted here that in the definition of
Vatomistic, an effective atomic volume is assigned to each atom
by the quantity Ar̄3, where the quantity A is related to the
shape of the effective atomic volume.

The general expression for the volumetric expansion coef-
ficient can thus be written for a bulk as

βbulk = d ln Vmacro

dT
= d ln Vatomistic

dT
= 3

d ln r̄

dT
. (5)

Here, the term d ln r̄
dT refers to the linear thermal expansion coef-

ficient or α, proving that the volumetric expansion coefficient
is three times the linear expansion coefficient (as often used in
relating linear expansion with volumetric expansion for cubic
solids). In Eq. (5), the relation d ln Vatomistic

dT = 3 d ln r̄
dT implies that

NAr̄3 = A
∑

r̄3
i , where r̄ is the average bond length in the

ensemble and r̄i is the average length of the bonds connected
to the atom at site i. For bulk configurations, r̄ = r̄i, whereas
for nanostructures, r̄ may not be equal to r̄i due to the presence
of the surface. As we show later, there is no significant spatial
variation in bond lengths in the core or the surface regimes
in SiC nanowire over a large temperature range. It is thus
reasonable to approximate r̄ = r̄i. As the temperatures of the
system increases, bond lengths form a Maxwell-Boltzmann
type distribution due to thermal fluctuations. At a given tem-
perature, some bonds are longer than the ensemble averaged
bond length and some are smaller. The higher the temperature
the wider is the range of bond length. Yet r̄ = r̄i holds in each

of the surface and core regimes that can be reasonably justified
from an analytical analysis as described below.

Let us denote the change in bond length relative to the en-
semble averaged bond length as �r. Using Taylor’s expansion
we can then write, (r̄ ± �r)3 = r̄3 ± 3(�r)r̄2 + 3(�r)2r̄ ±
O(�r)3 = r̄3 + 3(�r)2r̄ + O(�r)4. Since thermal expansion
coefficient is a first order effect and (�r)2 � �r, we can
conclude that (r̄ ± �r)3 = r̄3 is a reasonable approximation
for computing the thermal expansion coefficient. In situations
where large spatial variations in bond lengths are possible,
consideration of A

∑
r̄3

i (instead of NAr̄) may result in a more
accurate estimation of Vatomistic. To test this for the current
work, we used NAr̄3 and A

∑
r̄3

i to expression the volumes
of the core and surface and obtain identical results, suggesting
the condition that r̄ = r̄i is a reasonable approximation in each
of the surface and core regimes. The use of NAr̄3 in describing
volume simplifies the expression for β and makes it calculable
directly from the ensemble averaged statistical quantities.
It should however be pointed out that average bond length
based description of thermal expansion coefficient does not
take into account anisotropic effects of macroscopic thermal
motion arising from difference in boundary conditions in the
nanowire.

The ensemble averaged bond-length based description of-
fers an atomistic platform for uncovering the physics of ther-
mal expansion in terms of local variations in atomic scale fea-
tures (such as surfaces, defects, impurity, etc.). Also, it allows
determination of β directly from its local atomistic ingredients
as we show next. We demonstrate its usefulness in enabling
an accurate quantification of the relative contributions of the
surface versus bulk atoms on overall β of a nanowire. In this
approach, the volume of the nanowire is decomposed into the
volumes of core and surface as follows:

Vnw = Vcore + Vsurface (6)

= ANcr̄3
c

(
1 + Ns

Nc

r̄3
s

r̄3
c

)
, (7)

where Ns and Nc are the number of bonds of the surface and
core atoms, respectively; r̄s and r̄c are the average bond length
in the surface and core regimes, respectively; and A is assumed
to be the same for the surface and the core and temperature
independent. It should be noted that structural variation (such
as surface reconstruction) can result in different values of A
for the surface and the core. In this work, no surface recon-
struction was observed for the nanowires. Furthermore, we
estimate negligible dependence of A on temperature so that it
is reasonable to set dA

dT = 0. The expressions for βcore, βsurface,
and βnw are therefore

βcore = 3
d ln r̄c

dT
, (8)

βsurface = 3
d ln r̄s

dT
, and (9)

βnw = βc + d ln
[
1 + Ns

Nc

( r̄s
r̄c

)3]
dT

. (10)
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It is clear from the equations that the thermal expansion
coefficient is not an additive quantity, so that

βnw �= βsurface + βcore. (11)

Furthermore, to describe the difference in the anharmonic
response of the surface and core atoms we define a quantity
called “differential anharmonicity” as the difference in the
average bond length in the surface and core regimes of the
nanowire:

χ = (r̄s − r̄c). (12)

Substitution of this expression in Eq. (10) gives a simple
expression for βnw:

βnw = 3
d ln r̄c

dT
+ d ln

[
1 + Ns

Nc

(
1 + χ

r̄c

)3]
dT

. (13)

Calculation of the expansion coefficients of different parts
of a nanowire thus requires the knowledge of temperature-
dependent average bond lengths in the respective regimes.
Nevertheless, if the above mentioned formulas are applied
to MD data, a scaling is needed to account for the discrep-
ancy between the MD simulation temperature and the actual
temperature of the domain. Because the actual temperature
must involve quantum mechanical effects that are particularly
important at low temperatures [55]. The MD-temperature is
however well-correlated with the actual temperature by the
following [61–63]:

