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We consider a bipartite quantum conductor and analyze fluctuations of heat quantity in a subsystem as well
as self-information associated with the reduced-density matrix of the subsystem. By exploiting the multicontour
Keldysh technique, we calculate the Rényi entropy, or the information-generating function, subjected to the
constraint of the local heat quantity of the subsystem, from which the probability distribution of conditional
self-information is derived. We present an equality that relates the optimum capacity of information transmission
and the Rényi entropy of order 0, which is the number of integer partitions into distinct parts. We apply our
formalism to a two-terminal quantum dot. We point out that in the steady state, the reduced-density matrix and
the operator of the local heat quantity of the subsystem may be commutative.
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I. INTRODUCTION

The laws of physics limit the performance of information
processing [1–4]. The quantum limits of information trans-
mission through a quantum communication channel have long
been discussed [1,4–10]. In information theory, a model com-
munication system consists of a transmitter, a channel, and a
receiver [11] [Fig. 1(a)]. The physically relevant part is the
channel through which a signal produced by the transmitter
reaches the receiver. A measure of the performance of a
channel is capacity C, the maximum possible rate at which
information can be transmitted without error. More precisely,
let I be the amount of information content transmitted during
a given measurement time τ . Then, the rate of information
transmission always satisfies I/τ � C. The capacity of a
wide-band quantum channel for a given average signal power
P is [5,6,8–10] (we set h̄ = kB = e = 1)

CWB(P) =
√

π

3
NchP, (1)

where Nch is the number of channels. For a fermionic channel
[8,10], when the information is carried by electrons, Nch = 1

2 .
For a bosonic channel [5,7,9,10] and for a fermionic channel
with electrons and holes, Nch = 1.

The square-root dependence on P of Eq. (1) can be deduced
from the energy-time uncertainty relation [1,4,8]. Here, we
briefly estimate the capacity following Ref. [8]. Roughly
speaking, it is not possible to distinguish energy quanta
smaller than δE ∼ h̄/(2τ ) [1,8] (see also Ref. [4]). Suppose
one bit of information content is conveyed by the arrival or
nonarrival of an electron. Since there are Nch channels, an
energy window larger than IδE/Nch is needed in order to send
I bits of information content. This energy window is accom-
panied by the energy current, i.e., the signal power, which
is estimated by using the Landauer formula for heat current
[12] as P = E/τ � Nchh−1

∫ IδE/Nch

0 E ′dE ′ = (IδE )2/(2hNch ).
By rewriting this inequality as I �

√
2hNchP/δE , and by

replacing δE with h̄/(2τ ), we obtain I/τ � 4
√

πNchP, which
is consistent with Eq. (1).

In information theory, the channel capacity is defined as
the mutual information per second between input signal and
output signal maximized with respect to the distribution of
the input signal [11]. Equation (1) is indeed the optimum
capacity Copt, which is the capacity further maximized with
respect to input states and output measurement schemes [9].
The optimum capacity is the logarithm of the size of the Fock
subspace containing electrons with total energy E = Pτ . It
turned out that the optimum capacity is the partition function
of the theory of partition [13], i.e., the number of ways to write
a positive integer as the sum of positive integers that satisfy
a certain condition depending on the statistics of particles
[9,10].

In this paper, we discuss information transmission through
a mesoscopic quantum electric conductor connected to a
left lead and a right lead. We regard the right lead as the
transmitter generating thermal and shot noise as signals and
regard the quantum conductor as the channel. The left lead
corresponds to the receiver side [see Fig. 1(b)]. Temperatures
and chemical potentials of the receiver side and the transmitter
side can be different. We will set the energy origin at the
chemical potential. Therefore, the signal power P would be
the heat current Q/τ rather than the energy current E/τ .

In the previous theories [5,6,8–10], an ideal quantum chan-
nel was considered. For mesoscopic quantum electric conduc-
tors, the scattering theory was developed to analyze the en-
tropy current [12] as well as the capacity [14]. However, there
are not many works in this direction. In this paper, we analyze
the information content obtained by the receiver side. For this
purpose, we bipartition the whole system into the receiver
side (subsystem A) and the transmitter side (subsystem B),
which includes the channel [Fig. 1(b)]. Subsystem A consists
of the left lead. Subsystem B consists of the right lead and the
quantum conductor. We introduce a reduced-density matrix of
subsystem A by tracing out subsystem B degrees of freedom,
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FIG. 1. (a) A model of the communication system. A transmitter-
generated signal is sent through a channel to a receiver. We focus on
the signal transmission process through the channel. (b) A quantum
conductor (single-level quantum dot) coupled to the left and right
leads. We regard the quantum conductor as the communication chan-
nel. The right lead corresponds to the transmitter, which generates
thermal and shot noise as signals. The left lead corresponds to the
receiver side. The electron temperature of the left lead is set to zero
in order to suppress the intrinsic thermal noise in the receiver side.
We regard the left lead as subsystem A and the quantum conductor
and the right lead as subsystem B.

