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A metal nanoparticle (MNP) coupled to a quantum emitter (QE) is a versatile composite nanostructure
with unique chemical and physical properties which has been studied intensively, owing to its vast range of
promising applications in nanoscience and nanotechnology. When pumped into a higher gain level, an MNP-QE
composite nanostructure functions as a nanoplasmonic counterpart of a conventional laser, which is capable of
operating at subwavelengths. The theory of plasmonic lasers is hitherto developed on the local optical response
of the MNP, disregarding the nanoscale effects of its free electrons. In this paper, we perform a comprehensive
quantum mechanical analysis of a complex MNP-QE composite nanostructure, capturing the size-dependent
nonclassical effects through the nonlocal optical response of the MNP. Our study reveals that the nonlocal
correction introduces significant deviations to the plasmon statistics of the hybrid particle suggested by the local
calculations, becoming more prominent when the number of QEs coupled to the MNP increases. Furthermore,
for the typical material parameter values used in the literature, we observed the initiation of quenching effects at
lower pumping rates than suggested by the local response formalism. In essence, nonlocally assessed plasmon
statistics of MNP-QE composite nanostructures demand the concerted coupling of an even higher number of
QEs to compensate the deterioration in coherence and to sustain lasing.
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I. INTRODUCTION

In the visible frequency regime, noble metal nanoparticle
(MNP)–quantum emitter (QE) composite nanostructures gen-
erate interesting optical responses that are tunable, exploit-
ing the physical and optical properties of the particles and
the surrounding medium. Such MNPs possess a remarkable
ability for retaining the optical energy confined within, owing
to the excitation of localized surface plasmons [1–3]. On the
other hand, QEs exhibit optoelectronic properties which are
adjustable with respect to their composition, size, and shape
[4–6]. MNP-QE composite nanostructures (or hybrids), as
well as their individual constituents, hold a vast range of
fascinating interdisciplinary applications including bio-optics
[7–10], nanoelectronic devices [11,12], resonance energy
transfer [13–15], and superradiance [16–19]. Furthermore,
researchers have conceptualized [20], formulated [21–26],
and demonstrated [27] the possibility of realizing a plas-
monic laser using stimulated emission of surface plasmons
(SPs), which could overcome the half-wavelength diffraction
limit imposed on conventional lasers, and thus, bolstering the
miniaturization of devices into the nanoscale.

Similar to its macroscale counterpart, a plasmonic laser
consists of a resonator which produces SP modes and a gain
medium which amplifies the SPs. Metal nanostructures of
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noble metals, graphene, plasmene, or molybdenum disulfide
generally act as the resonator, while QEs including quantum
dots, quantum wells, dye molecules, or carbon nanotubes
act as the gain medium [20,23–25,28,29]. The gain ele-
ments are generally pumped incoherently, and they relax back
to form excitons, which would donate energy into the SP
mode. The gain medium self-sustains its excitation via the
highly localized electric field and stimulated emission, estab-
lishing and sustaining coherent operation of the plasmonic
laser.

Being the building block of plasmonic lasers, an MNP-QE
composite nanostructure forms a quantum mechanical system
which interacts with its environment and is characterized by
mixed states that are a statistical ensemble of pure states.
Concomitant to the short-lived femtosecond range lifetime
of the plasmons, a strong plasmon excitation delivered by
the concerted coupling of a substantial amount of emitters is
pivotal to the realization of a plasmonic laser. Due to the expo-
nentially growing computational complexity of the quantum
mechanical analysis of hybrid systems with many emitters,
researchers have mainly focused on a classical or semiclassi-
cal description of these devices. Yet, the size, shape, and the
structure of the particles greatly affect their optical properties
in the nanoscale, making an accurate quantum mechanical
description crucial in comprehending and interpreting their
dynamics. A numerically exact quantum mechanical analysis
of a shell of up to 100 QEs coupled to a spherical silver
MNP has been studied recently [30,31] and an undemanding
analytical solution for such a system, based on the plasmon
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reduced density matrix (RDM) approximation has also been
suggested [32].

MNPs and MNP-QE composite nanostructures are of-
ten studied under the local response approximation (LRA)
[33–35], where the nanoscale effects of the metal’s free elec-
tron gas are neglected and the dielectric function of the metal
is assumed to be dependent only on the angular frequency
of oscillation. Even though LRA formalism successfully ex-
plains numerous plasmonic phenomena, it fails to predict or
rationalize some crucial experimental observations such as
plasmonic resonance blueshift or the linewidth broadening
[2,36–38] observed with decreasing particle sizes. Further-
more, it has been shown that the dynamics of nanoparticle
dimers [39,40] and nanogaps in plasmonic structures [41–43],
whose dimensions are comparable to the electron mean-free
path can be better explained through the intrinsic nonlocality
of the dielectric response of the plasmonic material [41,44].
The nonlocal optical response of a metal implies that the
polarization field at a point depends on the electric field at
that point, as well as on the electric field in its neighbor-
hood [41,45]. In the Fourier space, it is represented through
the spatial dispersion or the wave-vector dependence of the
metal’s dielectric response. In an attempt to postulate these
inherent size-dependent effects, several theories including
first-principle approaches based on time-dependent density
functional theory (TDDFT) [40,46,47] and configuration in-
teraction formalism [48] have been developed.

The significance of quantum effects like electron tunneling
and nonlocal screening at subnanometer gaps in plasmonic
structures are well captured by TDDFT methods in good
agreement with measurements [49]; thus, widely embraced in
the field of plasmonics. Even though some strong approxi-
mations such as time-dependent local density approximation
(TDLDA) allow TDDFT methods to accommodate relatively
large nanosystems [39,50] than more atomistic expositions,
being a volume-dependent technique, the associated com-
putational cost and the excessive memory requirements of
TDDFT approach scales swiftly with the system dimensions,
hindering its feasibility beyond small particle sizes [51,52]. In
response, a less demanding semiclassical quantum corrected
model (QCM) which combines the electron tunneling with
LRA formalism has been developed [53]. Intuitively, for in-
terparticle separations greater than the atomic scale tunneling
threshold distance, QCM and LRA approaches yield identical
results [40]. Alternatively, simpler, yet scrupulous theories
have been built on nonlocal hydrodynamic Drude model (NL-
HDM) [54,55], which are capable of an analytical character-
ization of quantum nonlocal effects. However, it is important
to note the fact that the more complicated phenomena in
the plasmonic metal, such as the inhomogeneous equilibrium
electron density due to Friedel oscillations, electron spill-out,
or changes in the electronic band structure [36,39] are not
accounted in any analytical nonlocal model, causing their
predictions to still be slightly deviated from the experimental
observations.

