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Simple model for electrical hole spin manipulation in semiconductor quantum dots:
Impact of dot material and orientation

Benjamin Venitucci and Yann-Michel Niquet*

Université Grenoble Alpes, CEA, IRIG, MEM-L_Sim, F-38000 Grenoble, France

(Received 28 January 2019; revised manuscript received 14 March 2019; published 27 March 2019)

We analyze a prototypical particle-in-a-box model for a hole spin qubit. This quantum dot is subjected to
static magnetic and electric fields, and to a radio-frequency electric field that drives Rabi oscillations owing to
spin-orbit coupling. We derive the equations for the Rabi frequency in a regime where the Rabi oscillations
mostly result from the coupling between the qubit states and a single nearby excited state. This regime has been
shown to prevail in, e.g., hole spin qubits in thin silicon-on-insulator nanowires. The equations for the Rabi
frequency highlight the parameters that control the Rabi oscillations. We show, in particular, that [110]-oriented
dots on (001) substrates perform much better than [001]-oriented dots because they take best advantage of the
anisotropy of the valence band of the host material. We also conclude that silicon provides the best opportunities
for fast Rabi oscillations in this regime despite small spin-orbit coupling.
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I. INTRODUCTION

Spins in semiconductor quantum dots are an attractive
platform for quantum information technologies [1,2]. Electron
spin quantum bits (qubits) have, in particular, been demon-
strated in different III-V materials over the last two decades
[3–5] and much more recently in silicon [6]. Silicon [7] is
indeed a promising host material for spin qubits as it can be
isotopically purified from the nuclear spins that may interact
with the electron spins. Very long spin coherence times [8],
as well as single and two qubit gates with high fidelity, have
thereby been reported in silicon. The quantum dots in these
devices are defined by an impurity, by electrostatics and/or
by lithography [9–13].

Hole spin qubits have also been proposed and successfully
demonstrated in the last few years [14–18]. Hole spins are
much more efficiently coupled to the orbital motion of the
carrier than electron spins. This spin-orbit coupling (SOC) is
a relativistic effect that can be described semiclassically as
the action of the magnetic field created by the nuclei moving
in the frame of a carrier onto its spin [19]. It is stronger for
holes than for electrons because the Bloch functions of the top
of the valence band are essentially degenerate combinations
of atomic p orbitals, which are tightly coupled to the spin
by the intra-atomic SOC Hamiltonian HSOC ∝ L · S (L and
S being respectively the atomic angular momentum and spin
operators). Strong SOC might enhance the interactions of
the spins with electrical noise and phonons, hence speed-up
decoherence; however it provides outstanding opportunities
for very fast, all-electrical manipulation by electric dipole spin
resonance (EDSR) [15–17,20–28].

EDSR on hole spins has, for example, been demonstrated
in silicon-on-insulator (SOI) devices [15,16,18]. The quantum
dot is there defined electrostatically by a gate lying on top
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of an etched nanowire. A radio-frequency modulation of the
voltage on that gate drives Rabi oscillations of the hole spin
with frequencies as large as a few tens to a hundred of
MHz. The hole spins show rich physics, as highlighted by the
complex dependence of the Rabi frequency on the orientation
of the static magnetic field [16]. This dependence was shown
to result from a complex interplay between the effects of the
motion of the dot as a whole in the electric field of the gate
and the changes in the shape of that dot brought by the anhar-
monic components of the potential. These mechanisms can be
described by a unified framework based on the measurement
or calculation of a gyromagnetic g matrix and of its derivative
with respect to the gate voltage [16,29].

We have used this g-matrix formalism to simulate realistic
SOI hole devices and rationalize the dependence of the Rabi
frequency on the orientation of the magnetic field [29]. We
have, in particular, shown that the Rabi oscillations essen-
tially result from the coupling of the qubit states (with a
mostly “s-like” envelope) with a nearby excited state (with
a mostly “p-like” envelope) under a combination of electric
and magnetic fields that breaks time-reversal symmetry. In
the present work, we propose a prototypical model for this
regime, based on a box subjected to homogeneous electric
and magnetic fields. The model can be solved analytically and
the equations highlight the mechanisms and parameters that
control the Rabi oscillations. In particular, we show that thin
[110]-oriented box on (001) substrates perform much better
than thin [001]-oriented box because they take best advantage
of the anisotropy of the valence band of the host material.
Also, we conclude that silicon hole qubits are expected to ex-
hibit the fastest Rabi oscillations in this regime as this material
displays the most anisotropic valence band (among conven-
tional semiconductors), despite smaller spin-orbit coupling.

We introduce the model in Sec. II, then compute the Rabi
frequency of the hole qubit in Sec. III. Finally, we discuss
the physics and the dependence of the Rabi frequency on the
material and quantum dot parameters in Sec. IV.
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FIG. 1. The model system. A rectangular box with sides Lx , Ly,
and Lz is subjected to a static magnetic field B, a static electric field
E = E0y and a radio-frequency electric field modulation δE(t ) =
Eac sin(2π fLt + φ)y. The orientation of B is characterized by the
polar angle θ and the azimuthal angle ϕ.

II. MODEL

In this section, we introduce the model for the box, then the
Luttinger-Kohn, four bands k · p Hamiltonian used to describe
the electronic structure of the holes. We next discuss the
solution of this Hamiltonian in a minimal basis set capturing
the main physics. We analyze, in particular, the effects of
quantum confinement, electric and magnetic fields, in order
to prepare the calculation of the Rabi frequency of the hole
qubit in Sec. III.

A. System

We consider a rectangular box with sides Lx, Ly, and Lz

along axes x ‖ [110], y ‖ [1̄10], and z ‖ [001], respectively
(other orientations will be discussed in Sec. IV). We assume a
hard wall confinement potential:

Vbox(x, y, z) =
{

0 if |x| < Lx
2 , |y| <

Ly

2 , |z| <
Lz

2 ,

+∞ otherwise.
(1)

The box is subjected to a static magnetic field B and to a
static electric field E = E0y applied by external gates (see
Fig. 1). The same gates will be used to drive Rabi oscillations
in Sec. III. In addition, the box may undergo in-plane biaxial
strain εxx = εyy = ε‖, εzz = ε⊥ = −νε‖, where ν = 2c12/c11

is the biaxial Poisson ratio and c11 and c12 are the elastic
constants of the box material.

This model is meant to be the simplest description of a
hole spin qubit as implemented in planar and SOI devices.
As shown below, it captures the main physics outlined in the
simulations of Ref. [29].

B. Luttinger-Kohn Hamiltonian

We assume that the holes in the box can be described by
the four bands Luttinger-Kohn (LK) Hamiltonian [30,31]. In
the bulk material, the degenerate heavy- and light-hole Bloch
functions at 	 can be mapped onto the eigenstates | jz〉 of an
angular momentum J = 3/2. The LK Hamiltonian then reads

in the {| + 3
2 〉, | + 1

2 〉, | − 1
2 〉, | − 3

2 〉} basis set as

HLK =

⎛
⎜⎝

P + Q −S R 0
−S∗ P − Q 0 R
R∗ 0 P − Q S
0 R∗ S∗ P + Q

⎞
⎟⎠, (2)

where

P = h̄2

2m0
γ1

(
k2

x + k2
y + k2

z

)
, (3a)

Q = h̄2

2m0
γ2

(
k2

x + k2
y − 2k2

z

)
, (3b)

R = h̄2

2m0

√
3
[ − γ3

(
k2

x − k2
y

) + 2iγ2kxky
]
, (3c)

S = h̄2

2m0
2
√

3γ3(kx − iky)kz. (3d)

k = (kx, ky, kz ) is the wave vector, m0 is the free electron mass,
and γ1, γ2, γ3 are the Luttinger parameters that characterize
the anisotropic mass of the holes. Strains are dealt with in
Appendix A. Note that we assume positive (electronlike)
dispersion for the holes for the sake of simplicity, and that
we discard the “indirect” Dresselhaus and Rashba spin-orbit
interactions that may arise from the coupling with remote
Bloch functions owing to the breaking of inversion symmetry
by the lattice (III-V materials), by the static electric field and
by the interfaces [19]. The Rabi oscillations of hole spins
are indeed expected to be dominated by the “direct” spin-
orbit interaction within the heavy- and light-holes manifold
[14,32,33].