ρ̂A = TrBρ̂. Then, we perform a projective measurement of
“local heat quantity” of subsystem A, QA, or its dimensionless
equivalent SA = βAQA, where βA is the inverse temperature
of subsystem A. The reduced-density matrix after obtaining
outcome SA is

ρ̂A,SA = �̂SA ρ̂A�̂SA

P(SA)
, P(SA) = TrA

(
�̂SA ρ̂A

)
, (2)

where �̂SA is a projection operator and P(SA) is the probability
of obtaining the measurement outcome SA. The operator of
the conditional self-information [15] associated with the state
of electrons with signal power PA = QA/τ would be Ĵ =
− ln ρ̂A,SA (hereafter, we choose base e). The operator Ĵ is
formally the “entanglement Hamiltonian” [16–18] subjected
to the “local heat quantity” constraint. The purpose of this pa-
per is to analyze the probability distribution of the conditional
self-information beyond its average value, i.e., the conditional
entropy. In fact, the conditional self-information is a random
variable, and thus one can consider its probability distribution
function

PSA (J ) = TrA
[
ρ̂A,SAδ

(
J + ln ρ̂A,SA

)]
. (3)

By exploiting the orthonormal decomposition of the density
matrix ρ̂A,SA =∑n pn|n〉〈n|, where |n〉 is an orthonormal set
and pn are eigenvalues of ρ̂A,SA , the probability distribution
function is written as PSA (J ) =∑n pnδ(J + ln pn) (see, e.g.,
Chap. 2.7 in Ref. [19]). It is convenient to introduce the
characteristic function or the information-generating function
[20,21], the Fourier transform of the probability distribution
function

∫
dJ eiξJPSA (J ) =∑n p1−iξ

n , which may be regarded
as the Rényi entropy of order α = 1 − iξ [22,23]. As we will
see later in Eq. (19), the Fourier transform of the probability
distribution function (3) is related to the Rényi entropy of
order M:

SM (SA) = TrA
[(

�̂SA ρ̂A�̂SA

)M]
. (4)

The main message of this paper is that, when the thermal
noise of the receiver side is suppressed βA → ∞, there exists a

universal relation similar to Jarzynski equality [24,25], which
connects the probability distribution of the conditional self-
information, the Rényi entropy of order 0, and the optimum
capacity

〈eJ〉QA = S0(QA) ≈ exp[τCopt (PA)]. (5)

We demonstrate that in our case, Eq. (5) is the partition
function of integer partitions into distinct parts.

Here, we note a subtle issue concerning the definition of
the operator of the “local heat quantity” of subsystem A.
In general, the reduced-density matrix is not diagonal in the
eigenbasis of the operator of “local heat quantity” [ρ̂A, Q̂A] 
=
0 [see Eq. (9) for the definition of Q̂A]. It is a manifestation
of the noncommutativity between the Hamiltonian of the
subsystem A, ĤA, and the full Hamiltonian

Ĥ = ĤA + ĤB + V̂ , (6)

which includes the coupling between the two subsystems V̂ .
This noncommutativity causes difficulties in constructing the
thermodynamics of an open quantum system coupled strongly
to reservoirs [26–30]. In our case, it causes difficulties in
dealing with the projection operator in Eq. (4). In this paper,
we concentrate on the steady state, where the time trans-
lational invariance is restored and the coupling energy is
neglected as compared with the net energy transfer between
the subsystems. In such a case, we can regard [ρ̂A, Q̂A] ≈ 0
and circumvent this problem.

Another purpose of this paper is to extend the multicontour
Keldysh Green function technique [31–36]. From this point
of view, this paper relies on our previous works [33–35]. In
Ref. [33], we developed the replica trick to calculate the Rényi
entropy in the nonequilibrium steady state. In Ref. [34], we
accounted for the local particle-number constraint to analyze
the accessible entanglement. In this paper, we will account
for the local heat quantity constraint (35b) and (35c). In this
way, we are able to calculate the information channel capacity
subjected to signal power constraint, which connects thermo-
dynamics and communication theory. A celebrated paper by
Shannon [11] demonstrated that the channel capacity of the
Gaussian channel depends on the bandwidth B, the average
signal power P, and the noise power Pnoise as C = B ln(1 +
P/Pnoise ). In this paper, we discuss the quantum version of the
channel capacity. The flows of Rényi entropy and energy have
been discussed also in Ref. [36].