Tmd = 1

kb

∫
h̄ωD(ω)

(
1

2
+ 1

exp h̄ω
kbT − 1

)
dω, (14)

where D(ω) is the phononic density of states. This expression
has been demonstrated to produce experimentally consistent
thermal properties of solids [64–69]. In principle, the first
derivative of this relation scales the MD-obtained β to a
corrected β that accounts for the quantum mechanical effect.
Thus, if a relation of the form Tmd = f (T ) is known from
phonon calculations, an accurate expression for the expansion
coefficient β can be written as

β = 1

VT

∂V

∂T

∣∣∣∣
p

= 1

VT

(
∂V

∂Tmd

∂Tmd

∂T

)∣∣∣∣
p

(15)

= βmd
dTmd

dT
, (16)

where βmd ∈ {βnw, βcore, βsurface, βbulk} is the expansion coef-
ficient obtained from MD-simulations.

Simulation details

Our simulations are divided into two parts. In the first part,
we perform the density functional theory (DFT) simulations
on a bulk SiC supercell containing eight atoms to obtain an ac-
curate interatomic potential in the Stillinger-Weber form [70]
(which we denote as the SW potential). The goal of this task is
to derive a first-principle accurate anharmonic response of SiC
over a large interatomic distance using a classical potential.
In the second part we use the SW potential to perform MD
simulations and investigate VTEC of bulk SiC and [111]-3C-
SiC nanowires.

The DFT calculations are carried out using the open source
software SIESTA [71]. The core electrons are replaced by norm
conserving pseudopotentials following a Troullier and Mar-
tins scheme [72]. The valence electrons are represented by an
extended numerical atomic basis set of polarized double-zeta
(DZP) type. For the exchange-correlation part of the electron
energy, we use the generalized gradient approximation (GGA)
with the PBE functional [73]. The pseudopotentials (PP) for
Si and C were obtained from the SIESTA pseudopotential
database. In generating the PPs the valence configuration
used for Si is 3s2, 3p2, 3d0, and 4 f 0 with a cutoff distance
of 1.75, 1.94, 2.09, and 2.09 bohrs for the pseudoatomic
orbitals (PAOs), respectively. For C, the valence configuration
used was 2s2, 2p2, 3d0, and 4 f 0 with a cutoff at 1.54 bohrs
for all the PAOs. The calculations are performed with an
energy threshold of 1.0 × 10−4 eV per supercell and a force
tolerance of 0.01 eV/Å to ensure convergence of the results.
The relaxation of atoms is carried out by using the conjugate
gradient optimizer with a maximum displacement of 0.05 Å
and the energy cutoff for the basis is 50 meV.

The periodic supercell containing eight atoms is subjected
to hydrostatic deformation for 100 different values of inter-
atomic distance and at each of these deformed states the
energy per atom is calculated. The equilibrium structural
parameters of the lattice (a0, kb, and Ec) is then extracted
from the energy versus interatomic distance curve. These
properties are then used in developing the parameters for
the SW potential. At each deformation state only the atoms
were allowed to relax, keeping the volume of the supercell
fixed. The Brillouin zone (BZ) integration is performed with
a Monkhorst-Pack (MP) k mesh of 10 × 10 × 10 that resulted
in 560 k points in the reciprocal space of the domain. From
the energy versus lattice constant data the equilibrium lattice
constant is found to be a0 = 4.385 Å, which agrees with the
experimental value of 4.36 Å [74] within 0.67%.

For the MD simulations, the SW-potential parameters are
obtained using the procedure outlined elsewhere [75], here
we provide brief details for completeness. In general, the SW
potential models many-body interaction of a solid through a
sum over two-body V2(ri j ) and three-body V3(θi jk ) interac-
tions terminated by a cutoff distance rc. The mathematical
forms of V2 and V3 are

V2(ri j ) = Aε

(
B

σ 4

r4
i j

− 1

)
exp

(
σ

ri j − rc

)
, (17)

V3(θi jk ) = λε(cos θi jk − cos θ0)2 exp

(
2γ σ

ri j − rc

)
. (18)

Here, ri j is the distance between atoms located at ri and
r j ; θi jk = arccos r̂i j ·r̂ik

|r̂i j ||r̂ik | is the angle between the bonds ri j

and rik formed at site i; and A, B, ε, σ, λ, γ are the SW
parameters. The parameters A, B, σ , and λ are obtained
from DFT-generated force-constant Kb, cohesive energy Ec,
bond bending constant kθ , and equilibrium bond length
r0. Among the remaining parameters of the SW poten-
tial, we take rc as the second-neighbor distance and ex-
ploit the free parameters γ and ε to calibrate the potential
up to the maximum force point in the force-strain curve.
For modeling, the two-body and three-body interactions
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FIG. 1. (a) Comparison of the MD-SW potential function with
DFT-GGA data points under hydrostatic deformation. The vertical
dashed line indicates the equilibrium bond length of 1.90590 Å.
(b) Comparison of the MD-SW forcing function with the correspond-
ing DFT-GGA data points. The horizontal dashed line indicates the
zero force line.