C. (Minimal) basis set for the envelope functions

In the box (assuming at first zero electric and magnetic
field), the substitution k → −i∇ in the LK Hamiltonian yields
a set of four coupled differential equations for the heavy-hole
( jz = ±3/2) and light-hole ( jz = ±1/2) envelope functions.
We expand the eigensolutions of these equations in the basis
of harmonic functions {|nxnynz〉 ⊗ | jz〉}, where 〈r|nxnynz〉 =
χnx (x, Lx )χny (y, Ly )χnz (z, Lz ) and

χn(u, L) =
√

2

L
sin

[
nπ

(
u

L
+ 1

2

)]
, |u| � L

2
. (4)

The Hamiltonian can be diagonalized numerically in the
above basis set. However, in order to highlight trends in
material and device parameters, it is instructive to build a
“minimal” model that captures the essential physics. The
ground state of the Hamiltonian turns out to be mostly “s-like”
(nx = ny = nz = 1). When Lz � Lx, Ly (a thin dot limit on
which we will focus later), the lowest-lying excited states
involve envelopes with increasing quantum numbers nx and
ny. However, envelopes with nx > 1 play little role in the
present model as the electric field in the box is oriented along
y. As a matter of fact, the s-like ground state gets mostly mixed
with a “py-like” excitation (ny = 2) by this electric field.
Therefore we will establish analytical results in the following
minimal basis set that includes the heavy- and light-hole s and
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py envelopes:

B = {B0, TB0}, (5)

where

B0 =
{∣∣∣∣1,+3

2

〉
,

∣∣∣∣1,−1

2

〉
,

∣∣∣∣2,+3

2

〉
,

∣∣∣∣2,−1

2

〉}
, (6)

|i, jz〉 = |1i1〉 ⊗ | jz〉, and T is the time-reversal symmetry
operator (T |+ 3

2 〉 = |− 3
2 〉 and T |− 1

2 〉 = |+ 1
2 〉). We discuss the

effects of structural confinement, electric and magnetic fields
in this basis set in the next paragraphs.

D. Effects of structural confinement

In the basis set B, neither S nor the ∝γ2 component of R do
contribute to the matrix elements of HLK as all basis functions
have the same quantum numbers nx and nz. Therefore the
Hamiltonian is block diagonal at zero fields:

HLK =
(
H0 04×4

04×4 H0

)
, (7)

where in the basis set B0:

H0 =

⎛
⎜⎝

P1 + Q1 R1 0 0
R1 P1 − Q1 0 0
0 0 P2 + Q2 R2

0 0 R2 P2 − Q2

⎞
⎟⎠ (8)

with

P1 = h̄2

2m0
γ1π

2
(
L−2

x + L−2
y + L−2

z

)
, (9a)

Q1 = h̄2

2m0
γ2π

2
(
L−2

x + L−2
y − 2L−2

z

)
, (9b)

R1 = − h̄2

2m0

√
3γ3π

2(L−2
x − L−2

y

)
, (9c)

and

P2 = h̄2

2m0
γ1π

2
(
L−2

x + 4L−2
y + L−2

z

)
, (10a)

Q2 = h̄2

2m0
γ2π

2
(
L−2

x + 4L−2
y − 2L−2

z

)
, (10b)

R2 = − h̄2

2m0

√
3γ3π

2
(
L−2

x − 4L−2
y

)
. (10c)

The ny = 1 heavy-hole state is therefore mixed with the
ny = 1 light-hole state by R1, while the ny = 2 heavy-hole
state is mixed with the ny = 2 light-hole state by R2. These
couplings are driven by lateral confinement (Ri ∝ L−2

x , L−2
y ).

The eigenstates |i±〉 (i ≡ ny = 1, 2) of H0 are actually

|i − 〉 = hi

∣∣∣∣i,+3

2

〉
+ li

∣∣∣∣i,−1

2

〉
, (11a)

|i + 〉 = −li

∣∣∣∣i,+3

2

〉
+ hi

∣∣∣∣i,−1

2

〉
, (11b)

FIG. 2. Energy levels and envelope functions of a silicon dot with
sides Lx = 40 nm, Ly = 30 nm, and Lz = 10 nm (at zero electric and
magnetic fields). The total weight of each envelope is indicated in the
corresponding panel. The Luttinger parameters of silicon are given in
Table I.

where hi = −Ri/Wi, li = (Qi +
√

Q2
i + R2

i )/Wi, and W 2
i =

R2
i + (Qi +

√
Q2

i + R2
i )2. The associated eigenenergies are

Ei± = Pi ±
√

Q2
i + R2

i . (12)

The |i−〉 states are dominated by the heavy-hole |i,+ 3
2 〉

component in the thin-dot limit Lz � Lx, Ly, while the |i+〉
states are dominated by the light-hole |i,− 1

2 〉 component. This
is illustrated in Fig. 2, which shows the energy levels and
envelope functions of a silicon dot with sides Lx = 40 nm,
Ly = 30 nm, and Lz = 10 nm. Note that the |1±〉 remain pure
heavy- and light-hole states when Ly = Lx (R1 = 0), while the
|2±〉 states remain so when Ly = 2Lx (R2 = 0).

Each of the |i±〉 state is twice degenerate owing to time-
reversal symmetry [see Eq. (7)]. The degenerate partner in the
TB0 basis set has the same expression as Eq. (11) with |i,+ 3

2 〉
replaced with |i,− 3

2 〉 and |i,− 1
2 〉 replaced with |i,+ 1

2 〉. We
therefore introduce a pseudospin index to distinguish the
|i±,⇑〉 states in the B0 basis set [Eqs. (11)] from their
degenerate, time-reversal symmetric counterparts |i±,⇓〉 in
the TB0 basis set.

E. Effects of the static electric field

The Hamiltonian of the potential Ve = −eE0y associated
with the static electric field E = E0y is diagonal with respect
to the angular momentum jz, and takes the following form in
the basis sets B0 and TB0:

He = �

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, (13)

where � = 16eE0Ly/(9π2). Therefore, as discussed above,
the electric field mixes the ny = 1 and ny = 2 states with the
same jz.

In order to achieve analytical results, we shall, in a first
approximation, deal with the static electric field to first order
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in perturbation. We hence introduce the first-order s-like
states:

|1̃−〉 = |1−〉 + λ1−
2−|2−〉 + λ1−

2+|2+〉, (14a)

|1̃+〉 = |1+〉 + λ1+
2−|2−〉 + λ1+

2+|2+〉, (14b)

and the first-order py-like states:

|2̃−〉 = |2−〉 + λ2−
1−|1−〉 + λ2−

1+|1+〉, (15a)

|2̃+〉 = |2+〉 + λ2+
1−|1−〉 + λ2+

1+|1+〉, (15b)

where

λ1±
2± = −λ2±

1± = �
h1h2 + l1l2
E1± − E2±

, (16a)

λ1±
2∓ = −λ2∓

1± = ±�
h1l2 − h2l1
E1± − E2∓

. (16b)

Note that the electric field mixes, e.g., |1−〉 with both |2−〉
and |2+〉. The above development holds only far from any
(accidental) crossing between the |1±〉 and |2±〉 states.