NLHDM formalism appraises the nonlocal response of a
metal, via the existence of longitudinal waves and it has been
unified into generalized nonlocal optical response (GNOR)
theory [56], where both the quantum effects of the prop-
agating pressure waves and the classically induced charge

diffusion kinetics are treated on an equal footing. While
NLHDM-based methods are demonstrated to be consistent
with TDDFT outcomes outside the tunneling regime [40,56],
they surpass these ab initio methods in analytical capabilities
and numerical efficiency as well as in their ability to account
for retardation effects. It has been shown that nonlocal cor-
rection to the dipolar Mie coefficients derived in a retarded
framework is identical to that based on GNOR theory [36].
Moreover, the GNOR model is accented to be capable in
accounting for size-dependent Landau damping in particle
shapes beyond the spheres [36], and in comparison to the
NLHDM formalism, it is suggested that the GNOR theory
better captures the resonance shifts, linewith broadening, and
amplitude scaling visible in the Reyleigh scattering spectra
[57,58]. Furthermore, it is demonstrated that the properties of
molecular fluorescence enhancement in the vicinity of metal-
lic nanostructures predicted by the GNOR formalism are in
better agreement with the experimental observations than its
NLHDM counterparts [59]. Nevertheless, all the nonlocal or
quantum informed models employ approximations to certain
extents, hence a template for accessing their performance has
been suggested recently [44].

Nonlocal effects of single MNPs [54,55,60], dimers
[36,39,49,52,53,56,61], MNPs on substrates [62,63], and
MNP-QE hybrids with a single emitter [57,64,65] have been
thoroughly studied. It has been attempted to derive the non-
local polarizability for spherical MNPs, followed by a multi-
polar description in Refs. [60,66]. The influence of nonlocal
effects on Förster resonance energy transfer between two
molecules placed in the vicinity of an MNP has also been
studied in Ref. [13]. However, the significance of the nonlocal
effects on MNP-QE composite nanostructures with multiple
emitters is yet to be studied. In this paper, we peruse the
influence of nonlocal optical response of a spherical MNP
on a composite nanostructure with a cluster of identical QEs
positioned in a ring around the MNP. This paper provides a
comprehensive quantum mechanical elucidation of a tunable
plasmonic laser, with physical insights into the plasmon statis-
tics of the system.

This paper is organized as follows. We first present an
overview of the MNP-QE composite nanostructure in Sec. II,
outlining the total energy of the system through its Hamil-
tonian. Then in Sec. III, we discuss how the GNOR theory
quantifies the nonlocal effects arising from the free-electron
gas of the MNP, to emphasize the impact of particle size on
the MNP’s plasmonic resonance, decay rate, and the coupling
with the QEs, as opposed to the existing LRA-based explana-
tion. In Sec. IV, we derive the equation of motion (EoM) for
the complete system density matrix and simplify it with RDM
approximation in Sec. IV C, to study the plasmon statistics of
the system. In Sec. IV D, we explain the importance of and
provide the expressions for the observables of interest of the
system, in the context of plasmonic lasers. Furthermore, we
introduce two measures to quantify the difference between
the local and nonlocal calculations of those observables. Then
in Sec. V, we numerically analyze the discussed nonlocal
model for a silver MNP, varying its radius, number of cou-
pled QEs, pumping rate, and the dielectric constant of the
surrounding medium, and present the results in contrast to
the LRA approach, discussing in detail the implications of the
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nonlocal response of the MNP on the dynamics of plasmonic
lasers. We then discuss in Sec. V B, how the presented model
accommodates the possible differences between the QEs and
alternative structures for MNP-QE hybrids. In Sec. VI, we
conclude the paper, summarizing the physical insights gained
through the proposed approach.

II. OVERVIEW OF THE MODEL

We begin our description with a general subwavelength
MNP-QE composite nanostructure; a spherical MNP sur-
rounded with QEs and immersed in a homogeneous dielectric
bath with real positive relative permittivity εb (see Fig. 1). A
set of identical QEs are placed along the MNP’s equator in
the x − y plane, such that their dipole moments align with
the z direction. The dipole approximation is verified to be
reasonably accurate for spherical or elliptical particles with
dimensions below 100 nm [33], allowing us to treat the QEs
as point dipoles. The scheme is considered to be highly
symmetric, with QEs coupling identically to the MNP’s dipole
plasmon mode and the MNP’s dipole moment pointing in the
z direction. Later, in Sec. V B, we discuss how our model
accommodates the breaking of the indistinguishability of QEs
and their symmetric placement around the MNP. We neglect
the retardation effects in our description, given that the nonre-
tarded limit for the noble metals is extended to larger particle
sizes, generally beyond 10 nm radii [36].

System Hamiltonian

In our model, QEs are treated as two-level systems
[22,67,68] with basis quantum states |a〉, where a denotes the
energy level of interest, such that a = g for the ground state
and a = e for the excited state. The related wave functions
for the nth QE is denoted by ϕna. The QEs are excited
to higher energy states by an external electromagnetic field
and they form excitons with zero ground-state energy and

rm

b

m

x

y

z

Rdqe

dm

FIG. 1. Schematic of a spherical MNP coated with identical QEs
placed around its equatorial orbit of radius R in x − y plane. The
dielectric function of the plasmonic metal is given by εm and the
entire composite nanostructure is immersed in a homogeneous bath
with a real positive relative permittivity εb. Dipole moment of the
MNP (dm) as well as that of all the QEs (dqe) are aligned along the
z axis.

transition frequency ωn
qe between the states |e〉 and |g〉. The

excitonic coupling resulting from the Coulomb interactions
among the electrons and the nuclei of different QEs can be
safely neglected as we maintain an inter-QE spacing greater
than 1 nm in our model [69].