(denoted by C-Si-Si or Si-C-C in LAMMPS notation),
we determine the following SW parameters following the
above mentioned procedure: ε = 1.9, σ = 2.4050, a =
1.26819, λ = 19.0, γ = 0.69000, cos θ = −0.33333, A =
11.30864, and B = 0.18411. It should be noted that in crys-
talline bulk SiC or nanowire SiC there is no Si-Si or C-C
bonds within the cutoff distance rc, which is taken less than
the second-neighbor distance. So, for modeling the behavior
of the lattice under consideration, the parameters describing
Si-Si, C-C two-body interactions and C-C-Si, C-Si-C, Si-C-
Si, Si-Si-C three-body interactions are not needed. However,
to model an amorphous phase or defect structures wherein C-
C or Si-Si appear within the cutoff distance, a set of other SW
parameters are needed to account for the relevant two-body
and three-body interactions.

The resulting energy-distance and force-distance curves
are compared with DFT in Fig. 1, which indicates reasonable
agreement between the DFT-GGA and MD-SW results over
the entire regime of interatomic distances that are relevant
for studying thermal expansion of the material. The MD-SW
reproduces the DFT-GGA generated forcing function up to
the maximum force and to match with the cohesive energy of
the solid an energy correction is needed [75], which does not

affect any energetics or forcing behavior of the solid up to the
bond length at which the bond length is a maximum. Thus this
energy correction or the difference between the MD potential
energy and DFT-GGA potential energy at d → ∞ yields
a constant potential energy correction: �Ecorrection which is
calculated as 3.40 eV/atom. This energy correction has no
implication on the forcing behavior as its derivative produces
zero contribution to force. Also, for the highest temperature
considered in this work, the anharmonicity is contained within
a very small bond length window surrounding the equilibrium
point.

The MD simulations are performed using the open source
code large-scale atomic/molecular massively parallel simu-
lator (LAMMPS) [76]. In these simulations, we first relax
the system statically to get rid of any residual stress by
applying the conjugate gradient minimizer. Then assigning
a random velocity distribution to the atoms representing a
temperature of 1 K, we raise the temperature of the system
to a target temperature over a period of 5 ns by applying the
Noose-Hoover thermostat. During this equilibration process
zero pressure is maintained by applying the Anderson barostat
using the isobaric and isothermal ensemble. The simulations
are performed with a time step of 1.0 fs, and the parameters
for thermal and pressure damping were selected as 1 and
10 ps, respectively. Periodic boundary condition is employed
along all directions in modeling thermal expansion for the
bulk SiC configuration. In modeling thermal expansion of
the nanowires, periodic condition is applied only along the
longitudinal or [111] direction of the nanowire, and an empty
space is included in the lateral directions sufficiently large to
avoid interactions among the periodic images of the NWs.

III. RESULTS AND DISCUSSIONS

First we investigate βbulk and establish the bond length
based framework to obtain reliable prediction of β from
atomistic data. We then apply the framework to determine the
βs for the nanowires and evaluate the relative contributions of
the surface versus core regimes on overall thermal expansion
coefficient of the nanowire, or βnw.

A. VTEC of bulk 3C-SiC

In determining VTEC for bulk SiC using Eq. (5), we
calculate r̄ from a periodic supercell containing 24 800 atoms
at 17 different temperatures ranging from 1 to 2100 K with
an interval of 150 K. The supercell’s orthogonal sides are
bounded by planes with normal directions aligned along the
[111], [1̄10], and [112̄] directions. The ensemble average
bond length is calculated from the ensemble averaged mean
bond length: r̄ = ∑

r̄i/N , where r̄i is the average length
of the bonds connected with atom i, where i = 1, 2, . . . , N
with N being the total number of atoms. To evaluate the
accuracy of this mean-based estimation, we analyze the role
of skewness on the central tendency of r̄ by computing the
radial distribution function at a few temperatures. As depicted
in Fig. 2, at T = 1 K, the distribution of the bond length is a
normal distribution with zero variance. The mean and median
based estimations produce a unique value of r̄. However, at
higher temperatures, say at T = 900 K, they differ due to
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FIG. 2. Normalized radial distribution function (RDF)
g(r)/gmax(r) of the bond lengths in bulk SiC at 1, 300, 600,
and 900 K. The statistical properties of the MD data, mean μ,
variance σ 2, median m, and skewness γ are given in the plots.

the right-skewed feature of the distribution—but the variance
is substantially small as long as the number of atoms in the
domain is sufficiently large to avoid the effect of thermal
fluctuation in bond lengths. The mean-based calculations is
thus found to be a reliable measure of r̄.