F. Effects of the static magnetic field

The magnetic field Hamiltonian Hm = Hp + Hd + Hz is
the sum of three contributions. The first two ones, Hp and
Hd, result from the substitution k → −i∇ + eA/h̄ in the
LK Hamiltonian, where A = −r × B/2 is the vector poten-
tial. The “paramagnetic” Hamiltonian Hp collects ∝ Ai terms
while the “diamagnetic” Hamiltonian Hd collects ∝ AiAj

terms (i, j ∈ {x, y, z}). The third contribution, Hz = 2κμBB·J,
is the Zeeman Hamiltonian that describes the action of the
magnetic field onto the Bloch functions (J being the 3/2
angular momentum of the holes) [34].

As discussed in Ref. [29], the diamagnetic Hamiltonian Hd

is not relevant for the calculation of the Larmor and Rabi
frequencies of the qubit (to first order in the magnetic field)
and will be dropped out in the following. The paramagnetic
Hamiltonian Hp has no action in the minimal basis set B.
Hence, only the Zeeman Hamiltonian Hz has nonzero matrix
elements in B:

〈i, jz|Hz|i′, j′z〉 = δi,i′ 〈 jz|Hz| j′z〉, (17)

where {i, i′} ∈ {1, 2}, and Hz reads in the
{|+ 3

2 〉, |+ 1
2 〉, |− 1

2 〉, |− 3
2 〉} basis set:

Hz = κμBB

⎛
⎜⎜⎝

3bz

√
3b− 0 0√

3b+ bz 2b− 0
0 2b+ −bz

√
3b−

0 0
√

3b+ −3bz

⎞
⎟⎟⎠. (18)

b = (bx, by, bz ) the unit vector pointing along the magnetic
field, and b+ = b∗

− = bx + iby. At variance with the static
electric field, which mixes ny = 1 and ny = 2 envelopes with
the same angular momentum jz (� jz = 0), the static magnetic
field mixes nonorthogonal (same ny) envelopes with different
jz’s (� jz = ±1).

III. THE RABI FREQUENCY

We now compute the Rabi frequency of a qubit based on
the hole states introduced in the previous section.

A. General equations

We consider a qubit based on the ground hole states
|1̃−,⇑〉 and |1̃−,⇓〉. These two states are degenerate at zero
magnetic field but are split at finite B. In the following, we
deal with the magnetic field using degenerate perturbation
theory in order to reach a first-order, ∝B expression for the
Rabi frequency. The zeroth-order qubit states |00〉 and |10〉
and the first-order qubit energies E1(0) and E1(1) are thus the
eigensolutions of the Hamiltonian [29]

H1(B) =
(

〈1̃−,⇑|H ′
m|1̃−,⇑〉 〈1̃−,⇑|H ′

m|1̃−,⇓〉
〈1̃−,⇓|H ′

m|1̃−,⇑〉 〈1̃−,⇓|H ′
m|1̃−,⇓〉

)
, (19)

where H ′
m = Hp + Hz collects all ∝B terms of the magnetic

Hamiltonian Hm. We emphasize that Hp has no action and
H ′

m ≡ Hz in the minimal basis set B, yet not in the larger
basis sets that will be considered in the numerical simulations
of Sec. IV. The same gates that apply the static electric
field are used to drive Rabi oscillations between |0〉 and |1〉
with a radio-frequency (RF) electric field modulation δE(t ) =
Eac sin(2π fLt + φ)y resonant with the Larmor frequency fL of
the qubit. In these conditions, the Rabi frequency reads

fR = e

h
Eac|〈1|y|0〉|. (20)

As discussed in Ref. [29], fR can be computed to first order in
B from the first-order states:

|01〉 = |00〉 +
∑
n,σ

〈n, σ |H ′
m|00〉

E1̃− − En
|n, σ 〉, (21a)

|11〉 = |10〉 +
∑
n,σ

〈n, σ |H ′
m|10〉

E1̃− − En
|n, σ 〉, (21b)

where |n, σ 〉 is any excited state with pseudospin σ . Substitu-
tion in Eq. (20) yields

fR = eEac

h

∣∣∣∣∣
∑
n,σ

1

E1̃− − En
(〈10|y|n, σ 〉〈n, σ |H ′

m|00〉

+ 〈10|H ′
m|n, σ 〉〈n, σ |y|00〉)

∣∣∣∣∣. (22)

We now aim to develop the Larmor and Rabi frequencies
to first order in all fields, including E0, in the basis set B
where the sum over n runs over |1̃+〉 and |2̃±〉. First of all,
the energies E1(0) and E1(1) and the states |00〉 and |10〉 are,
to first order in E0, the eigensolutions of

H1(B) = 1

2
μBB

(
gzbz gxbx − igyby

gxbx + igyby −gzbz

)
, (23)

where

gx = 4κ
(√

3h1l1 + l2
1

)
, (24a)

gy = 4κ
(√

3h1l1 − l2
1

)
, (24b)

gz = 2κ
(
3h2

1 − l2
1

)
. (24c)
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The Larmor frequency is therefore

fL = 1

h
|E1(1) − E1(0)| = μBB

h

√
g2

xb2
x + g2

yb2
y + g2

zb
2
z . (25)

gx, gy, and gz can be identified as the principal g factors along
the magnetic axes x, y, and z [29]. Also,

|00〉 = α|1̃−,⇑〉 + β|1̃−,⇓〉, (26a)
|10〉 = −β|1̃−,⇑〉 + α∗|1̃−,⇓〉, (26b)

where

α = −gxbx + igyby√
g2

xb2
x + g2

yb2
y + (

gzbz +
√

g2
xb2

x + g2
yb2

y + g2
zb

2
z

)2
,

(27a)

β =
gzbz +

√
g2

xb2
x + g2

yb2
y + g2

zb
2
z√

g2
xb2

x + g2
yb2

y + (
gzbz +

√
g2

xb2
x + g2

yb2
y + g2

zb
2
z

)2
.

(27b)

At zero static electric field, Eac can only couple |1−〉 with
|2−〉 and |2+〉 (through the dipole matrix elements along y),
while Hz can only couple |1−〉 with |1+〉. Therefore the Rabi
frequency is zero as there are no excited states able to connect
|00〉 and |10〉 in Eq. (22). This is supported by a symmetry
analysis: when E0 = 0, the system has three mirror planes
perpendicular to x, y, and z, which, as shown in Ref. [29],
implies that the Rabi frequency is zero to first order in B and
Eac.

At first order in E0, Eq. (22) can hence be factorized as

fR = e

h
B|E0|Eac|�1̃+ + �2̃− + �2̃+|, (28)

where �1̃+, �2̃+, and �2̃− are the contributions of |1̃+〉, |2̃+〉,
and |2̃−〉 to the sum over states and are given in Appendix B.

Equation (28) together with Eqs. (11), (14), (15), (26) and
Appendix B provide an analytical model for fR to first order in
all fields B, E0, and Eac in the minimal basis set B. However,
to make the expression of fR more tractable, we will further
expand relevant quantities in powers of Lz/Lx and Lz/Ly in the
“thin-dot” limit Lz � Lx, Ly suitable for most planar and SOI
devices on Si (001) substrates.