The structure of the paper is as follows. In Sec. II, we in-
troduce probability distributions and information-generating
functions. Then, we present a universal relation (21). In
Sec. III, we summarize the multicontour Keldysh generating
function [31–36]. In Sec. IV, we apply our formalism to a
resonant-level model, and then in Sec. V we derive the opti-
mum capacity. In Sec. VI, we focus on energy-independent
transmission cases. In Sec. VII, we turn to the resonant
tunneling condition. We also discuss the commutability of
the reduced-density matrix and the operator of the “local
heat quantity” in the presence of the Coulomb interaction
in Sec. VII B. In Sec. VIII, we discuss differences between
our approach and the previous quantum information theory
approach [9,10]. In Sec. IX, we summarize our findings.
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II. INFORMATION-GENERATING FUNCTION

A. Joint probability distribution and conditional
probability distribution

We assume that initially the two subsystems A and B are
decoupled. Each subsystem is in equilibrium:

ρ̂A(B)eq = e−βA(B) (ĤA(B)−μA(B)N̂A(B) )/ZA(B)eq, (7)

where βA(B) and μA(B) are the inverse temperature and the
chemical potential of subsystem A(B), respectively. The equi-
librium partition function ZA(B)eq ensures the normalization
condition TrA(B)ρ̂A(B)eq = 1. Explicitly, the initial density ma-
trix is ρ̂(t < 0) = ρ̂Aeq ρ̂Beq. At t = 0, we switch on the
coupling V̂ and let the total system evolve until t = τ . Then,
we trace out the subsystem B and obtain the reduced-density
matrix of the subsystem A as

ρ̂A(τ ) = TrBρ̂(τ ), ρ̂(τ ) = e−iĤτ ρ̂Aeqρ̂BeqeiĤτ . (8)

A naive definition of the operator of the local heat quantity
of the subsystem A would be

Q̂A = ŜA/βA = − ln ρ̂Aeq/βA. (9)

Precisely, Eq. (9) is the operator of energy measured from
the chemical potential minus the equilibrium free energy of
the subsystem A. In thermodynamics, the heat is not a state
function and is defined associated to a certain process. In
our case, the process corresponds to the exchange of heat
and electrons between the subsystem A and the exterior, the
subsystem B. Indeed, the time derivative of the average of the
operator (9) is compatible with the commonly used definition
of the heat flux (see Ref. [28] for definitions of the heat)

d

dt
〈Q̂A(t )〉 = ĖA(t ) − μAṄA(t ). (10)

Here, the averages of energy and particle currents are ĖA(t ) =
−i Tr(ρ̂(τ )[ĤA, Ĥ ]) and ṄA(t ) = −i Tr(ρ̂(τ )[N̂A, Ĥ ]), re-
spectively. Once we accept Eq. (9), the projection operator
can be written as (Appendix A)

�̂SA = 


2π

∫ π/


−π/


dχ e−iχSA ρ̂
−iχ
Aeq . (11)

For simplicity, we assume that the dimensionless heat quantity
is discrete SA = 
n, where n is an integer. 
 is a small
number, and we set 
 → +0 at the end of the calculations.
Physically, this operation would correspond to taking the limit
of large subsystem size in the end of calculations. As far as

 > 0, SA ∈ (−∞,∞) and thus there would be no limitation
on the bandwidth of the detector, i.e., the subsystem A.

The reduced-density matrix after the projective measure-
ment is ρ̂ ′

A =∑SA
P(SA) ρ̂A,SA . We define the joint probability

distribution function of self-information content and dimen-
sionless heat quantity as

P(I ′
A, SA) = TrA

[
�̂SA ρ̂A�̂SAδ(I ′

A + ln ρ̂ ′
A)
]
. (12)

By using the joint probability distribution function, the proba-
bility distribution function of conditional self-information (3)
can be written as

PSA (J ) = P(I ′
A = J − ln P(SA), SA)/P(SA). (13)

The information-generating function of the joint probability
distribution (12) is

S1−iξ (SA) =
∫

dI ′
Aeiξ I ′

A P(I ′
A, SA)

= TrA
[(

�̂SA ρ̂A�̂SA

)1−iξ ]
. (14)

We call the parameter of Fourier transform ξ the “counting
field.” By performing the analytic continuation 1 − iξ → M,
we obtain the Rényi entropy (4). Because of their apparent
similarity, we use the terms “information-generating function”
and “Rényi entropy” interchangeably.