Using the ensemble averaged bond length r̄, we calculate
temperature-dependent linear thermal expansion coefficient
α(T ) from Eq. (5), using the second-order accurate central
difference numerical scheme for discretizing the derivative.
Results obtained on α(T ) from our MD calculations are com-
pared with those of available experimental [13] and analytical
results [57]. As seen from Fig. 3, they exhibit reasonable
agreement over the entire temperature regime, except at tem-
peratures lower than 600 K. In that temperature regime, our
MD-SW results show closer agreement with the analytical
results. Also, the higher temperature behavior of α is consis-
tent across MD-SW data, experimental measurements, and the
analytical results. Since our MD-SW potential is, by construc-

400 600 800 1000 1200 1400
2

3
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6
10-6

Analytical
MD-SW
Experimental

FIG. 3. Temperature-dependent linear thermal expansion coeffi-
cient (LTEC) or α of bulk 3C-SiC obtained from MD-SW simula-
tions, experimental and analytical results.
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FIG. 4. (a) MD temperature vs actual temperature and (b) ther-
mal derivative dTmd/dT at different temperatures.

tion, a nearest-neighbor model that accounts for interactions
within the second-neighbor distance only, its close agreement
with the experimental and analytical results highlights the
thermal expansion behavior to be dominated by interactions
bounded by the second-nearest-neighbor distance.

In correcting the MD temperature and to account for the
quantum mechanical effects on thermal expansion, the scaling
factor dTmd/dT , appearing in Eq. (16), is obtained from the
relation between the corrected MD temperature and the ac-
tual temperature of the system, Tmd = 513.45 − 0.18635T +
0.0014644T 2 − 9.8586 × 10−7T 3 + 3.4008 × 10−10T 4 −
4.6948 × 10−14T 5, proposed for bulk SiC in Ref. [58]. See
Fig. 4. The quantity dTmd/dT obtained from this available
literature data resulted in smaller values of α at each T , when
compared with the analytical results. Addition of a constant
value however produced reliable estimates of α, as shown
in Fig. 3. The expression for Tmd = 513.45 + 0.025T +
0.5 × 0.0029288T 2 − (1/3) × 29.5758 × 10−7T 3 + 0.25 ×
13.6032 ×−10 T 4 − 0.20 × 23.4740 × 10−14T 5 and thermal
derivative as: dTmd/dT = 0.025 + 0.0029288T − 29.5758 ×
10−7T 2 + ×13.6032 ×−10 T 3 − 23.4740 × 10−14T 4. The re-
sulting curves are shown in Fig. 4, which indicates Tmd > T
below 700 K and Tmd < T above 700 K.

Based on the reasonably accurate prediction of βbulk by the
MD-SW potential as well as the close agreement between the
DFT-GGA and MD-SW potential and force functions (that
form the basis for the anharmonic response of the lattice),
we consider the MD-SW potential and the bond length based
atomistic framework as a reliable set of tools to investigate the
expansion behavior of SiC nanowires. In calculating β for the
nanowires, we use the same scaling dTmd/dT obtained here
for bulk SiC, assuming the scaling to be a material-dependent
quantity and independent of atomic configuration.

B. VTEC of nanowire 3C-SiC

1. Defining the core and surface regimes

For the nanowire calculations, we create their atomistic
configurations from an orthorombic unit cell of SiC compris-
ing twelve atoms bounded by the following lattice vectors:

a1 = 3(r0 + (sin φ −
√

2 cos φ)/4),

a2 = 6(− sin φ sin θ + cos φ + sin φ cos θ )a/4,

and,

a3 = (sin θ + cos θ )a/2,
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[112̄]

[1̄10]

[111]

FIG. 5. (a) Cross sectional view of an [111]-SiC nanowire of
1.3 nm diameter with the [111] direction along its longitudinal axis
and the lateral directions are [1̄10] and [112̄]. Atoms are identified as
Si and C. (b) Potential energy map across the nanowire cross-section
showing the core and surface regions.

where θ = π/4 and φ = arctan 1√
2
. The atomic coordinates

are �r1 = (0, 0, r0 + 2δ1), �r2 = (δ2, a3/2, 0, 0), �r3 = (2δ2,

0, δ1), �r4 = (3δ2, a3/2, 2δ1), �r5 = (4δ2, 0, 0), �r6 = (5δ2,

a3/2, δ1), �r7 = (0, 0, r0 + 2δ1, 2r0 + 2δ1), �r8 = (δ2, a3/2, 0,

2r0 + 3δ1), �r9 = (2δ2, 0, r0 + δ1), �r10 = (3δ2, a3/2, 2r0 +
2δ1), �r11 = (4δ2, 0, 2r0 + 3δ1), and �r12 = (5δ2, a3/2, r0 +
δ1). Here, δ1 = sφa/4 − cφa/(2

√
2), δ2 = (−sφsθ + cφ +

sφcθ )a/4 and δ3 = (sθ + cθ )a/4 are the interplanar
spacing along the [111], [112̄], and [1̄10] directions,
respectively; r0 = 1.905 Å is the equilibrium bond length;
and a = 4.4015 Å is the equilibrium lattice constant of
our SiC-SW potential which agrees with the corresponding
lattice parameter of 4.385 Å obtained from our DFT-GGA
calculation and with the experimental value of 4.36 Å [77,78]
within 1%. Figure 5 illustrates the cross-section of an example
[111]-SiC nanowire and the potential energy map in the initial
condition.