B. The thin-dot limit

In the limit Lz � Lx, Ly, |1−〉 and |2−〉 are mostly heavy-
hole states ( jz = ±3/2) while |1+〉 and |2+〉 are mostly light-
hole states ( jz = ±1/2). Therefore E0 and Eac essentially
couple |1−, σ 〉 and |2−, σ 〉. To lowest orders in Lz/Lx and
Lz/Ly, only |2̃−〉 states actually make a contribution to the
Rabi frequency in Eq. (22). More specifically, the |1−,⇑〉 and
|2−,⇑〉 states [Eqs. (11)] read to second order in Lz/Lx and
Lz/Ly:

|1−,⇑〉 =
∣∣∣∣1,+3

2

〉
+ δl1

∣∣∣∣1,−1

2

〉
, (29a)

|2−,⇑〉 =
∣∣∣∣2,+3

2

〉
+ δl2

∣∣∣∣2,−1

2

〉
, (29b)

where

δl1 = −
√

3

4

γ3

γ2

(
L2

z

L2
y

− L2
z

L2
x

)
, (30a)

δl2 = −
√

3

4

γ3

γ2

(
4

L2
z

L2
y

− L2
z

L2
x

)
. (30b)

Next, at finite E0,

|1̃−,⇑〉 =
∣∣∣∣1,+3

2

〉
+ λ

∣∣∣∣2,+3

2

〉

+ δl1

∣∣∣∣1,−1

2

〉
+ λδl2

∣∣∣∣2,−1

2

〉
, (31a)

|2̃−,⇑〉 =
∣∣∣∣2,+3

2

〉
− λ

∣∣∣∣1,+3

2

〉

+ δl2

∣∣∣∣2,−1

2

〉
− λδl1

∣∣∣∣1,−1

2

〉
, (31b)

where [see Eqs. (14)]

λ = − 32m0eE0L3
y

27π4h̄2(γ1 + γ2)
. (32)

The expressions are similar for |1̃−,⇓〉 and |2̃−,⇓〉 (with
jz = 3/2 replaced by jz = −3/2 and jz = −1/2 by jz =
1/2).

The principal g factors [Eqs. (24)] are then, to second order
in Lz/Lx and Lz/Ly:

gx = gy = 4
√

3κδl1 = −3κ
γ3

γ2

(
L2

z

L2
y

− L2
z

L2
x

)
, (33a)

gz = 6κ. (33b)

As expected for mostly heavy-hole states, |gz| � |gx|, |gy|.
In Eq. (22), the matrix elements of Hz between states

{|1̃−,⇑〉, |1̃−,⇓〉} (columns) and {|2̃−,⇑〉, |2̃−,⇓〉} (rows)
read, to second order in Lz/Lx and Lz/Ly:

H(21)
z = 2

√
3κμBBλ(δl2 − δl1)

(
0 b−

b+ 0

)
. (34)

As a matter of explanation, the matrix elements between
opposite pseudospins result from the ∝b± interaction of the
majority jz = ±3/2 component of one pseudospin with the
minority jz = ±1/2 component of the other. These two en-
velopes are orthogonal if E0 = 0 or δl1 = δl2 and can not,
therefore, be coupled by Hz (Indeed, |1̃−,⇑〉 and |2̃−,⇑〉
can then be factorized as the products of single, orthogonal
envelopes by the same mixed heavy- and light-hole Bloch
function). This gives rise to the ∝λ(δl2 − δl1) dependence in
Eq. (34). The physics of the Rabi oscillations will be further
analyzed in Sec. IV B. Substituting the above equations into
the expression for the Rabi frequency yields

fR = 64
√

3e

9π2h
μB|κ|BEacLy

|λ|(δl2 − δl1)

E2− − E1−
|α2b+ − β2b−|.

(35)
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FIG. 3. The function G(θ ) sin θ for different ratios Lx/Ly at
Lz/Ly = 1/3. The dashed black line is the sin θ envelope.

The last term rules the dependence of the Rabi frequency on
the orientation of the magnetic field, and can be factorized as

|α2b+ − β2b−| = G(θ ) sin θ, (36)

where θ is the polar angle between the magnetic field and the
z axis (see Fig. 1), and

G(θ ) = 1√
1 + F 2(θ )

, (37a)

F (θ ) = γ3

2γ2

(
L2

z

L2
y

− L2
z

L2
x

)
tan θ. (37b)

The function F (θ ) has been expanded to second order in
Lz/Lx and Lz/Ly. It is, however, practically not relevant to
expand G(θ ) in powers of Lz/Lx and Lz/Ly as the convergence
of the resulting series is highly nonuniform with respect to the
variable θ . Expanding only the prefactor of G(θ ) in Eq. (35)
to second order in Lz/Lx and Lz/Ly finally yields

f (2)
R = 28m0e3

34π9h̄4 B|E0|Eac
γ3|κ|

γ2(γ1 + γ2)2
L6

y

L2
z

L2
y

G(θ ) sin θ, (38)

At this level of approximation, the Rabi frequency does not
depend on the azimuthal angle ϕ. The sin θ envelope results
from the ∝ b± dependence of the matrix elements of Hz

[Eq. (34)]. The function G(θ ) arises from the interplay with
the pseudospin composition of |00〉 and |10〉 [the α and β

coefficients in Eq. (35)]. G(θ ) ∼ 1 everywhere except near
θ = π/2 where it shows a dip (see Fig. 3), whose origin will
be discussed later.

The Rabi frequency gets dependent on ϕ once |1̃−〉 and
|2̃−〉 are expanded to fourth order in Lz/Lx and Lz/Ly. After
further algebra,

f (4)
R = f (2)

R

{
1 + 1

4γ2(γ1 + γ2)
×

[
A1

L2
z

L2
y

− A2
L2

z

L2
x

+ A3

(
5

L2
z

L2
y

− 2
L2

z

L2
x

)
cos 2ϕ

]}
, (39)

where A1 = 10(γ1γ2 + γ 2
2 + 3γ 2

3 ), A2 = 12γ 2
3 , and A3 =

γ3(γ1 + γ2).

C. High electric field corrections

Equations (28), (38), and (39) are valid at small static
electric field E0. However, as shown in the next section, the
Rabi frequency decreases at large E0, in particular because the
dipole matrix element 〈2̃−|y|1̃−〉 dies out once the |1̃−〉 and
|2̃−〉 states get spatially separated by the static electric field
[29].

An expression for the Rabi frequency accurate for arbitrary
electric fields can be derived when λ1±

2∓ and λ2∓
1± are negligible

[Eqs. (16)]. In that limit, the electric field couples |1−〉 to
|2−〉 but not to |2+〉; the resulting two-level Hamiltonian can
be solved exactly for the eigenstates |1̃−〉 and |2̃−〉. Keeping
track of the exact expression of E1̃−, |1̃−〉, E2̃−, and |2̃−〉
everywhere except in α and β, the Rabi frequency [Eq. (28)]
simply gets renormalized by a factor

Fe(E0) =
[

1 + 1

2

(
E0

Emax

)2]− 3
2

, (40)

where

E−1
max = 2

√
2e

|〈2−|y|1−〉|
E2− − E1−

. (41)

This approximation is relevant in the thin-dot limit. To lowest
order in Lz/Lx and Lz/Ly, Emax then reads

E (0)
max = 27π4h̄2(γ1 + γ2)

64
√

2m0eL3
y

. (42)

The renormalized Rabi frequencies f̃ (2)
R (E0) =

f (2)
R (E0)Fe(E0) and f̃ (4)

R (E0) = f (4)
R (E0)Fe(E0) are maximum

when E0 = Emax. At this field, f̃R(Emax) = fR(Ẽmax), where
Ẽmax = (3/2)−3/2Emax. In particular,

f̃ (2)
R

(
E (0)

max

) = 8e2

9
√

3π5h̄2
BEac

γ3|κ|
γ2(γ1 + γ2)

L3
y

L2
z

L2
y

G(θ ) sin θ.

(43)

Note that the maximal Rabi frequency scales as LyL2
z in the

thin-dot limit Lz � Ly.

IV. DISCUSSION

A. Validation of the model

In order to test the above model and approximations, we
consider a silicon box with sides Lx = 40 nm, Ly = 30 nm,
and Lz = 10 nm subjected to a static magnetic field B = 1 T
parallel to y + z (θ = 45◦, ϕ = 0◦). The RF electric field is
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TABLE I. Band-gap energy Eg at 	, spin-orbit splitting energy
� in the valence band, Luttinger parameters and masses of the heavy
holes along z [mz = m0/(γ1 − 2γ2)], and in the (xy) plane [mxy =
m0/(γ1 + γ2)], κ parameter [19] and coefficients ζ[110], ζ[100], ζ ′

[110]

and ζ ′
[100] characterizing the speed of Rabi oscillations in [110]- and

[100]-oriented dots, for different materials [Eqs. (44), (48) and (49)].