We further perform the Fourier transform in terms of the
dimensionless heat quantity. By exploiting the expression
(11), we obtain

S1−iξ (χ ) =
∑

SA

eiχSA S1−iξ (SA) = TrA
(
ρ̂

′ 1−iξ
A ρ̂

−iχ
Aeq

)
. (15)

Once the Rényi entropy (15) is obtained, the joint probability
distribution is recovered by performing the inverse Fourier
transform. In this paper, we focus on the steady state realized
in the limit of τ → ∞. In the presence of a finite affinity, the
temperature difference or the chemical potential difference,
the number of exchanged electrons grows linearly in the mea-
surement time τ . Since the information is conveyed by arrivals
or nonarrivals of electrons, the self-information content as
well as the heat quantity would grow in proportion to the
measurement time τ [33,34]. Therefore, the inverse Fourier
transform can be done within the saddle-point approximation

P(I ′
A, SA) = 1

2π

∫
dξ e−iξ I ′

A S1−iξ (SA) (16a)

≈ exp

[
min
iξ∈R

[ln S1−iξ (SA) − iξ I ′
A]

]
, (16b)

which is the Legendre-Fenchel transform [37]. For the joint
probability distribution, we can perform the double Legendre
transform

ln P(I ′
A, SA) ≈ min

iξ,iχ∈R
[ln S1−iξ (χ ) − iξ I ′

A − iχSA]. (17)

Hereafter, we use SA and QA interchangeably. The two
quantities and corresponding counting fields χ and X are
related as QA = SA/βA and X = βAχ , respectively. The joint
cumulant between self-information and heat quantity is ob-
tained by a derivative of the information-generating function〈〈

I ′ �
A Qm

A

〉〉 = ∂�
iξ ∂

m
iX ln S1−iξ (X )

∣∣
ξ=X=0. (18)

B. Universal relation and optimum capacity

The information-generating function of the probability dis-
tribution of conditional self-information (13) is

S1−iξ,SA =
∫

dJ eiξJPSA (J ) = S1−iξ (SA)

S1(SA)1−iξ
. (19)

The first derivative gives the von Neumann entropy [38]
S(ρ̂ ) = −Trρ̂ ln ρ̂ as

〈〈J〉〉 = ∂iξ ln S1−iξ,SA |iξ=0 = S(ρ̂A,SA ). (20)
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The information-generating function satisfies a Jarzynski
equality [24,25] like universal relation

〈eJ〉SA =
∫

dJ eJPSA (J ) =
∫

dJ TrA[δ(J − Ĵ )]

= S0,SA = rank ρ̂A,SA

= S0(SA) = rank
(
�̂SA ρ̂A�̂SA

)
. (21)

The last expression of the first line means the number of
eigenvalues of the “entanglement Hamiltonian” [16–18] Ĵ =
− ln ρ̂A,SA . The last equation of the second line means the
number of positive eigenvalues of the reduced-density matrix
ρ̂A,SA . Therefore, 〈eJ〉SA

would represent the number of all
possible many-body electron states in the subsystem A for a
given local dimensionless heat quantity SA occurring with pos-
itive probabilities. In general, the zeroth-order Rényi entropy
gives the measure of the support set of a given probability
density function, while the Shannon entropy gives the size of
the effective support set [15].

To proceed, we perform the Fourier transform of Eq. (21),
S0(X ) =∑QA

eiXQA〈eJ〉QA
= TrA(ρ̂ ′ 0

A ρ̂
−iX/βA
Aeq ), and then per-

form the inverse Fourier transform within the saddle-point
approximation

ln〈eJ〉QA = ln



2πβA

∫ πβA/


−πβA/


dX e−iXQA S0(X )

≈ min
iλ∈R

[ln S0(X = λ/
E ) − iλn], (22)

where we introduced the heat quantity divided by the energy
resolution 
E = h/(2Nchτ ), n = QA/
E = τ 2NchPA/π . In
Sec. V B, we calculate the second line of Eq. (22) in the
limit of βA → ∞ explicitly for a resonant-level model and
reproduce the optimum capacity in the previous works [9,10]
Eq. (56) as claimed by Eq. (5).