Here we used the potential energy density variation across
the nanowire’s cross-section to define the core and surface
regimes. It is clear that the bulk atoms with four nearest
neighbors are the lowest potential energy density atoms, and
the atoms at the six corners containing two nearest neighbors
are the highest potential energy density atoms, and the atoms
on the edges or sides containing three nearest neighbors are
the atoms with the intermediate potential energy density. We
define the atoms with the nearest neighbors less than 4 as
the surface atoms, and the atoms with four nearest neighbors
as the core atoms. Furthermore, as evident from Fig. 6, the
average bond lengths in the core and surface regimes are rea-
sonably approximated to be uniform in the respective regimes.

We calculated the average bond length at different radial
distance from the nanowire center by averaging over the bond
lengths at the atoms in the atomic-columns normal to the
{111} plane. At 300 K, the lateral fluctuations are not visible
for the atomic representation of the configuration shown in
the figure, while at 1500 K, an indication of the atomic
fluctuations is evident. Each data point shown by filled circles
represents the average location of the atoms in the (x, y)
plane, and the error bar shows the deviation of the average
value at different time steps during the dynamic equilibrium
of the system at a spatial location from the center. The plots
suggest that the higher the temperature is, the higher is the
difference in values of the average bond lengths between the
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FIG. 6. Bond length variation across the nanowire cross section,
relative to the center in d = 17.73 Å nanowire at (a) 300 and
(b) 1500 K. The maps of bond length, nearest-neighbor coordination
number, and species distributions are shown at the bottom of each
plot. The coordination number varies from 2 (blue spheres) to 4
(red spheres) and the species are Si (black spheres) and C (ash
spheres).The vertical dashed line denotes the transition between the
core regime and the surface regime.

surface versus core regimes. Furthermore, the distinction of
the two surface and core regimes is closely related with the
potential energy density across the nanowire’s cross-section.
We thus consider the potential energy density as a basis for
decomposing the nanowire’s cross-section into the bulk and
surface regions. It should be emphasized that the potential
energy density correlates directly with the stiffening and
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softening state of the bond, and thereby can directly affect
the thermal expansion coefficient of the nanowire. Because
expansion coefficient by definition is related to the change in
length (not the actual length itself). Thus missing neighbors
(reflected in the potential energy density variation) has the
dominant effect on thermal expansion.

Since the nanowire is periodic along its axial direction
and finite along the lateral directions, we explore the stress
state of the atoms in the nanowire to determine if the thermal
oscillation is anisotropic. Calculating the Virial atomic stress
components at each atomic site and determining the ensemble
averaged normal atomic stresses in the nanowire, we find them
to match within 0.1%, at each of the temperatures considered
between 1 to 1500 K. It is thus reasonable to conclude: σxx =
σyy = σzz and the bonds oscillate isotropically, at least locally,
in the nanowire.

2. Diameter-dependent thermal expansion

Taking ten unit cells along the [111] direction, we consider
twenty diameters ranging from 0.98 to 6.53 nm. Each of the
nanowires is then equilibrated at 17 different temperatures
separately. Then employing Eqs. (8) to (10) the volumetric
thermal expansion coefficients βnw, βc, and βs are obtained
for all the nanowires. The results presented in Fig. 7 suggest
a number of important features of thermal expansion in SiC
NWs: (i) βnw is diameter independent at temperatures less
than 100 K; (ii) at higher temperatures T > 1000 K, βnw

is strongly dependent on diameter: the smaller the diameter
is, the higher is the value of βnw; (iii) similar to bulk SiC,
βnw increases rapidly at lower temperatures followed by a
slower increase at higher temperatures; (iv) βsurface > βcore for
nanowires with d > 1 nm; (v) beyond d = 1.3 nm βsurface has
negligible dependence on diameter; and (vi) for d > 1 nm
there is a sizable difference between the expansion coeffi-
cients of bulk SiC and NW SiC at higher temperatures, so that
βnw − βbulk �= 0. The last observation suggests a sustaining
effect of the surface in the nanowire.

To construct a quantitative picture of the diameter-
dependent expansion behavior, we represent the diameter-
dependent variations of β at T = 300 and 1500 K in Fig. 8.
This figure provides some additional features of thermal ex-
pansion in SiC NWs: (a) nanowires of d < 1 nm, exhibit sub-
stantially higher expansion compared to the rest nanowires;
(b) thermal expansion of thinner NWs is highly sensitive to
diameter change compared to that of thicker NWs; and (c) for
nanowires with d > 1 nm βnw is dominated by βcore; and (d)
for most of the nanowires considered: βs > βnw > βc > βbulk.
At 1500 K, βsurface of d = 0.98 nm NW is 1.67 times that of
d = 6.53 nm, while βcore of d = 0.98 nm NW is 1.45 times
that of d = 6.53 nm.