Si Ge InP GaAs InAs InSb

Eg (eV) 4.34 0.89 1.42 1.52 0.42 0.24
� (eV) 0.044 0.29 0.11 0.34 0.41 0.80
γ1 4.285 13.38 4.95 6.85 20.40 37.10
γ2 0.339 4.24 1.65 2.10 8.30 16.50
γ3 1.446 5.69 2.35 2.90 9.10 17.70
mz (m0) 0.277 0.204 0.606 0.377 0.263 0.244
mxy (m0) 0.216 0.057 0.152 0.112 0.035 0.019
κ − 0.42 3.41 0.97 1.20 7.60 15.60
ζ[110] (×100) 8.38 1.47 3.17 2.07 1.01 0.58
ζ[001] (×100) 1.96 1.10 2.23 1.50 0.92 0.54
ζ ′

[110] (×100) 92.25 7.62 21.58 15.43 3.82 2.00
ζ ′

[001] (×100) 21.63 5.68 15.15 11.17 3.48 1.87

Eac = 0.03 mV/nm. The material parameters κ , γ1, γ2, and γ3

are given in Table I.
The Rabi frequency is plotted as a function of the static

electric field E0 in Fig. 4. It is computed either from Eq. (22),
using the exact eigenstates of the Hamiltonian in the minimal
basis set B as inputs, or from the approximation to first order
in E0 [Eq. (28)]. The thin-dot limit is not taken at this stage. As
expected, the first-order approximation reproduces the slope
of the Rabi frequency around E0 = 0. However, at larger
field the Rabi frequency computed from the exact eigenstates
drops owing to the decrease of the dipole matrix elements
〈2̃−|y|1̃−〉 and to the increase of E2̃− − E1̃− in the steep

−1.0 −0.5 0.0 0.5 1.0

E0 (mV/nm)

0

40

80

120

160

f R
(M

H
z)

Exact B
Linearized

Renormalized

FIG. 4. Rabi frequency as a function of the static electric field
E0 in a silicon quantum dot with sides Lx = 40 nm, Ly = 30 nm,
and Lz = 10 nm. The magnetic field B = 1 T is oriented along y + z.
The RF electric field is Eac = 0.03 mV/nm. The Rabi frequency is
computed either from Eq. (22) using the exact eigenstates of the
Hamiltonian in the minimal basis set B (“Exact B”), or from the
approximation to first order in E0 [“Linearized”, Eq. (28)], then
renormalized by Eq. (40) (“Renormalized”).

1 2 3 4 5 6 7 8 9 10
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100

101

102

f R
(M

H
z) f

(∞)
R

f
(4)
R

f
(2)
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FIG. 5. Rabi frequency as a function of the height of the dot Lz

in three different approximations, f (2)
R [Eq. (38)], f (4)

R [Eq. (39)], and
f (∞)
R [Eq. (28)], all linearized with respect to the static field E0. Here

Lx = 40 nm, Ly = 30 nm, E0 = 0.1 mV/nm, Eac = 0.03 mV/nm,
and B = 1 T parallel to y + z.

triangular well created by the static electric field [29]. This
trend is, nonetheless, very well captured by the renormalized
first-order approximation [Eq. (40)].

We next compare the expansions to order L2
z ( f (2)

R ) and
L4

z ( f (4)
R ) to the “all orders” f (∞)

R defined by Eq. (28). The
three Rabi frequencies (which are all linearized with respect
to E0) are plotted in Fig. 5 as a function of Lz (for the same
Lx and Ly as before), at E0 = 0.1 mV/nm. While f (2)

R can
be significantly smaller than f (∞)

R , f (4)
R is much closer (but

always slightly larger) in the whole Lz = 1–10 nm range.
Finally, we compare in Fig. 6 the dependence of the

Rabi frequency on the orientation of the magnetic field for
two materials (Si, Ge) and four different approximations:
(i) the fourth-order analytical formula [Eq. (39)], (ii) the
exact solution of the model in the minimal basis set B,
(iii) the exact solution in a “converged” basis set including
quantum numbers up to nx = ny = nz = 18, but taking only
the Zeeman Hamiltonian into account (H ′

m = Hz), and (iv)
the exact solution in the same basis set now accounting for
the action of the vector potential on the envelope functions
(H ′

m = Hz + Hp). The sides of the box are the same as in
Fig. 4, and the material parameters for germanium are also
given in Table I. The static electric field is E0 = 0.1 mV/nm
and the magnitude of the magnetic field is B = 1 T. The
analytical formula, Eq. (39), provides a reasonable description
of the orientational dependence of the Rabi frequency, which
is, moreover, consistent with the maps computed in realistic
SOI devices (going beyond the present simple box model)
in Ref. [29]. The Rabi frequency from the exact solution of
the model in the minimal basis set B is only slightly different
due to higher-order corrections to Eq. (39). fR significantly
increases in a larger basis set that picks the contributions from
higher excited states, but still shows the same anisotropy. In
that case, the paramagnetic Hamiltonian Hp (which has no
action in B) makes a sizable correction to the Rabi frequency.
While the contributions from the Zeeman Hamiltonian are
proportional to κ , those of the paramagnetic Hamiltonian
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FIG. 6. Maps of Rabi frequency as a function of the orientation of the magnetic field for silicon (first row) and germanium (second row)
dots with sides Lx = 40 nm, Ly = 30 nm, and Lz = 10 nm. The fields are E0 = 0.1 mV/nm, Eac = 0.03 mV/nm, and B = 1 T. Four different
approximations to the Rabi frequency are compared: (first column) fourth-order analytical formula [Eq. (39)]; (second column) exact solution
of the model in the minimal basis set B; (third column) exact solution in a “converged” basis set taking only the Zeeman Hamiltonian into
account; (fourth column) exact solution in the same basis set accounting for the action of the vector potential on the envelope functions.

scale as γ2 and γ3. They are actually opposite for Si (where
Hp increases the Rabi frequency) and Ge (where Hp decreases
it) owing to the opposite sign of κ in the two materials.

We conclude from the above discussion that the analytical
formulas for f (2)

R and f (4)
R [Eqs. (38) and (39)] provide a

semiquantitative description of the Rabi oscillations and can
be used to analyze the underlying physics as well as to outline
trends in quantum dot material and geometry.

B. Physics of the Rabi oscillations

In this section, we discuss in more detail the physics behind
Eq. (39), and in particular its dependence on the dimensions
of the box and Luttinger parameters.

According to Eq. (39), the Rabi frequency primarily scales
(in the thin-dot limit) as ζ[110]L6

y (L2
z /L2

y ), where

ζ[110] = γ3|κ|
γ2(γ1 + γ2)2

. (44)

The [110] subscript labels the orientation of the electric field
(see next section for a discussion on box orientation). This
equation highlights the ingredients needed to achieve Rabi
oscillations driven by direct spin-orbit interactions in the
valence band.

First of all, there must be significant heavy- and light-hole
mixing owing to lateral confinement in the hole ground-states
and/or in the relevant excited states [33]. Indeed, if all states
are either pure jz = ±3/2 or pure jz = ±1/2 envelopes at

B = 0, then the qubit states |00〉 and |10〉 have the same enve-
lope function but time-reversal symmetric heavy-hole Bloch
functions. The RF electric field Eac then couples |00〉 and |10〉
to heavy-hole excited states with the same Bloch function
but orthogonal envelopes. The Zeeman Hamiltonian Hz can
not, however, couple orthogonal envelopes. The paramagnetic
Hamiltonian Hp is not able to mix pure heavy-hole envelopes
either (even in larger basis sets). As a consequence, there are
no excited states able to connect |00〉 and |10〉 in Eq. (22). The
argument also holds for light-hole qubit states. Therefore there
must be some degree of heavy- and light-hole mixing in the
qubit or excited states at B = 0. However, the static electric
field can not mix heavy- and light-hole envelopes if such
mixing does not preexist at E0 = 0 (because it is diagonal in
jz). Hence lateral confinement is the primary driving force for
the heavy- and light-hole mixing that is necessary to sustain
electrically driven Rabi oscillations.