If PQA (J ) � 0, by exploiting Jensen’s inequality and the
universal relations (5) and (21), one can check that the average
conditional self-information is bounded from above:

〈J〉QA = S
(
ρ̂A,QA

)
� ln rank ρ̂A,QA = τ Copt (P). (23)

Here, we comment on the definition of the delta function in
Eqs. (3) and (12) and the normalization condition of the joint
probability distribution (12). By using the spectral decompo-
sition of the reduced-density matrix,

ρ̂ ′
A =

∑
j

λ j | j〉〈 j|, (24)

where λ j are non-negative eigenvalues, the delta function in
Eqs. (3) and (12) is defined as

δ(I ′
A + ln ρ̂ ′

A) =
∑
j∈S

| j〉〈 j| δ(I ′
A + ln λ j ). (25)

Here, the summation is performed over the index j associated
with positive eigenvalues S = { j : λ j > 0}. In this paper, we
will assume that the initial state of the subsystem A is in a pure
state:

ρAeq = |FS〉〈FS|, (26)

where |FS〉 is a unique ground-state many-body wave function
(at the ground state, electrons fill up to the Fermi energy).

Then,∫
dI ′

A

∫
dSAP(I ′

A, SA) = S1(χ = 0) =
∑
j∈S

|〈 j|FS〉|2, (27)

which would not necessarily be 1. In this paper, we will
consider a specific model, a resonance-level model, and check
the normalization condition through explicit calculations
[see Eq. (52)].

III. MULTICONTOUR KELDYSH TECHNIQUE

A. Bulk contribution

Let us calculate the Rényi entropy (15) at the initial state
τ = 0, in which the two subsystems are decoupled:

sM (χ ) = TrB
(
ρ̂

M−iχ
Aeq

)
, (28)

where we used ρ̂ ′
A = ρ̂Aeq. The operators of the Hamiltonian

and particle number of the subsystem A are

ĤA =
∑

k

εA kâ†
AkâAk, (29a)

N̂A =
∑

k

â†
AkâAk . (29b)

Then, the unperturbed part (28) reads as

ln sM (χ ) = ln
TrAe−(M−iχ )βA(ĤA−μAN̂A )

ZM−iχ
Aeq

(30)

= ln

∏
k (1 + e−(M−iχ )βA(εAk−μA ) )∏
k (1 + e−βA(εAk−μA ) )M−iχ

(31)

=
∫

dωNA(ω) ln[ f +
A (ω)M−iχ + f −

A (ω)M−iχ ],

(32)

where NA(ω) =∑k δ(ω − εAk ) is the density of states (DOS)
of the subsystem A. The electron (hole) distribution function is

f ±
A (ω) = 1

1 + e±βA(ω−μA )
. (33)

For further calculations, we assume the DOS is energy
independent NA(ω) = VAρA, where VA is the volume of sub-
system A. The Rényi entropy is analytic around χ = 0 and
M = 1 and is proportional to the volume and specific heat of
free-electron gas [39] CA = ρAπ2/(3βA) as [31]

ln sM (χ ) ≈ VACA

2

(
1

M − iχ
− M + iχ

)
. (34)

In the limit of zero temperature βA → ∞, Eq. (34) becomes
zero except at M = iχ .

B. Keldysh-generating function

We adopt the replica trick to calculate the information-
generating function (15). First, we calculate

SM (χ ) = TrA
(
ρ̂ ′ M

A ρ̂
−iχ
Aeq

)
(35a)

for a positive integer M and then perform the analytic con-
tinuation back to M → 1 − iξ . By utilizing expression of the
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M 1,C

2,C

t = t = 0t 

m

1,C

1,C

2,C

M 1,C

M,C

M,C

exp( )i A1 S

exp( )i A2 S

exp( )i AM S

exp( )i AM-1 S

ˆAeqˆB eq,M

ˆAeqˆB eq,M 1

ˆAeqˆB eq,2

ˆAeqˆB eq,1

FIG. 2. Multicontour C consisting of M normal Keldysh con-
tours C1, . . . ,CM . A cross at t = τ on the lower branch of the
first Keldysh contour C1,− represents a starting point. The contour
goes to ρ̂Aeqρ̂Beq,1 at t = 0 along C1,− and returns to t = τ along
C1,+. Then, it connects to t = τ on the lower branch of the second
Keldysh contour C2,−. The contour goes repeatedly until it reaches
t = τ on CM,+. Then, it goes back to the starting point t = τ on
C1,−. Shaded boxes are M replicas of the initial equilibrium density
matrix ρ̂Aeqρ̂Beq,m (m = 1, . . . , M). Solid circles on t = τm+ represent
operators exp(iχmŜA).