Although the MD results show that βnw − βbulk > 0 for the
largest diameter considered—there is a trend that the values of
β continue to diminish with increasing diameter, suggesting
the possibility of βnw → βbulk with d → ∞. Thus, at con-
stant temperature, diameter-dependent expansion coefficients
of the nanowire, core, and surface are fitted to the following
function:

β(d ) = β0

(
1 + p

dn

)
, (19)
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FIG. 7. Diameter-dependent volumetric thermal expansion coef-
ficient in (a) nanowire, (b) core, and (c) surface in nanowires of
diameter ranging from 0.98 to 6.53 nm at different temperatures
spanning 1 to 1500 K.

where β0 denotes the volumetric expansion coefficient of the
nanowire with d → ∞, and p and n are the fitting constants
that fit the MD generated β versus diameter data. Both of the
fitting parameters and β0 depend on the system temperature T .
In Table I, we provide their values at 300 and 1500 K. Results
indicate that β0 ≈ βbulk for the expansion coefficients of the
nanowire and the core. Here the values of βbulk is obtained
from the linear thermal expansion coefficient (presented in
Fig. 3) using the relation that the volumetric expansion coef-
ficient is three times the linear thermal expansion coefficient.
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FIG. 8. Diameter-dependent β at (a) 300 and (b) 1500 K. The
dashed vertical line in each plot indicates the value of d at which
βcore = βsurface.

The physical basis for the inverse dependence comes from
a vanishing effect of the surface atoms with increasing di-
ameter. Similar functional dependence is reported for size-
dependent thermodynamic properties of metallic nanoparti-
cles as well [8]. Yet the diameter dependence of the core
and surface vary differently with respect to a change in
diameter. At T = 300 K, the observed behavior is well char-
acterized by the surface-area-to-volume ratio which varies
as 2/d; whereas, at T = 1500 K, the diameter-dependent

TABLE I. Fitting parameters describing the diameter-dependent
expansion coefficient in SiC nanowire. The goodness-of-fit is com-
puted using the R2 measure and given below. The units of a0 and a1

are K−1 and nmn K−1, respectively; and n is dimensionless.

Parameter Fit accuracy

T β β0 p n R2

300 NW 8.593 × 10−5 0.17 0.9177 0.9886
300 Core 8.700 × 10−6 0.15 1.5 0.9566
300 Surface 9.613 × 10−6 0.58 0.9658 0.5298
1500 NW 1.803 × 10−5 0.31 1.607 0.9711
1500 Core 1.79 × 10−5 0.37 1.826 0.9667
1500 Surface 1.973 × 10−5 0.15 2.75 0.8654

reduction in expansion coefficients is sharper than 2/d . In
either of the temperature regimes, βnw is largely dominated by
βcore. Thus a measurement of the expansion coefficient from
macroscopic dimension of the nanowire would underestimate
the expansion coefficient of the surface and the expansion
coefficient of the core is accurately captured by the nanowire’s
expansion coefficient. Moreover it is evident that the NWs
with diameters less than 1 nm behave differently from the
nanowires with larger diameters. In the next section, we look
for the atomistic basis for the difference in VTEC between
surface and core and explore the origin of the inverse diameter
dependence of βnw.

3. Atomistic basis

To uncover the theoretical basis behind the observation that
βs > βc and βnw > βbulk at temperatures higher than the room
temperature, we compare Eqs. (13) and (5). For sufficiently
larger diameter nanowires, the number of surface atoms is
substantially less than the number of core atoms, so that it is
reasonable to assume Ns/Nc → 0, which yields the following
difference between the coefficients of the bulk and nanowire:

βnw − βbulk = 3

(
d ln r̄c

dT
− d ln r̄b

dT

)
(20)

= 3
d

dT
ln

(
1 + χc

r̄b

)
, (21)

where χc = r̄c − r̄b is the differential anharmonicity of the
core atoms in the nanowire relative to the bulk. As evi-
dent from this relation, βnw → βbulk only if χc → 0. The
observation from our MD results that βnw > βbulk indicates
a sustaining existence of differential anharmonicity χc in the
nanowire, even for larger diameter. Although it can be con-
jectured that with d → ∞ βnw → βbulk, for all the nanowires
whose dimensions are by definition in the nanoscale, we
predict βnw − βbulk �= 0. This analysis gives a qualitative phe-
nomenological understanding of the role of nanowire size on
its thermal expansion behavior. It is clear that for a suffi-
ciently large diameter nanowire, there is still nonuniformity
in anharmonicity but it is of much lesser intensity due to less
macroscopic thermal fluctuation of the system. The variation
of β with diameter of NW shows the difference of average
bond length of surface and core region to decrease in larger
NWs. The dominance of surface atoms in material properties
is minimized with the increase in NW diameter. To develop
a quantitative measure of the anharmonic effects, we fit
the radial distribution function (RDF), constructed from the
atomic coordinates, with a normalized Gaussian function of
the following form:

g(r) = 4N

w
√

2π
exp −2(r − ā)2

w2
. (22)

The difference between two RDFs, denoted here as the rel-
ative distribution or �g(r) = g(r) − gref(r) is then calculated
to compare the harmonic and anharmonic parts of the distribu-
tion. Calculating g(r) at 300 and 1500 K relative to 100 K for
bulk SiC and the nanowires, we find that the bond length dis-
tribution to exhibit a larger deviation in nanowires compared
to the bulk at higher temperatures, as depicted in Fig. 9. As
expected the relative distribution confirms

∫ r0+�r
r0−�r �g(r)dr =
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FIG. 9. Radial distribution function g(r) at 100, 300, 1500 K in
(a) bulk and (c) NW. The change in radial distribution function at 300
and 1500 K relative to that at 100 K is shown in (b) for the bulk and
(d) for the NW. The diameter of the chosen NW is 1.56-nm nanowire.