The Hamiltonian of the localized SPs in the spherical MNP
is derived by associating each mode with a quantum harmonic
oscillator. The presence of strong interband effects in noble
metals dampen the higher order modes, ensuring that only the
dipole plasmon mode is in resonance [36]. Consequently, our
system reduces to an Nqe number of two-level QEs interacting
with a single cavity mode, which is well described by the
closed Dicke model [70] given by,

Ĥsys =
Nqe∑
n

h̄ωn
qeσ̂

†
n σ̂n︸ ︷︷ ︸

Ĥqe

+ h̄ωplâ
†â

︸ ︷︷ ︸
Ĥpl

+
Nqe∑
n

υn(σ̂ †
n â + σ̂nâ†)

︸ ︷︷ ︸
Ĥint

, (1)

where Ĥqe is the Hamiltonian of the QEs and σ̂n = |ϕng〉〈ϕne|
denotes the lowering transition operator of the nth QE,
whereas its hermitian conjugate σ̂ †

n denotes the raising tran-
sition operator. The Hamiltonian of the plasmons is given by
Ĥpl and the creation and annihilation operators of the plasmon
field are denoted by â† and â, respectively. The plasmon num-
ber states |μ〉 form a complete basis set for the MNP dipole
plasmons, with ωpl denoting the SP resonance frequency of
the MNP. The interaction Hamiltonian of QEs and plasmons
is denoted by Ĥint, with υn denoting the coupling coefficient
between the nth QE and the dipole plasmon mode. Later, in
Sec. IV, we employ this Hamiltonian to arrive at the EoM
which describes the time evolution of the system.

III. NONLOCAL OPTICAL RESPONSE OF METALLIC
NANOSTRUCTURES

The quantum mechanical theory of plasmonic lasers is
hitherto developed on the local optical response of the MNP.
However, the validity range of the dipole plasmon approxima-
tion overlaps with particle sizes where the nonlocal correction
becomes essential. In this section, we perform a nonlocal
adjustment to the existing LRA theory, to elucidate the impact
of the dimensions of the MNP.

As discussed in Sec. I, nonlocal theories of diverse sophis-
tication levels are found in literature. Following a meticulous
review, we proceed with GNOR formalism in our analy-
sis, due to its physical transparency, analytical robustness,
and numerical simplicity, delivered without compromising
the accuracy within our tunneling-free, nonretarded model
[36,56,57].

The nonlocal optical response of an MNP is often charac-
terized by the wave-vector-dependent dielectric response of
the metal. NLHDM formalism-based models such as GNOR
method are classified as longitudinal nonlocal response mod-
els, where the transverse dielectric response of the metal
εT

m(ω), is given by a Drude-like dielectric function εm(ω),
which is similar to the local response models, whereas the
contribution of the free-electron response to its longitudinal
dielectric function εL

m(kL, ω), is modified by a longitudinal
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wave-vector (kL)-dependent term as [45],

εT
m(ω) = εm(ω) = εcore(ω) − ω2

p

ω(ω + iγ )
, (2a)

εL
m(kL, ω) = εcore(ω) − ω2

p

ω(ω + iγ ) − ζ 2k2
L

, (2b)

where ωp and γ are the bulk plasmon frequency and the
relaxation constant of the bulk material, respectively. In the
presence of interband effects that are inherent to the plasmonic
metals, the response of the bound electrons εcore(ω) can be
calculated using the bulk dielectric function of the metal,
whereas it can safely be assumed as 1 for the metals with neg-
ligible interband contribution [71]. For ω � γ , ζ 2 = (3/5)v2

F
with vF denoting the Fermi velocity of the metal.

Nonlocal correction to the MNP-QE coupling term

In an attempt to apprehend the impact of the optical
response of the MNP on its plasmonic resonance frequency,
decay rate, and the coupling coefficient between the MNP and
the QEs, it is quantified that the nonlocal response of the MNP
manifests itself into the MNP’s polrizability, as a rescaling
to either the metal’s Drude-like dielectric function from εm

to εNL
m = εm(1 + δNL)−1 or the bath permittivity from εb to

εNL
b = εb(1 + δNL), with δNL being the nonlocal correction

[63]. This redefines the Frölich condition for plasmon reso-
nance frequency ωpl as,

Re[εm(ωpl)] ≈ −2εb Re[1 + δNL]. (3)

Consequently, this modifies the MNP-QE coupling term as
[57],

υNL
n = υL

n

√
Re[1 + δNL], (4)

where υNL
n denotes the nonlocally corrected coupling coeffi-

cient between the nth QE and the dipole plasmon mode. Its
local counterpart υL

n is given by [34,57],

υL
n = dn

qe

h̄

(3 cos θn − 1)

R3
n

√
3h̄ηr3

m

4πε0
, (5)

where rm is the radius of the MNP and Rn is the distance
between the centers of the MNP and nth QE. The dipole
moment of the nth QE is given by dn

qe, while ε0 stands for
the permittivity of the free space. The spatially constant local
dielectric function of the plasmonic metal, which is identical
to the transverse dielectric response in NLHDM formalism
[see Eq. (2a)], is identified by εm(ω). The modified Planck’s
constant is denoted by h̄ and η = (d Re[εm(ω)]/dω)−1

(ω=ωpl )
.

The angle between the direction of the dipole moment of nth
QE and the line connecting its center to that of the MNP is
denoted by θn.

The lifetime of SPs becomes finite due to the energy losses
from the SP mode. This plasmon decay rate is given by [34],

γpl ≈ 2η Im[εm(ωpl)]. (6)

By applying the convection-diffusion equation and Fick’s
law for the current density in the hydrodynamic equation, the

nonlocal correction of the GNOR model is quantified as [36],

δNL = εm(ω) − εcore(ω)

εcore(ω)

J1(kLrm)

kLrmJ ′
1(kLrm)

, (7)

where J1 is the Bessel function of first kind and order 1,
whereas J ′

1 is its first-order differential with respect to the
argument kLrm. J ′

1 can be found using the following identity:

∂Jv (z)

∂z
= Jv−1(z) − v

z
Jv (z). (8)

The longitudinal wave vector kL, which accounts for the
nonlocal effects of the MNP, is given by [36],

k2
L = εm(ω)

ξ 2(ω)
. (9)

The nonlocal parameter ξ is modeled in GNOR formalism as,

ξ 2(ω) = εcore(ω)[ζ 2 + D(γ − iω)]

ω(ω + iγ )
, (10)

with the diffusion parameter D given by [56],

D = 4

15

γ

ω2 + γ 2
v2

F. (11)

IV. QUANTUM MECHANICAL THEORY OF MNP-QE
COMPOSITE NANOSTRUCTURES

The dynamics of conventional lasers are often explained
through photon statistics. Equivalently, the input-output rela-
tionship of a plasmonic laser, as well as the coherence of its
plasmonic field, can be learnt from the plasmon statistics. In
this section, we attempt to analyze the MNP-QE composite
nanostructure in Fig. 1 using the density matrix formalism
and to solve the quantum master equation, which enables us
to study the plasmon statistics of the system.