projection operator (11), the Rényi entropy becomes

SM (χ ) =
(




2π

)M−1 ∫ π/


−π/


dχM . . . dχ1δ(χ − χ̄ )

× SM ({χ j}), (35b)

SM ({χ j}) = TrA
[
ρ̂

−iχM
Aeq ρ̂A(τ ) . . . ρ̂

−iχ1
Aeq ρ̂A(τ )

]
, (35c)

where χ̄ =∑M
j=1 χ j . The operator of the local heat quantity

(9) includes only the creation and annihilation operators act-
ing locally on subsystem A. In this case, ρ̂A(τ ) and Q̂A are, in
general, not commutative (Appendix B):

[ρ̂A(τ ), Q̂A] = TrB(e−iĤτ [ρ̂Aeqρ̂Beq, V̂ − eiĤτV̂ e−iĤτ ]eiĤτ )


= 0. (36)

Therefore, we must deal with multiple integrals over χ j in
Eq. (35b). This situation contrasts with the local particle-
number constraint [34], in which (under certain conditions)
the coherence between sectors of different particle numbers
vanishes [ρ̂A, N̂A] = 0 [see Eq. (26) and Appendix A of
Ref. [34]] and thus the M-multiple integral is reduced to a
single integral.

Equation (35c) is expressed as the Keldysh partition func-
tion defined on a multicontour [31–36]. The multicontour
C is a sequence of M normal Keldysh contours C1, . . . ,CM

(Fig. 2). We introduce M replicas of creation and annihila-
tion operators of the subsystem B, âBk (â†

Bk ) → âBk,m(â†
Bk,m),

living on the mth Keldysh contour Cm (m = 1, . . . , M). The

operators of the Hamiltonian and the number of particles of
subsystem B are replicated as ĤB → ĤB,m and N̂B → N̂B,m,
respectively. In addition, the operator of the coupling is repli-
cated as V̂ → V̂m. Then, the Rényi entropy (35c) is written in
the form of the Keldysh partition function

SM ({χ j}) = 〈T̂Ce−i
∫

C dt V̂ (t )I +i
∑M

m=1 χmŜA(τm+ )I
〉
M

sM (χ̄ ), (37a)

where T̂C is the contour-ordering operator [33,34]. The op-
erators in the interaction picture at time tm± on the upper
(lower) branch of mth Keldysh contour are, e.g., V (tm±)I =
ei(ĤA+ĤB,m )tV̂me−i(ĤA+ĤB,m )t . The average is

〈Ô〉M = Tr
(
Ôρ̂Aeqρ̂Beq,M . . . ρ̂Aeqρ̂Beq,1

)
/sM (χ̄ ), (37b)

where sM is the unperturbed part of the Rényi entropy (28).
The density matrix of subsystem B is also replicated as ρ̂Beq,m.
The trace is performed over the Hilbert space of subsystem A
and M replicas of subsystem B. The result (37a) is Eq. (46)
in Ref. [34] replaced N̂A with ŜA. For detailed derivations, see
Ref. [34].

C. Multicontour Keldysh Green functions

Here, we illustrate the multicontour Keldysh Green func-
tion for a simple model:

Ĥr = εr â†
r âr (r = A, B). (38)

We relegate details to Appendix C and summarize definitions.
A multicontour Keldysh Green function of subsystem A is a
contour-ordered correlation function of â†

A on Cm′,s′ and âA on
Cm,s:

g
{χ j}
A (tms, t ′

m′s′ ) = g
{χ j},ms,m′s′

A (t, t ′)

= − i
〈
T̂CâA(tms)I â

†
A(t ′

m′s′ )I e
i
∑M

j′=1 χ j′ ŜA(τ j′+ )I
〉
M .