0, where �r is the maximum deviation of the bond length
relative to the equilibrium bond length. The positive moment
of the expansion side of the distribution is higher in NW
compared to the bulk. Secondly, the deviation of the largest
bond is much higher in nanowires compared to the bulk
suggesting the presence of stronger heterogeneity in bond
lengths in nanowires.

To determine if the nanowires (particularly the thinner
ones) have melted at higher temperatures, we investigate
RDFs for five nanowires of the smallest diameters at two
different temperatures 300 and 1500 K. As shown in Fig. 10,
there is apparent that the nanowires retain their solid phase
even at 1500 K. However as expected, at higher temperature,
the bond lengths are distributed over a wider range in all the
nanowires.

Next to elucidate the individual contributions of the core
and surface atoms in the expansion process, we decompose the
contributions of the surface and bulk at different temperatures.
From Eq. (8) and (9), the difference in expansion coefficients
between the core and surface atoms in a given nanowire of
diameter d is

βs − βc = 3
d

dT
ln

(
r̄s

r̄c

)
(23)

⇒ �β = 3
d

dT
ln

(
1 + χs

r̄c

)
, (24)

where �β is the difference in thermal expansion coefficient
between the surface and the core. This equation indicates that
core and surface atoms would behave the same way if there’s
no differential anharmonicity present between their motion in
a nanowire. From the MD results, it is seen that βs ≈ βc at
lower temperatures—but with increasing T , βs − βc increases
for any choice of d . This suggests that χs �= 0 and the differ-
ential anharmonicity χ is temperature-dependent. The higher
the temperature is, the higher is the differential anharmonicity
in the nanowire. As the ratio of the surface versus core atoms
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FIG. 10. Radial distribution function for five different nanowires
at (a) 300 and (b) 1500 K. The dashed vertical lines represent
the first-nearest-neighbor equilibrium distance of r = 1.096 Å,
the second-nearest-neighbor of r = 3.11 Å, and the third-nearest-
neighbor of r = 3.65 Å, respectively, at 1 K.

Ns/Nc remains constant in a nanowire (irrespective of the
temperature), it has no effect on the distinct thermal expansion
behavior of the core and surface. The differential anharmonic-
ity is, however, depends on diameter, as evident from Fig. 11.
In nanowires with d < 1, χs is negative—and for d > 1 nm,
χs is positive. Results also suggest that the anharmonicity
of the surface atoms saturates with d → ∞, whereas the
anharmonicity of the core atoms continues to decrease as a
function of diameter. It can therefore be concluded that the
diameter-dependent thermal expansion coefficients of the core
and surface atoms, shown in Fig. 8, have a direct correlation
with the differential anharmonicity presented in Fig. 11.

The observation of diameter-dependent differential anhar-
monicity can be explained from the stiffness and mass varia-
tion in the nanowires. From a simple spring-mass analysis, it is
expected that both mass and bond stiffness have a direct influ-
ence on the displacement or anharmonic response of the mass.
Since the volume or mass ratio of the surface versus core
atoms explicitly affect thermal expansion [as seen in Eq. (13)],
we investigate the volumes of core and surface atoms denoted
as Vsurface and Vcore, respectively, to examine their inertial
effects. As illustrated in Fig. 12, Vsurface and Vcore show a
transition diameter of dc = 1 nm, whereat these quantities are
equal. Below dc the volume of the nanowire is dominated
by the surface. Higher effective atomic mass at the surface
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FIG. 11. Diameter-dependent anharmonicity at the core and sur-
face at (a) 300 and (b) 1500 K.

can be deemed responsible for causing an inertial instability
in nanowire’s vibrational behavior. Also, the appearance of
dc can be assumed to be temperature independent, so that
at any temperature there exists a diameter that demarcates
the relative dominance of the inertial effects of the surface
versus core. Thus the distinct behavior of thermal expansion
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FIG. 12. Volume of surface atoms vs volume of core atoms as a
function of diameter at 300 K. The vertical line shows the transition
diameter that identifies the dominance of the atoms: the left side is
dominated by the surface atoms and the right side by the core atoms.
The dashed vertical line indicates the transition diameter dc.
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FIG. 13. Interatomic potential energy per atom for bulk SiC and
for a set of SiC NWs with different diameters. The energy curves
are obtained from deforming the nanowires hydrostatically (which
gives similar atomic configuration under the influence of temperature
change) and determining the energy per atom at each deformed state
of the nanowire. The dashed vertical line indicates the equilibrium
bond length r0.

in regimes d < 1 nm and d > 1 nm can be deemed to arise
from the volume or mass ratio between the surface and core.