In the minimal basis set B, the coupling of jz = ±3/2 and
jz = ±1/2 envelopes by lateral confinement is characterized
by R1 and R2, and is hence proportional to γ3. To lowest
order in perturbation, the resulting mixing between the heavy-
and light-hole envelopes is inversely proportional to the split-
ting 2Qi ∝ γ2 between pure heavy- and light-hole states [see
Eqs. (30) for the expressions of the light-hole mixings δl1
and δl2 in the thin-dot limit]. This explains the γ3/γ2 factor
in ζ[110]: the larger the coupling between between heavy-
and light-holes with respect to their splitting (γ3 � γ2), the
faster the Rabi oscillations. A more careful analysis shows that
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there must actually be an imbalance between the heavy- and
light-hole mixing in the ground |1−〉 and excited state |2−〉
[see discussion after Eq. (34)]: this is why the Rabi frequency
is proportional to δl2 − δl1 ∝ (γ3/γ2)(L2

z /L2
y ) in Eq. (38).

The heavy- and light-hole mixing by lateral confinement
is not, however, sufficient to allow for electrically driven
Rabi oscillations. Indeed, the RF electric field Eac can not
couple envelopes with same parities (with respect to the center
of the box) [29]. Yet lateral confinement mixes heavy- and
light-hole envelopes with the same parity, and so do the
Zeeman Hamiltonian Hz and the paramagnetic Hamiltonian
Hp in Eqs. (21). Only the static electric field E0 does mix odd
py envelopes into the even s-like qubit ground-state, and is,
therefore, an other pre-requisite for the Rabi oscillations.
The mixing is actually proportional to � ∝ Ly and inversely
proportional to the splitting �E ∝ (γ1 + γ2)/L2

y between the
|1−〉 ≈ |1,± 3

2 〉 and |2−〉 ≈ |2,± 3
2 〉 states, hence propor-

tional to L3
y/(γ1 + γ2).

Finally, |1̃−〉 and |2̃−〉 states are coupled by the Zeeman
Hamiltonian in Eq. (21). The mixing is proportional to κ

and, again, inversely proportional to the splitting �E ∝ (γ1 +
γ2)/L2

y between the |1̃−〉 ≈ |1−〉 and |2̃−〉 ≈ |2−〉 states. It
breaks time-reversal symmetry in Eqs. (21), which enables
electrically driven Rabi oscillations between |01〉 and |11〉.
The coupling to the RF electric field Eac being proportional
to Ly (as is the coupling to E0), the Rabi frequency scales
altogether as γ3|κ|/[γ2(γ1 + γ2)2] × L4

y/L2
z .

The orientational dependence of the Rabi frequency results
from the interplay between the magnetic response of the
heavy- and light-hole components. Indeed, we may define

|1̃−,⇓′〉 ≡ |00〉 = α|1̃−,⇑〉 + β|1̃−,⇓〉, (45a)

|1̃−,⇑′〉 ≡ |10〉 = −β|1̃−,⇑〉 + α∗|1̃−,⇓〉, (45b)

and apply the same transformation to |2̃ − 〉:

|2̃−,⇓′〉 = α|2̃−,⇑〉 + β|2̃−,⇓〉, (46a)

|2̃−,⇑′〉 = −β|2̃−,⇑〉 + α∗|2̃−,⇓〉, (46b)

where α and β are given by Eqs. (27). The RF electric field
couples |1̃−,⇑′〉 to |2̃−,⇑′〉 and |1̃−,⇓′〉 to |2̃−,⇓′〉. In order
to allow for Rabi oscillations, Hz must hence be able to mix
|2̃−,⇓′〉 into |1̃−,⇑′〉, and |2̃−,⇑′〉 into |1̃−,⇓′〉. When there
is a significant bz component, |⇑′〉 ≈ |⇑〉 and |⇓′〉 ≈ |⇓〉 as
|gz| � |gx|, |gy| for mostly heavy-hole states [Eqs. (33)]. This
large gz � 6κ is the fingerprint of the strong, ∝bz splitting
between the majority |±3/2〉 components of |1̃−〉. The cou-
pling 〈2̃−,⇓|Hz|1̃−,⇑〉 ∝ b+ ∝ sin θ between |1̃−,⇑′〉 and
|2̃−,⇓′〉 then results from the magnetic interaction between
the majority |±3/2〉 component of one pseudospin with the
minority |±1/2〉 component of the other [Eq. (34)]. However,
when bz � 0, |⇑′〉 and |⇓′〉 become balanced mixtures of the
|⇑〉 and |⇓〉 states. In these conditions, the Larmor frequency
shows a minimum and |2̃−,⇓′〉 gets decoupled from |1̃−,⇑′〉,
as evidenced by the antidiagonal form of Eq. (34). In other
words, both the Zeeman splitting between |1̃−〉 states and
the coupling between |1̃−〉 and |2̃−〉 are now driven by the
∝b± interaction between the |±3/2〉 and |±1/2〉 envelopes;
since the Zeeman-split states defined by Eqs. (45) and (46)

block-diagonalize this interaction (within the |⇑′〉 and |⇓′〉
subspaces), Hz can not mix |⇑′〉 and |⇓′〉 states any more. This
gives rise to the dip G(θ ) in the orientational dependence of
the Rabi frequency. The dependence of the Rabi frequency on
ϕ appearing at higher orders arises from weak confinement
anisotropies in the (xy) plane.

Such anisotropies of the Rabi frequency are ubiquitous
in spin-orbit mediated Rabi oscillations, even for electrons
[28,35]. Even if SOC is not explicit in the Luttinger-Kohn
Hamiltonian, the present Rabi oscillations result from its ac-
tion on the J = 3/2 and J = 1/2 hole multiplets [14,32,33]. In
the absence of SOC, the spin of the holes decouples from their
real-space motion so that electrically driven Rabi oscillations
are not possible. The coupling between spin and real space
motion in the Luttinger-Kohn Hamiltonian is obvious when
writing the total hole wave function as a spinor (expanding
the physical up and down spin components of the | jz〉 Bloch
functions) [30,31]. The Luttinger-Kohn Hamiltonian assumes
that the splitting � between the J = 3/2 and J = 1/2 multi-
plets is so large that the latter can be dropped out. The physics
of low-energy holes then becomes independent on the actual
strength of the SOC. The interactions with the nearby J = 1/2
bands at finite � can be accounted for in the six-band k · p
model [36]. However, we have checked numerically that they
do not make a significant difference in the behavior of the
holes for all materials considered in the following.

We would finally like to point out some specificities and
limitations of the present model. First, the situation described
here is a paradigm of “g-tensor magnetic resonance [21]”
(g-TMR) in a strongly anharmonic potential (as discussed
in Ref. [29]). In this scenario, the Rabi oscillations result
from changes in the shape of the qubit wave function driven
by the RF electric field (and can be related to the electrical
dependence of the principal g factors of the qubit, although
we did not follow this approach here). Second, the present
model does not account for the orbital correction �gz on the
principal g factor gz (see Refs. [37] and [29]) that results from
the coupling between nz = 1 and nz = 2 envelopes by the S
term in the Luttinger-Kohn Hamiltonian. This correction has,
actually much more impact on the Larmor than on the Rabi
frequency in the thin-dot limit.