(39a)

This is a (ms, m′s′) component of a 2M × 2M Keldysh Green
function matrix gA [see Eq. (C1) for explicit expressions
of components]. It is convenient to introduce the Fourier
transform in time:

g{χ j}
A (ω) =

∫
d (t − t ′)eiω(t−t ′ )g{χ j}

A (t, t ′)

= U ({δχ j}, ω)†gχ̄
A (ω)U ({δχ j}, ω), (39b)

which is separated into a matrix gχ̄
A depending only on the

average of the counting fields χ̄ =∑M
m=1 χm and a diago-

nal unitary matrix U depending only on fluctuations δχ j =
χ j − χ̄/M ( j = 1, . . . , M − 1). A (ms, m′s′) component of
the diagonal unitary matrix is

[U ]ms,m′s′ = e−iφm (ω)δm,m′δs,s′ . (39c)

The phase φm is the accumulation of the fluctuations:
φm(ω) =∑m−1

j=1 δχ j sA(ω) for m = 2, . . . , M and φ1(ω) = 0.
We introduced the dimensionless heat quantity associ-
ated with a single-electron excitation sA(ω) = βA(ω − μA).
The matrix gχ̄

A (ω) is a block skew-circulant matrix
[see Eqs. (C3)–(C6)].

Similarly, a multicontour Keldysh Green function of sub-
system B is introduced. It is nonzero only when âB,m and â†

B,m′
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are on the same normal Keldysh contour m = m′:

gB(tms, t ′
m′s′ ) = − i TrB,m[TCm âB(tms)I â

†
B(t ′

ms′ )I ρ̂Beq,m]δm,m′ .

(40)

In the following calculations, we will use its Fourier transform
in time [see Eqs. (C10) and (C11)].

IV. RESONANT-LEVEL MODEL

We consider the spinless resonant-level model [Fig. 1(b)].
We bipartition the system and regard the left lead as subsystem
A and the dot and right lead as subsystem B. The Hamiltonians
of the two subsystems are

ĤA =
∑

k

εLkâ†
LkâLk, (41a)

ĤB =
∑

k

εRkâ†
RkâRk + εDd̂†d̂, (41b)

where ârk annihilates an electron with wave number k in the
lead r and d̂ annihilates an electron in the quantum dot. Here,
εD is the energy of a localized level in the dot and εrk is the
energy of the electron in the lead r. The coupling between the
two subsystems is described by the tunnel Hamiltonian

V̂ =
∑

r=L,R

∑
k

Jr d̂†ârk + H.c. (41c)

The particle-number operators in subsystems A and B are
N̂A = N̂L =∑k â†

LkâLk and N̂B = N̂R + N̂D =∑k â†
RkâRk +

d̂†d̂ , respectively. The inverse temperatures (chemical poten-
tials) of the left and right leads are βL = βA (μL = μA) and
βR = βB (μR = μB). As for the initial isolated dot, one may
choose an arbitrary density matrix since, in the steady state,
the occupation of the dot level is governed by the electron
distribution of the leads and is independent of the initial
density matrix of the dot. Therefore, we assume that the initial
density matrix of the dot possesses the same form as the
equilibrium density matrix (7) and is characterized by two
auxiliary parameters, the “inverse temperature” βD and the
“chemical potential” μD. This form is convenient since it
enables us to utilize the Bloch–De Dominicis theorem (Ap-
pendix A of Ref. [33]). As demonstrated in Appendix D, the
parameters βD and μD disappear in the course of calculations
and the final result (51) is independent of the two parameters.

The Keldysh partition function (37a) can be calculated
by exploiting the linked cluster expansion [33,34]. In the
limit of long measurement time, the leading contribution is
proportional to τ :

ln
SM ({χ j})

sM (χ̄ )
≈ τ

∫
dω

2π
ln

det
[
G{χ j}

D (ω)−1
]

det[gD(ω)−1]
, (42)

where the full Green function matrix of the dot is

G{χ j}
D

−1 = g−1
D − (1 ⊗ τ3)

∑
k

(
J2

LU†gχ̄

LkU + J2
RgRk

)
(1 ⊗ τ3).

(43)

Here, gχ̄

Lk is obtained from gχ̄
A [Eq. (C3)] by replacing εA

with εLk . Similarly, gD(Rk) is obtained from gB [Eq. (C10)]
by replacing εB with εD(Rk). The diagonal unitary matrix U

was introduced in Eq. (39c). Equation (43) can be written as

G{χ j}
D

−1 = U†Gχ̄
D

−1
U , where

Gχ̄
D

−1 = g−1
D − (1 ⊗ τ3)

∑
k

(
J2

L gχ̄

Lk + J2
RgRk

)
(1 ⊗ τ3). (44)

By exploiting the property of the determinant

det
[
G{χ j}

D

−1] = det
[
U†Gχ̄

D
−1

U
] = det Gχ̄

D
−1

, (45)

we observe that the phase φm(ω) cancels and thus Eq. (42)
depends only on the average χ̄ . This cancellation originates
from the energy conservation in the steady state [40]. It
implies that in the steady state, ρ̂A and Q̂A commute; see also
Sec. VII B.