A. Equation of motion with dissipative correction

The MNP-QE composite nanostructure forms an open
quantum system, the dynamics of which can be described
using the Von-Neumann EoM for the system density matrix
ρ̂(t ) with dissipative corrections as follows:

d ρ̂

dt
= i

h̄
[ρ̂, Ĥsys] − Dρ̂. (12)

Owing to its trace preserving and completely positive
nature as mandated by quantum mechanical principles, the
dissipative part is often described by Lindblad form as,

Dρ̂ =
∑

m

km

2
([Â†

mÂm, ρ̂]+ − 2Âmρ̂Â†
m). (13)

The various terms in this expression can be understood as
follows. For QE excited-state decay, Â†

m = σ̂ †
n and km = γ n

qe
denote the spontaneous decay rate of the QE. Similarly, for
plasmon decay, Â†

m = â† and km = γpl denote the common
plasmon decay rate. In the cases where QE excitation is
achieved via incoherent pumping, the effect of pumping is
also described in Lindblad form as shown in Eq. (13), but with
slightly altered notation, where Â†

m = σ̂n and km = pn denote
the pumping rate.
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B. System density matrix

The following formalism for the system density matrix
ρ̂(t ) considers an identical set of QEs coupled to the MNP
plasmons. This results in a common resonance frequency ωqe,
pumping rate p, decay rate γqe, and MNP-QE coupling υ

for all the QEs (ωn
qe = ωqe, pn = p, γ n

qe = γqe, and υn = υ

∀n). This standard treatment which incorporates the indistin-
guishability of the QEs has been introduced in Ref. [30] and
adopted in Refs. [31,32].

We then obtain the basis states for the exciton-plasmon
mixed states by the direct product of the basis states of the
pure states as,

|αμ〉 = |α〉 ⊗ |μ〉 =
Nqe∏
n

∏
a=g,e

|ϕna〉 ⊗ |μ〉, (14)

where |α〉 = ∏
a=g,e |ϕna〉 and |μ〉 are the basis states for

the set of QEs and plasmons, respectively. Then, the
elements of the density matrix to be determined are
given by,

ραμ,βν (t ) = tr{ρ̂(t )|βν〉〈αμ|} ≡ 〈|βν〉〈αμ|〉. (15)

Accordingly, we apply Eqs. (1), (13), and (15) in Eq. (12)
to arrive at Eq. (16), which is the EoM for the time evo-
lution of the complete system density matrix (the detailed
derivation can be found in Appendix A). The numbers ncd

represent the number of QEs from product state |α〉 in state
ϕc and the number of QEs from product state |β〉 in state ϕd

simultaneously.

∂

∂t
ρ (μ,ν)

n = −i(neg − nge)ωqeρ
(μ,ν)
n − iωpl(μ − ν)ρ (μ,ν)

n − γpl

2

[
(μ + ν)ρ (μ,ν)

n − 2
√

(μ + 1)(ν + 1)ρ (μ+1,ν+1)
n

]
− γqe

2

[
(2nee + neg + nge)ρ (μ,ν)

n − 2nggρ
(μ,ν)
ngg−1,nee+1

] − p

2

[
(neg + nge + 2ngg)ρ (μ,ν)

n − 2neeρ
(μ,ν)
nee−1,ngg+1

]
+ iυ

∑
a={g,e}

(√
ν + 1naeρ

(μ,ν+1)
nae−1,nag+1 −

√
μ + 1neaρ

(μ+1,ν)
nea−1,nga+1 + √

νnagρ
(μ,ν−1)
nag−1,nae+1 − √

μngaρ
(μ−1,ν)
nga−1,nea+1

)
. (16)

This exact density matrix would have 4Nqe × (Npl + 1)2

elements with Npl denoting the highest plasmon level under
consideration. Since the matrix exponentially grows with Nqe,
the exact computation becomes extremely computationally
demanding [31,32]. Thus, claiming the homogeneity of the
QEs and their symmetrical arrangement around the MNP,
hereafter we adopt the plasmon RDM formalism, for a con-
venient analytical description.

C. Plasmon reduced-density matrix (RDM) formalism

Following the Lamb-Scully laser theory [72], a closed set
of EoM can be derived for the elements of the plasmon density
matrix given by [32],

ρμ,ν (t ) = tr{ρ̂(t )|ν〉〈μ|} ≡ 〈|ν〉〈μ|〉. (17)

Manipulating the general EoM given in Eq. (12), we then
arrive at the following equation for the time evolution of the
plasmon density matrix elements (the detailed derivation can
be found in Appendix B):

∂

∂t
ρμν = −i

[
(μ − ν)ωpl − i(μ + ν)

γpl

2

]
ρμ,ν

+ γpl

√
(μ + 1)(ν + 1)ρμ+1,ν+1

− iυ
∑

n

(
√

μ + 1ρgμ+1,eν + √
μρeμ−1,gν

−√
νρgμ,eν−1 − √

ν + 1ρeμ,gν+1). (18)

Equation (18) introduces a set of additional expectation
values (ραμ,βν), which necessitates the derivation of a separate
set of equations of motion. The subsequent EoM generates
a hierarchy of additional expectation values. To obtain a
closed set of equations, we truncate the expectation values
beyond the second order [73] to arrive at the following steady

state recurrence relation f (μ) between Pμ−1 and Pμ, which
denote the population of plasmon states |μ − 1〉 and |μ〉,
respectively:

f (μ) = ρμ,μ

ρμ−1,μ−1
= Pμ

Pμ−1
= �μ

κμ + μγpl
, (19)

where

κμ = Nqeμlμγqe

p + γqe + 2μlμ
, (20a)

�μ = Nqeμlμ p

p + γqe + 2μlμ
, (20b)

lμ =
υ2

(
γqe + p + γpl

2μ

)
(ωpl − ωqe)2 + ( γqe+p

2 + γpl

4μ

)2 . (20c)

Both the terms κμ and �μ are a combination of QE decay
rate γqe, QE pumping rate p, as well as lμ, which describes
the energy transfer between a QE and the plasmon states μ

and μ − 1. Being the product of QE pumping rate pn and
the energy-transfer rate μlμ into the μth excited plasmon
state, divided by the total rate and summed over the QEs, we
interpret �μ as a plasmon pumping rate. Similarly, κμ can be
understood as a plasmon decay rate. Equation (19) suggests
that, at the steady state, the μth excited plasmon state decays
at a rate of κμ + μγpl and it is compensated by pumping
plasmons to the μth plasmon state at a rate of �μ.