C. Effects of quantum dot orientation and material choice

In this section, we discuss the impact of the quantum dot
orientation and material on the speed of the Rabi oscillations.

As shown by Eq. (39), and discussed in the previous sec-
tion, the Rabi frequency (at given static electric and magnetic
fields) scales primarily with ζ[110] in the thin-dot limit. This
parameter does, therefore, adequately characterize the depen-
dence of the Rabi frequency on the choice of box material.

It is also instructive to look at other quantum dot
orientations—in particular x ‖ [100], y ‖ [010], z ‖ [001] (the
box hence being rotated by 45◦ around the z axis). In that
orientation, the Luttinger-Kohn and Zeeman Hamiltonians are
the same apart for the R term that becomes

R = h̄2

2m0

√
3
[ − γ2

(
k2

x − k2
y

) + 2iγ3kxky
]
, (47)
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namely γ2 and γ3 have been interchanged with respect to
Eq. (3c). Accordingly, γ3|κ| is simply replaced with γ2|κ| on
the numerator of Eqs. (38) and (39). The Rabi frequency of
the box then primarily scales with

ζ[100] = γ2|κ|
γ2(γ1 + γ2)2

= |κ|
(γ1 + γ2)2

. (48)

This expression for ζ[100] outlines the fact that the heavy- and
light-hole coupling by lateral confinement is proportional to
γ2 in this “[100]” orientation rather than to γ3 in the former
“[110]” orientation. This is not expected to make a significant
difference in almost isotropic materials such as Ge or III-V ’s
(where γ3/γ2 � 1), but is decisive in Si (where γ3/γ2 � 5). In
order to highlight trends among materials, we give ζ[110] and
ζ[100] for a set of representative materials (Si, Ge, and a few
III-V’s) in Table I.

In general, the smaller the band gap, the larger the Lut-
tinger parameters (smaller hole masses) but the larger κ . This
partly compensates the detrimental effect of the (γ1 + γ2)2

factor on the denominators of ζ[110] and ζ[100]. As a matter
of fact, silicon, with its heavier hole masses, but very small
κ is definitely not the best choice of material for a [100]-
oriented hole qubit—although the latter perform, anyway,
always worse than [110]-oriented hole qubits since γ3/γ2 > 1
for all materials. However, [110]-oriented Si qubits, which
take advantage of the strong anisotropy of the valence band
of Si [33], show the fastest Rabi oscillations at given static
electric and magnetic fields, despite weaker SOC. Indeed, as
discussed in Sec. IV B, the effects of direct SOC [14,32,33]
within the heavy- and light-hole manifold become indepen-
dent on its strength on energy scales much smaller that the
spin-orbit splitting �. The comparison between materials
shall, however, be preferably made at different magnetic fields
but at the same Larmor frequency fL ∝ |κ|, which sets the
time scale for the intrinsic dynamics of the qubit and the RF
circuitry. Also, the comparison is fairer at different E0 but
same mixing strength λ ∝ E0(γ1 + γ2)−1 [Eq. (32)]. Indeed,
the holes respond stronger to the static electric field when
their mass increases, hence reach the same s and py envelopes
mixing at lower E0. This is also supported by the expression
of the optimal E (0)

max ∝ (γ1 + γ2) [Eq. (42)]. We therefore
introduce

ζ ′ = ζ
γ1 + γ2

|κ| , (49)

namely ζ ′
[110] = (γ3/γ2) × 1/(γ1 + γ2) for the [110] orienta-

tion and ζ ′
[100] = 1/(γ1 + γ2) for the [100] orientation. With

that figure of merit, [110]-oriented Si devices remain by far
the best choice for a hole spin qubit. We have checked that this
conclusion still holds when solving the model in a converged
basis set, as well as for more realistic device layouts such as
those investigated in Ref. [29]. The effects of strains and the
case of light-hole qubits are discussed in Appendix A.

V. CONCLUSIONS

To conclude, we have investigated a simple particle-in-a-
box model for a hole spin qubit subjected to static electric
and magnetic fields and to a radio-frequency electric field that
drives Rabi oscillations. We have derived analytical equations

for the Rabi frequency in the regime where the Rabi oscilla-
tions result from the coupling of the qubit states with a single
excited state. These equations highlight the dependence of the
Rabi frequency on the dimensions and structural orientation
of the quantum dot, and on the host material parameters.
In particular, we show that thin [110]-oriented box on (001)
substrate perform better than thin [100]-oriented box because
they can leverage on the anisotropy of the valence band.
In this respect, silicon, which displays the most anisotropic
valence band among conventional diamond and zinc-blende
semiconductors, shows the best opportunities for fast Rabi
oscillations in this regime, despite small spin-orbit coupling.
The trends outlined by this simple model have been verified in
more realistic device layouts close to the silicon-on-insulator
devices investigated in Refs. [29].
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APPENDIX A: EFFECTS OF BIAXIAL STRAIN AND RABI
FREQUENCY OF THE LIGHT-HOLE QUBIT

We consider an in-plane biaxial strain εxx = εyy = ε‖,
εzz = ε⊥ = −νε‖, where ν = 2c12/c11 is the biaxial Poisson
ratio and c11, c12 are the elastic constants of the box material.
In the {|+ 3

2 〉, |+ 1
2 〉, |− 1

2 〉, |− 3
2 〉} basis set, the Bir-Pikus strain

Hamiltonian [38] reads

HBP =

⎛
⎜⎝

�EHH 0 0 0
0 �ELH 0 0
0 0 �ELH 0
0 0 0 �EHH

⎞
⎟⎠, (A1)

where

�EHH = [(ν − 2)av − (ν + 1)bv]ε‖, (A2a)

�ELH = [(ν − 2)av + (ν + 1)bv]ε‖, (A2b)

and av and bv are the hydrostatic and uniaxial deformation
potentials of the box. Strains therefore rigidly shift pure
heavy-hole states with respect to pure light-hole sates. They
can be accounted for by replacing P by P + (ν − 2)avε‖ and
Q by Q − (ν + 1)bvε‖ in Eq. (7).

In the minimal basis set B, there exists a relation between
the total Hamiltonian Htot (including electric and magnetic
fields) at zero and finite strains. We first notice that Htot

depends on Lz only through the variable η ≡ L−2
z , and that

Htot (ε‖, η) = Htot (0, η′) + (ν − 2)avε‖, (A3)

where

η′ − η = 1

L2′
z

− 1

L2
z

= m0(ν + 1)bv

h̄2π2γ2
ε‖. (A4)
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FIG. 7. The function H (θ, ϕ) sin θ characterizing the depen-
dence of the Rabi frequency of the light-hole qubit on the orientation
of the magnetic field.

Therefore biaxial strain amounts to a change of the squared
height of the box:

fR(ε‖, η) = | fR(0, η′)|. (A5)

In particular, small compressive (respectively, tensile) biaxial
strain is equivalent to a decrease (respectively, increase) of
L2

z (as bv is typically negative). Note that L2′
z might formally

diverge then become negative at large enough tensile strain.
Positive and negative L2′

z yield the same Rabi frequencies at
order L2

z /L2
x and L2

z /L2
y [Eqs. (38) and (A6) below], yet not at

higher orders. The above scaling relation applies to any pair
of qubit states.