Furthermore, as shown before, the nanowires of different
diameters at equilibrium are at different mechanical state due
to the presence of the surface atoms. If the temperature of the
nanowires is increased from 0 to, say, 1000 K (whereat the
average thermal energy per atom for any of the nanowires in
equilibrium is 3kbT/2 = 1.5 × 8.6173303 × 10−5 × 1000 =
0.13 eV, where kb is the Boltzmann constant), the nanowires
of different diameter respond to the energetic modulation
differently due to their differential energetic/mechanical state
at 0 K. The anharmonicity is thus different in nanowires
versus bulk.

In addition to the inertial effects, anharmonicity in thermal
motion is affected by the stiffness of the bonds that are pre-
scribed by the curvature of the potential energy density varia-
tion in the nanowire as a function of the diameter. The higher
the diameter of the nanowire is, the stiffer is the nanowire is
and, thereby, the higher is the degree of anharmonicity (or the
deviation of the mean position of the vibrating atoms relative
to the equilibrium state), as exhibited in Figs. 13 and 14.

It is evident that presence of surface substantially affects
the effective stiffness of the nanowire. For nanowires of d < 1
nm, the bonds are much softer than the bulk. With increasing
diameter, the effective stiffness of the nanowires approaches
the bulk value, thus makes the anharmonicity of thicker
nanowires closer to the bulk. The difference between the
potential energy density �E = Enw − Ebulk accounts for the
surface-energy per atom or �E/N , where N is the total num-
ber of atoms in the nanowire. Effect of the surface atoms on
�E can be estimated from �Es = (Enw − Ebulk)/Nsurface atoms,
which is much higher than the ensemble averaged �E .
Since the potential energy per atom is higher at the surface,
the atoms at the surface dominate the vibrational energetics
in smaller nanowires as �E is higher in smaller diameter
nanowires. Compared to the bulk atoms which have four
nearest neighbors (NNs), the surface atoms bonded with three

115407-11



HOSSAIN, ELAHI, AND ZHANG PHYSICAL REVIEW B 99, 115407 (2019)

-7

25

-6.5

-6

P
o

te
n

ti
al

 e
n

er
g

y 
(e

V
/a

to
m

)

20 25

-5.5

-5

2015
15

10 10

(a) 300 K

-7

25

-6.5

-6

P
o

te
n

ti
al

 e
n

er
g

y 
(e

V
/a

to
m

)

20 25

-5.5

-5

2015
15

10 10

(b) 1500 K

FIG. 14. Average potential energy density variation across the
nanowire cross-section at (a) 300 and (b) 1500 K. The range of
potential energy density at 300K is −5.26 to −7.35 eV/atom, while
at 1500 K it is −4.83 to −7.31 eV/atom indicating increased energy
density and higher variation at higher temperature.

NNs have at least 25% less potential energy, and the atoms
with two NNs have at least 50% less potential energy. The
bond-deficient surface atoms have more compliant effective
bonds. For a given energy �E , the energetic drive to stretch
out of equilibrium is much higher for the surface atoms than
the bulk, for the reason that a compliant spring must stretch
more than a stiff spring as a response to a given energetic
perturbation. Therefore the surface atoms have higher ex-
pansion coefficients in thicker nanowires, whereas in thinner
nanowires the behavior is governed by a combination of
inertial effects and stiffness of the bond.

IV. CONCLUSION

In conclusion, this paper presents a bond-length based
computational framework to unveil the distinctive thermal
expansion coefficients of surface and core atoms in [111]
3C-SiC over a wide diameter range (covering 0.98-nm to
6.53-nm nanowires). Results show that in thicker nanowires
the anharmonic response of the surface atoms is much more
pronounced compared to that of the core atoms at higher
temperatures. In thinner nanowires, the expansion of both
the surface and core atoms are substantially higher than the
bulk. The comparative analysis of the surface and core effects
shows the core atoms to make the dominant contribution to
the overall thermal expansion in the nanowires in thicker
nanowires, whereas in thinner nanowires, the surface and core
atoms play an equal role.

Additionally, temperature-dependent expansion behavior
of SiC nanowires exhibits a continued increase of the ex-
pansion coefficient at the core and surface as well as in the
nanowire, with a diminishing trend at higher temperatures.
The expansion coefficient in bulk SiC dies down at tempera-
tures beyond 1500 K, whereas there is a continued trend of in-
creasing the expansion coefficients in the nanowire at the same
temperature. This highlights enhanced sensitivity of thermal
expansion in nanowires and suggests the possibility of tun-
ing the effective thermomechanical behavior of nanocompos-
ites by engineering the surface characteristics of nanowires.
We attribute the enhanced sensitivity of thermal expansion
to originate from a sustained differential anharmonicity in
nanowires governed by variation in potential energy density
across the nanowire cross-section. The atomistic methodology
developed in this work is expected to address a key limitation
of our current theoretical/computational tools in predicting
thermal expansion in low-dimensional systems as well as in
inhomogeneous systems (such as materials with surfaces or
defects). Although the methodology outlined here is used for
SiC bulk and nanowires of single surface type, we anticipate it
to be applicable to nanowires of other materials and different
surface orientations.
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