Employing the fact that the plasmon state occupation is
a probabilistic value, we then derive an expression for the
population of the zeroth plasmon state P0, which would serve
as an initial conditions for the repetitive relation in Eq. (19)
as,

P0 = 1

1 + ∑Npl

l=1

∏l
r=1 f (r)

. (21)
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D. Observable quantities for plasmon statistics

In this section, we present the expressions for the ob-
servable quantities of interest associated with the MNP-QE
composite nanostructure.

The probability of finding μ number of excited plasmons
in the system is signified through the plasmon state population
Pμ, given in Eq. (19). For a lasing MNP-QE composite nanos-
tructure, the said plasmon state occupation mimics a Poisson
distribution characterized by the mean plasmon number [74].
In an elementary statistical sense, mean plasmon number can
be calculated as,

Npl =
Npl∑
μ

μPμ. (22)

Even though it is unlimited in theory, Eqs. (21) and (22)
accent on a befitting upper limit for the plasmon number
states (Npl) for our discussion. Considering the symmetry of a
Poissonian curve around its peak, we estimate Npl to be twice
Mpeak, which is the plasmon state corresponding to the peak
plasmon population. These relations can be expressed as [31],

Mpeak = Nqe(p − γqe)

2γpl
− (p + γqe)2

8υ2
, (23a)

Npl = 2 × Mpeak. (23b)

We then obtain the maximum pump rate pmax, beyond
which the coherent plasmon statistics begin their transition
toward the chaotic regime due to the initiation of quenching
effects, which act against the intended lasing action in the
weak coupling regime. At pump rates greater than pmax, the
peak of the plasmon state distribution begins to shift toward
the lower plasmon states. According to Eq. (23a), pmax can be
expressed as,

pmax = 2υ2Nqe

γpl
− γqe. (24)

The second-order coherence function [g(2)(t )], which is an
intensity correlation function of the radiation, is an unambigu-
ous measure of the coherence of a given radiation [75]. It is
defined as the ratio of plasmon density correlation and the
square of the plasmon density [35]. We express this in terms
of plasmon number states as,

g(2)(t ) = 〈â†â†ââ|n〉〈n|〉(t )

〈â†â|n〉〈n|〉(t )2
=

∑
μ μ(μ − 1)Pμ( ∑

μ μPμ

)2 . (25)

For coherent light, g(2)(0) approaches the Poisson limit of 1
[30,75], hence it can be used to verify the lasing operation of
the MNP-QE composite nanostructure.

To demonstrate the deviation between the local and nonlo-
cal assessments of these observables, we then define,

F1(A) = |ANL − ALRA|, (26a)

F x
2 (B) = 1

(x2 − x1)

x2∑
x=x1

|B(x)NL − B(x)LRA|, (26b)

where the subscripts NL and LRA denote the evaluations
of the function according to GNOR and LRA formalisms,

respectively. F1(A) describes the absolute difference between
the GNOR- and LRA-based assessments of the observable A,
whereas F x

2 (B) describes the mean value of F1(B), calculated
over a range of x.

V. RESULTS AND DISCUSSION

In this section, we evaluate the impact of the nonlocal
optical response of the MNP on the dynamics of the MNP-
QE composite nanostructure depicted in Fig. 1, and compare
the results against those generated using the local optical
response of the MNP. We use a silver MNP, the dielectric
response of which is calculated according to Eq. (2), us-
ing experimentally validated bulk dielectric function εexp(ω)
[76] and the relation εcore(ω) = εexp(ω) + ω2

p/[ω(ω + iγ )]
[57]. The bulk parameters for silver are ωp = 8.99 eV, γ =
0.025 eV, and vF = 1.39 × 106 ms−1 [36]. All the QEs are
identical with dqe = 0.7 e nm and γqe = 50 μeV. For infinites-
imal inter-QE interactions, we maintained not less than 1 nm
separation in deciding the maximum number of QEs placed
in an orbital (Nmax

qe ). Unless otherwise stated, throughout
this section we use the parameters εb = 3, R = 12.5 nm, p =
50 meV, Nqe = Nmax

qe = �2πR� and assume MNP and QEs to
be in resonance.

A. Numerical results

In Fig. 2, we demonstrate how the nonlocally appraised
dynamics of a plasmonic laser would diverge from its local
counterpart with the increase of the coupled QEs. For any
given bath permittivity value, plasmon resonance frequency
ωpl of noble metals blueshifts with decreasing particle size
and, as evident from Eq. (3), the shift intensifies with bath
permittivity. On the other hand, the plasmon decay rate γpl

shows an oscillatory behavior against the bath permittivity at
different MNP radii. Extracting the commonly used param-
eters for plasmonic laser simulations, we used εb = 3, rm =
10 nm, Rn = 12.5 nm, pn = 50 meV for all n [30,32] and QE
resonance frequency is fixed allowing a detuning of 20 meV
with the locally calculated plasmon resonance.

As shown in Fig. 2(a), for all Nqe values, the peak of
the nonlocally calculated plasmon population shifts toward
lower plasmon states due to the inherent nonlocality, which
results in faster decaying plasmons (due to surface-enhanced
Landau damping) and a weaker coupling between the MNP
and the QEs than it is suggested by the LRA approach. While
Eq. (23a) predicts this behavior, the lower Mpeak limits the
spread of the nonlocal curves and, together with the proba-
bilistic nature of plasmon population causes a slight increase
of the occupation of lower plasmon states. The said shift
marginally increases with the number of coupled emitters.
At higher pumping rates, the plasmon distribution spreads
wider, moving toward higher plasmon states. It can be seen
that the nonconformity between the two approaches intensi-
fies at higher p values. An overestimation of mean plasmon
number is evident for the LRA approach in Fig. 2(b). The
local and nonlocal curves further part from each other with
increasing p or Nqe. While Fig. 2(c) demonstrates the expected
enhancement in coherence with increasing number of coupled
emitters, the nonlocal curve suggests that, at smaller Nqe
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FIG. 2. Significance of nonlocal effects at different numbers of coupled QEs. QEs placed in a R = 12.5 nm equatorial orbital of a silver
MNP of rm = 10 nm, immersed in a bath of εb = 3. Solid and dashed curves denote results for GNOR and LRA formalisms, respectively.
(a) Plasmon state distribution. (b) Mean plasmon number against pumping rate. (c) Second-order coherence function against pumping rate.
(d) Variation of F1(Mmax) (blue) and Fp

2 (Npl ) (red) with the number of QEs (arrows point the curves toward their respective axes).

values, the emitted light is bunched than it is forecasted in
LRA curve. This loss of coherence and the degradation of
mean plasmon number at higher p are direct consequences of
the quenching effect of the incoherent pump, which manifests
itself into the nonlocal curve at lower pumping rates.