It must be kept in mind, though, that the ground-state will
switch from a mostly heavy- to a mostly light-hole character
at large enough tensile strain. In thin dots, the light-hole states
at zero strain are the |1+〉 states. The Rabi frequency of this
pair is actually, to order L2

z /L2
y :

f (2)
R = 28m0e3

34π9h̄4 B|E0|Eac
γ3|κ|

γ2(γ1 − γ2)2
L6

y

L2
z

L2
y

H (θ, ϕ) sin θ

(A6)

with

H (θ, ϕ) =
√

1 + 4 tan2 θ sin2 2ϕ

1 + 4 tan2 θ
. (A7)

The function H (θ, ϕ) is plotted in Fig. 7. The angular depen-
dence is different from the heavy-hole |1−〉 pair but the pref-
actor is the same as Eq. (38) with (γ1 + γ2)2 replaced by (γ1 −
γ2)2 in the denominator. The Rabi frequency may, therefore,
be slightly larger for the light-hole than for the heavy-hole
states (at same Lx, Ly, small enough Lz and strains). This
results from the fact that “heavy holes” along z [with mass
mz = m0/(γ1 − 2γ2)] are actually “light” in the (xy) plane
[with mass mxy = m0/(γ1 + γ2)], while “light holes” along z
[mz = m0/(γ1 + 2γ2)] are “heavy” in the (xy) plane [mxy =
m0/(γ1 − γ2)], hence respond stronger to the electric and
magnetic fields [see the expressions of P and Q in Eq. (7)].
The Rabi frequency of the light-hole pair is maximum for θ =
90◦, ϕ = 45◦ (modulo 90◦), while the Rabi frequency of the
heavy-hole pair is maximum for ϕ = 0◦ (modulo 180◦), but
for a polar angle θ that depends on the dimensions of the qubit.

-0.03 0 0.03 0.06 0.09 0.12 0.15
ε (%)

0

50

100

150

200

250

300

350

400

f R
(M

H
z)

0.0

0.2

0.4

0.6

0.8

1.0

H
H

w
ei

gh
t

HH LH

(a)

-0.03 0 0.03 0.06 0.09 0.12 0.15
ε (%)

101

102

L
z

(n
m

)

(b)

FIG. 8. (a) Heavy-hole composition (dashed red line, right scale)
and Rabi frequency (solid blue line, left scale) of the ground-state
pair as a function of ε‖ in a silicon box with sides Lx = 40 nm, Ly =
30 nm, and Lz = 10 nm. It is computed from the exact solution of
the Hamiltonian in the basis set B. The RF electric field is Eac =
0.03 mV/nm, and the magnetic field B = 1 T is oriented along the
optimal direction for each ε‖. The transition from a mostly heavy-
hole (HH) to a mostly light-hole (LH) ground state takes place at
ε‖ = ε∗

‖ = 0.0625 %. (b) Effective L′
z = √|L2′

z | as a function of ε‖
[Eq. (A4)]. L2′

z diverges at ε‖ = ε∞
‖ = 0.0686 %; it is positive for

ε‖ < ε∞
‖ , and negative for ε‖ > ε∞

‖ . The reference point ε‖ = 0 is
highlighted by a black dot on both plots.

The Larmor frequency is also significantly less anisotropic for
the light-hole pair (as |gx| � |gy| � 4|κ|, |gz| � 2|κ|).

The heavy-hole composition h2
1 and the Rabi frequency

of the ground-state pair are plotted as a function of ε‖ in
Fig. 8(a), in a silicon box with sides Lx = 40 nm, Ly = 30
nm, and Lz = 10 nm. They are computed from the exact
solution of the Hamiltonian in the basis set B (ν = 0.77,
bv = −2.1 eV). The RF electric field is Eac = 0.03 mV/nm,
and the magnetic field B = 1 T is oriented along the optimal
direction (maximum fR) for each ε‖. For ε‖ < ε∗

‖ = 0.0625
%, the qubit states have a mostly heavy-hole character, while
for ε‖ > ε∗

‖ , they have a mostly light-hole character. The Rabi
frequency decreases at large compressive or tensile strain
because the heavy- and light-hole components get strongly
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split, which suppresses the necessary heavy- and light-hole
mixings in the qubit and excited states [equivalently, L2′

z → 0,
as shown in Fig. 8(b)]. The Rabi frequency also exhibits a
peak split by a dip near (but not exactly at) the transition strain
ε‖ = ε∗

‖ . This peak results from an increase of the effective
L2′

z (stronger heavy- and light-hole mixing), although neither
Eq. (38) nor Eq. (A6) are actually applicable in this range.
The dip is centered at the strain ε‖ = ε0

‖ = 0.0643 % where
h1 = h2, l1 = l2.1 The eigenstates of HLK can then all be
factored as the products of single envelopes by mixed heavy-
and light-hole Bloch functions. Since either the envelope or

the Bloch function of the different states must be orthogonal,
the qubit and excited states can not be coupled by both Eac

and Hz any more in Eq. (22). The dip is partly smoothed out
(but does not disappear) in larger basis sets. Therefore, hole
spin qubits turn out to be very sensitive to strains, and the
range of ε‖ that really enhance the Rabi frequency is pretty
narrow. Overall, the Rabi frequency remains larger for the
mostly heavy-hole than for the mostly light-hole qubit near
the peak [where, again, Eqs. (38) and (A6), which suggest the
opposite behavior, do not hold].

APPENDIX B: EQUATIONS FOR �1̃+, �2̃+, AND �2̃−

The equations for �2̃− are

BE0�2̃− = D1

E1− − E2−

{
λ1−

2−
[ − 4αβ

(
Z (2)

1 − Z (1)
1

) − 2β2
(
Z (2)

2 − Z (1)
2

) + 2α2
(
Z (2)∗

2 − Z (1)∗
2

)]
+ λ1−

2+
[ − 4αβZ (2)

3 − 2β2Z (2)
4 + 2α2Z (2)∗

4

] + λ2−
1+

[ − 4αβZ (1)
3 − 2β2Z (1)

4 + 2α2Z (1)∗
4

]}
(B1)

with

D1 = 〈2−,⇑|y|1−,⇑〉 = −16Ly

9π2
(h1h2 + l1l2), (B2)

and

Z (i)
1 = 〈i−,⇑|Hz|i−,⇑〉 = κμBB

(
3h2

i − l2
i

)
bz, (B3a)

Z (i)
2 = 〈i−,⇑|Hz|i−,⇓〉 = 2κμBB

(√
3hilib− + l2

i b+
)
, (B3b)

Z (i)
3 = 〈i−,⇑|Hz|i+,⇑〉 = −4κμBBhilibz, (B3c)

Z (i)
4 = 〈i−,⇑|Hz|i+,⇓〉 = 2κμBB

[√
3

2

(
h2

i − l2
i

)
b− + lihib+

]
. (B3d)

The equations for �2̃+ are likewise:

BE0�2̃+ = D2

E1− − E2+

{
λ1−

2−
[−4αβZ (2)

3 − 2β2Z (2)
4 + 2α2Z (2)∗

4

] + λ2+
1+

[ − 4αβZ (1)
3 − 2β2Z (1)

4 + 2α2Z (1)∗
4

]
+ λ1−

2+
[−4αβ

(
Z (1)

5 − Z (1)
1

) − 2β2(Z (2)
6 − Z (1)

2

) + 2α2(Z (2)∗
6 − Z (1)∗

2

)]}
, (B4)

where

D2 = 〈2+,⇑|y|1−,⇑〉 = 16Ly

9π2
(h2l1 − h1l2), (B5)

and

Z (i)
5 = 〈i+,⇑|Hz|i+,⇑〉 = κμBB

(
3l2

i + h2
i

)
bz, (B6a)

Z (i)
6 = 〈i+,⇑|Hz|i+,⇓〉 = 2κμBB

( −
√

3hilib− + h2
i b+

)
. (B6b)

Finally, the equation for �1̃+ is

BE0�1̃+ = −4αβZ (1)
3 − 2β2Z (1)

4 + 2α2Z (1)∗
4

E1− − E1+

× [
D1

(
λ1+

2− + λ1−
2+

) + D2
(
λ1+

2+ − λ1−
2−

)]
. (B7)

1The dip is centered either at h1 = h2, l1 = l2 or at h2 = −l1, h1 = l2 depending on the dimensions of the box.
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