The difference between the GNOR and LRA calculations
of Mpeak [F1(Mpeak)] and that of the input-output curve,
averaged over a range of pumping rate [Fp

2 (Npl)], is depicted
in Fig. 2(d), against the number of QEs coupled to the MNP.
F1(Mpeak) increases linearly with Nqe, with a greater gradient
at higher pumping rates. This results in an exponential growth
of Fp

2 (Npl) against Nqe, confirming the significance of nonlo-
cal effects with increasing Nqe.

Due to the quenching phenomena, the plasmon statistics
transition from a coherent region to a chaotic region, causing
the plasmon state population distribution to alter with resem-
blance to a thermal distribution at higher pumping rates. This
results in a leftward shift of the entire plasmon population
curve. In Fig. 3(a), we explore this behavior exhibited in
Eq. (24), in different bath permittivities and MNP radii. Con-
sistent with the implications of Figs. 2(b) and 2(c), Fig. 3(a)
shows that the nonlocally assessed pmax is lower than its LRA
assessment for all rm and εb, confirming that the nonlocal
approach picks up quenching effects earlier in the pumping
rate scale. A significant deviation between local and nonlocal
estimations of pmax can be seen at lower rm and εb. We then
study the variation of F1(pmax) with the number of QEs in the
hybrid system. Figure 3(b) suggests that F1(pmax) increases
linearly with Nqe and for any Nqe, the difference between the
local and nonlocal assessment is larger at lower rm and εb.

In Figs. 4(a)–4(f), we analyze an MNP-QE composite
nanostructure at several MNP radii and bath permittivity

values extensively used in the context of plasmonic lasers.
Subfigures 4(a)–4(c) are evaluated at εb = 3, while Subfigures
4(d)–4(f) are evaluated at rm = 7 nm. Figures 4(a) and 4(d)
demonstrate the variation of mean plasmon number against

rm (nm)
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FIG. 3. Local and nonlocal evaluation of maximum pump rate
before the plasmon state population switches from a Poisson to a
thermal distribution. (a) Variation of maximum pump rate with MNP
radius at different bath permittivities. Solid and dashed curves denote
results for GNOR and LRA formalisms, respectively. (b) Variation
of F1(pmax) with the number of QEs at different MNP radii and bath
permittivities.
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FIG. 4. Deviation of local and nonlocal dynamics of MNP-QE composite nanostructure at different MNP radii and bath permittivities.
Subfigures (a), (b), and (c) are evaluated at εb = 3, whereas (d), (e), and (f) are evaluated at rm = 7 nm. (a), (d) Mean plasmon number against
pumping rate, with Nmax

qe . Solid and dashed curves denote results for GNOR and LRA formalisms, respectively. (b), (e) Variation of F1(Mmax)
with the number of QEs. (c), (f) Variation of Fp

2 (Npl ) with the number of QEs.

the pumping rate for an MNP-QE composite nanostructure
with Nmax

qe of QEs. It can be seen that the mean plasmon
number is overestimated by the LRA formalism, for all the
considered rm and εb values. In the pumping rate scale, the
loss of coherence is first introduced at higher rm and εb. This
has to be understood as a sequel of increased Nmax

qe at higher
rm. The GNOR approach suggests that this incoherent nature
becomes visible at lower pump rates than those suggested by
the LRA approach.

Subfigures 4(b) and 4(e) demonstrate the variation of
F1(Mpeak) with Nqe, at different rm and εb, respectively.
While both subfigures demonstrate a linear increase of
F1(Mpeak) with Nqe, it is evident that the nonlocal effects are
prominent at smaller rm and greater εb values. The average
difference between the nonlocally and locally assessed input-

output curves [Fp
2 (Npl)] against Nqe is shown in Figs. 4(c) and

4(f). For all the rm and εb values, Fp
2 (Npl) exponentially grows

with Nqe, suggesting that when the MNP is coupled with many
QEs, the nonlocal effects become significant even at larger rm

values. It is observable that among the considered parameter
range, the nonlocal effects are least significant at rm = 15 nm
and εb = 1.77 (corresponds to water); however, there still
presents an indisputable nonconformity between the GNOR
and LRA predictions of plasmon statistics with increasing Nqe.

In Fig. 5, we study the tunability of the MNP-QE com-
posite nanostructure with respect to the properties of the QEs
as well as their separation from the surface of the MNP.
Figure 5(a) shows the variation of the mean plasmon number
with the detuning of resonance frequencies between the MNP
and QEs. The curves are symmetric around the vertical axis as
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FIG. 5. Comparison of mean plasmon number variation with properties of the quantum emitters and their separation from the MNP surface
at different MNP radii. Solid and dashed curves denote results for GNOR and LRA formalisms, respectively. (a) Mean plasmon number against
MNP-QE resonance detuning. (b) Mean plasmon number against QE dipole moment. (c) Mean plasmon number against MNP-QE surface
separation distance.

seen in Eq. (20c). Higher MNP radii are inherently associated
with higher Nmax

qe and, as a result, they exhibit a drastic drop
of mean plasmon number when QEs are further detuned with
the MNP. According to Eqs. (4) and (5), stronger QE dipole
moments strengthen the MNP-QE coupling and Fig. 5(b)
confirms that this is bound to be amplified at higher MNP
radii, due to the enlarged Nmax

qe . We then study the variation
of the mean plasmon number against the surface separation
�d between MNP and QEs, defining R = rm + �d . The
inverse R3 dependence of υ appearing in Eq. (5) suggests a
diminishingly weaker coupling at larger separations between
the MNP and QEs, which in turn causes its output to decrease
when �d increases. The GNOR theory predicts an even
weaker MNP-QE coupling than its LRA counterpart, causing
the system output to be totally quenched at a distance �d ,
which is smaller than its LRA prediction. Interestingly, all
figures Fig. 5(a)–5(c) suggest that the gap between the local
and nonlocal assessments is nearly uniform, regardless of the
size of the MNP.

B. Beyond the assumptions of indistinguishability and the
symmetric placement of QEs

The plasmonic laser theory we presented so far is based on
the MNP-QE composite nanostructure, depicted in Fig. 1. In
this section, we would discuss the robustness of the presented
model against the possible dissimilarities among the QEs, as
well as alternative arrangements of QEs around the MNP.

Due to the plausible minor differences arising during the
manufacturing process, it is possible for the QEs to not be
completely identical to each other. In such cases, we could
interpret ωqe, γqe, and υ as the statistical averages of the QE
resonance frequencies, decay rates, and the couplings to the
MNP, respectively.

Furthermore, our model is flexible over the placement of
QEs and can be extended for MNP-QE hybrid structures be-
yond the scheme illustrated in Fig. 1. For each nanostructure,
an average value for υ can be calculated according to its
geometry. For example, assuming a spherical distribution, an
average MNP-QE coupling for a shell of QEs around the MNP
(see Fig. 6) can be calculated as,

υavg = 1

V

∫ 2π

0

∫ π

0

∫ r2

r1

υNL
n R2

n sin θdRndθdϕ, (27)

where r1, r2, and V denote the inner and outer radii and the
volume of the QE shell, respectively. We would emphasize
that Eq. (27) can accommodate the variations of the magnitude
as well as the orientation of dn

qe.

VI. SUMMARY AND CONCLUSION

In this paper, we analyzed an incoherently excited equato-
rial ring of identical QEs, uniformly placed around a spherical
MNP, in the context of plasmonic lasers. We performed a
rigorous comparison between the observable quantities cal-
culated according to the LRA and GNOR formalisms. We de-
rived the complete EoM for the time evolution of the MNP-QE
composite nanostructure and simplified it using the plasmon
RDM approximation. We then introduced expressions for ob-
servables of interest of the system at steady state. Afterward,
we numerically studied the plasmon state population distri-
bution, mean plasmon number, and the second-order intensity
correlation function of a MNP-QE hybrid structure containing
a silver MNP at different MNP radii, bath permittivities, QE
dipole moment, MNP-QE resonance detuning, and MNP-QE
surface separation distance, varying the number of emitters
coupled to the MNP.

r1

r2

rm

ϵm

ϵb

FIG. 6. An alternative arrangement of QEs around a spherical
MNP. QEs are randomly placed in a concentric spherical shell with
inner radius r1 and outer radius r2.
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It is established in previous studies that the nonlocal ap-
proaches better capture the size-dependent effects of MNPs at
nanoscale. In this paper, we demonstrated that the nonconfor-
mity between the local and nonlocal assessments of plasmonic
statistics grows with the number of emitters, suggesting that
the nonlocal screening becomes notable even at larger particle
sizes when coupled with an increasing number of emitters.
Furthermore, our study unveiled that, for some bath permit-
tivities commonly used for plasmonic lasers, the quenching
phenomenon resulting from the incoherent pumping of QEs
becomes prominent at lower pumping rates than is suggested
by the LRA-based calculations. The consequent loss of co-
herence of emitted light demands an even higher number
of emitters than predicted by LRA methods to be coupled
concertedly to a MNP in engineering plasmonic lasers. Such
a collective strong coupling between the QEs and the dipole
plasmon mode is achievable even at shorter surface separation
distances where quenching to the nonradiative multipolar
modes is expected [77]. We observed an interplay between the
results for certain bath permittivity values due to the permit-
tivities of the plasmonic metals being nonlinearly dependent
on the frequency. Additionally, we studied the tunability of the
presented model with respect to the optical properties of the
QEs, which yielded a compelling, roughly even gap between
local and nonlocal assessments regardless of the size of the
MNP. Then, we discuss the flexibility of our model against
nonidentical QEs and alternative arrangements of MNP-QE
composite nanostructures. We emphasize that the nonlocal
correction crucially alters the system dynamics within the pa-
rameter space widely adopted in describing plasmonic lasers.
In essence, we stress the significance of hitherto disregarded
quantum nonlocal effects in the context of plasmonic laser

theory for a conceptually complete and accurate analysis,
consistent with the experimental observations.
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APPENDIX A: EoM FOR THE COMPLETE SYSTEM
DENSITY MATRIX

We obtain the EoM for the complete system by applying
the Hamiltonian in Eq. (1) in Eq. (12) as,

∂

∂t
ρ (μ,ν)

n = −i

h̄
([Ĥint, ρ̂]︸ ︷︷ ︸

A

+ [Ĥqe, ρ̂]︸ ︷︷ ︸
B

+ [Ĥpl, ρ̂]︸ ︷︷ ︸
C

) − Dρ̂︸︷︷︸
D

.

(A1)

The definition of the numbers {ncd} with c, d = g, e is as
follows:

ncd =
Nqe∑
r=1

δc,arδbr,d, (A2)

with ar denoting the state of the rth QE. The set ar and br

represent the product state α and β, respectively. Thus, the
numbers ncd identify the number of QEs from product state
|α〉 in state ϕc and the number of QEs from product state |β〉
in state ϕd simultaneously. Then we proceed to expand the
terms A-D as follows:

A =
Nqe∑
n

υn
(〈σ̂ †

n â|βν〉〈αμ|〉 + 〈σ̂nâ†|βν〉〈αμ|〉 − 〈|βν〉〈αμ|σ̂ †
n â〉 − 〈|βν〉〈αμ|σ̂nâ†〉)

= υ
∑

n

(√
ν〈σ̂ †

n |βν − 1〉〈αμ|〉 + √
ν + 1〈σ̂n|βν + 1〉〈αμ|〉 − √

μ〈σ̂ †
n |αμ − 1〉〈βν|〉 −

√
μ + 1〈σ̂n|αμ + 1〉〈βν|〉

)
;

υn = υ∀n

= υ
∑

n

(√
νδd,gn〈|enν−1〉〈gnμ|〉 + √

ν + 1δd,en〈|gnν + 1〉〈enμ|〉−√
μδc,gn〈|enμ−1〉〈gnν|〉−

√
μ + 1δc,en〈|gnμ+1〉〈enν|〉

)
= υ

∑
a={g,e}

(√
νnagρ

(μ,ν−1)
nag−1,nae+1

+ √
ν + 1naeρ

(μ,ν+1)
nae−1,nag+1 − √

μngaρ
(μ−1,ν)
nga−1,nea+1 −

√
μ + 1neaρ

(μ+1,ν)
nea−1,nga+1

)
, (A3)

B =
Nqe∑
n

h̄ωn
qe

(〈σ̂ †
n σ̂n|βν〉〈αμ|〉 − 〈|βν〉〈αμ|σ̂ †

n σ̂n〉
)

= h̄ωqe

∑
n

(
δd,en〈|βν〉〈αμ|〉 − δen,c〈|βν〉〈αμ|〉); ωn

qe = ωqe∀n

= h̄ωqe

∑
a={g,e}

(nae − nea)ρ (μ,ν)
n

= h̄ωqe(nge − neg)ρ (μ,ν)
n , (A4)
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C = h̄ωpl
(〈â†â|βν〉〈αμ|〉 − 〈|βν〉〈αμ|â†â〉)

= h̄ωpl
(√

ν〈â†|βν − 1〉〈αμ|〉 − 〈√μâ†|αμ − 1〉〈βν|〉)
= h̄ωpl(ν〈|βν〉〈αμ|〉 − 〈μ|αμ〉〈βν|〉)

= h̄ωpl(ν − μ)ρ (μ,ν)
n . (A5)

Term D includes the pumping of the QEs (Dpumping), the decay of the QEs (Dqe), and plasmons (Dpl):

D = Dpumping + Dqe + Dpl, (A6a)

Dpumping =
Nqe∑
n

pn

2

(〈σ̂nσ̂
†
n |βν〉〈αμ|〉 + 〈|βν〉〈αμ|σ̂nσ̂

†
n 〉 − 2〈σ̂ †

n |βν〉〈αμ|σ̂n〉
)

= p

2

∑
n

(
(δgn,d + δc,gn )〈|αμ〉〈βν|〉 − 2δc,enδen,d〈|gnμ〉〈gnν|〉); pn = p∀n

= p

2

(
(2ngg + neg + nge)ρ (μ,ν)

n − 2neeρ
(μ,ν)
nee−1,ngg+1

)
, (A6b)

Dqe =
Nqe∑
n

γ n
qe

2

(〈σ̂ †
n σ̂n|βν〉〈αμ|〉 + 〈|βν〉〈αμ|σ̂ †

n σ̂n〉 − 2〈σ̂n|βν〉〈αμ|σ̂ †
n 〉)

= γqe

2

∑
n

(
(δen,d + δc,en )〈|αμ〉〈βν|〉 − 2δd,gnδc,gn〈|enμ〉〈enν|〉); γ n

qe = γqe∀n

= γqe

2

(
(2nee + neg + nge)ρ (μ,ν)

n − 2nggρ
(μ,ν)
ngg−1,nee+1

)
, (A6c)

Dpl = γpl

2

(〈â†â|βν〉〈αμ|〉 + 〈|βν〉〈αμ|â†â〉 − 2〈â|βν〉〈αμ|â†〉)
= γpl

2

(
(μ + ν)ρ (μ,ν)

n − 2
√

(μ + 1)(ν + 1)ρ (μ+1,ν+1)
n

)
. (A6d)

We than apply Eqs. (A3)–(A6d) back into Eq. (A1) and arrive at Eq. (16).

APPENDIX B: EoM FOR THE PLASMON DENSITY MATRIX

By applying Eq. (12) on the plasmon reduced system Hamiltonian, we arrive at the following EoM:

∂

∂t
ρ(μ,ν) = −i

h̄
([Ĥint, ρ̂]︸ ︷︷ ︸

E

+ [Ĥpl, ρ̂]︸ ︷︷ ︸
F

) − Dρ̂︸︷︷︸
G

. (B1)

We then expand term E as,

E =
Nqe∑
n

υn
(〈σ̂ †

n â|ν〉〈μ|〉 + 〈σ̂nâ†|ν〉〈μ|〉 − 〈|ν〉〈μ|σ̂ †
n â〉 − 〈|ν〉〈μ|σ̂nâ†〉)

= υ
∑

n

(√
ν〈σ̂ †

n |ν − 1〉〈μ|〉 + √
ν + 1〈σ̂n|ν + 1〉〈μ|〉 − √

μ〈σ̂ †
n |μ − 1〉〈ν|〉 −

√
μ + 1〈σ̂n|μ + 1〉〈ν|〉

)
; υn = υ∀n

= υ
∑

n

(√
ν〈|enν − 1〉〈gnμ|〉 + √

ν + 1〈|gnν + 1〉〈enμ|〉 − √
μ〈|enμ − 1〉〈gnν|〉 −

√
μ + 1〈|gnμ + 1〉〈enν|〉

)
= υ

∑
n

(
√

νρgμ,eν−1 + √
ν + 1ρeμ,gν+1 − √

μρeμ−1,gν −
√

μ + 1ρgμ+1,eν ). (B2)

Term F can be expanded in terms of number states as,

F = h̄ωpl
(〈â†â|ν〉〈μ|〉 − 〈|ν〉〈μ|â†â〉)

= h̄ωpl
(√

ν〈â†|ν − 1〉〈μ|〉 − 〈√μâ†|μ − 1〉〈ν|〉)
= h̄ωpl(ν〈|ν〉〈μ|〉 − 〈μ|μ〉〈ν|〉)

= h̄ωpl(ν − μ)ρμ,ν. (B3)

115405-11
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The plasmon decay can be accounted with Eq. (13) as,

G = γpl

2

(
[â†â, |ν〉〈μ|]+ − 2â〈|ν〉〈μ|â†〉)

= γpl

2

(
(μ + ν)ρμ,ν − 2

√
(μ + 1)(ν + 1)ρμ+1,ν+1

)
. (B4)

We apply Eqs. (B2)–(B4) in Eq. (B1) to arrive at Eq. (18). Similarly, we derive and simultaneously solve EoM for
ρgμ,eν−1, ρeμ,gν+1, ρeμ−1,gν and ρgμ+1,eν . We then arrive at Eq. (19) by solving Eq. (18) for the population terms (ρμ,μ) at
steady state.
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