Since gχ̄

Lk is a block skew-circulant matrix, it is block
diagonalized by the discrete Fourier transform (C7). Then,
Eq. (35b) is calculated as

ln
SM (χ )

sM (χ )
≈

M−1∑
�=0

τ

∫
dω

2π
ln

det
[
Gλ�−χsA(ω)/M

D (ω)−1
]

det[gD(ω)−1]

= τ

M−1∑
�=0

FG[λ� − χsA(ω)/M], (46)

where the full Green function matrix in the 2×2 normal
Keldysh space is

Gλ
D

−1 = g−1
D − τ3

∑
k

(
J2

L gλ
Lk + J2

RgRk
)
τ3. (47)

The free Green functions g are 2×2 matrices [see Eqs. (C8)
and (C11)]. The solution to this Dyson equation is given
by Eq. (D3) in Appendix D. The function FG is related to
the scaled cumulant-generating function of the full counting
statistics:

FG(λ) = Nch

2π

∫
dω ln �1,λ(ω), Nch = 1

�M,λ(ω) = f̃ +
L (ω)M + f̃ −

L (ω)Meiλ

f +
L (ω)M + f −

L (ω)Meiλ
, (48)

where we subtracted a trivial constant to satisfy the nor-
malization condition FG(0) = 0. We introduced the effective
electron (hole) distribution function f̃ ±

L (ω) = T (ω) f ±
R (ω) +

R(ω) f ±
L (ω), where T (ω) is the transmission probability and

R(ω) = 1 − T (ω) is the reflection probability:

T (ω) = �L�R

(ω − εD)2 + �2/4
, � = �L + �R. (49)

The coupling strength between the quantum dot and the lead
r, �r = 2π

∑
k J2

r δ(ω − εrk ), is assumed to be energy inde-
pendent. After we perform the summation over � in Eq. (46)
(Appendix E), we obtain

ln
SM (χ )

sM (χ )
≈ τNch

2π

∫
dω ln �M,−χsA(ω)(ω). (50)

The above results are modifications of those obtained in
Refs. [33,34]. Equation (46) is Eq. (64) in Ref. [34]; χ is
replaced by χsA(ω). Expressions in Eq. (48) are Eqs. (53)
and (54) in Ref. [33]. Technical details can be found in these
works.
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The order in which the zero-temperature limit and the
analytic continuation are taken is important when we consider
universal relations associated with the Rényi entropy of order
zero [33,34]. Here, we take the zero-temperature limit only

for subsystem A, βA → ∞, while keeping M as a positive
integer and the counting field βAχ = X finite. By setting
f +
L (ω) = θ (μA − ω), which is the Heaviside step function,

Eq. (50) becomes

ln SM (X ) =τNch

2π

∫ ∞

μA

dω ln[(T (ω) f +
R (ω))MeiX (ω−μA ) + (1 − T (ω) f +

R (ω))M]

+ τNch

2π

∫ μA

−∞
dω ln[(1 − T (ω) f −

R (ω))M + (T (ω) f −
R (ω))Me−iX (ω−μA )]. (51)

The two terms on the right-hand side of the equation cor-
respond to the electron and hole contributions. By perform-
ing the analytical continuation M → 1 − iξ , we obtain the
information-generating function. We check that Eq. (51)
satisfies

ln S1(X = 0) = 0, (52)

and thus the joint probability distribution function is properly
normalized to 1 [see Eq. (27)].

V. OPTIMUM CAPACITY

A. Averages

From Eq. (51), by exploiting Eq. (18), the average of the
self-information is evaluated:

〈〈I ′
A〉〉 =τNch

2π

∫ ∞

μA

dω H2(T (ω) f +
R (ω))

+ τNch

2π

∫ μA

−∞
dω H2(T (ω) f −

R (ω)), (53)

where we introduced the binary entropy H2(x) = −x ln x −
(1 − x) ln(1 − x). The first and second terms on the right-hand
side correspond to electron and hole contributions, respec-
tively. The integrand H2(T f +

R ) is the entropy of the receiver
side. It corresponds to H (B) of Eq. (21) in Ref. [14] and
Eq. (12) of Ref. [12]. The average heat quantity in the left
reservoir is

〈〈QA〉〉 =τNch

2π

∫
dω(ω − μA)T (ω)[ f +

R (ω) − f +
L (ω)], (54)

which corresponds to the average signal power, Eq. (15) in
Ref. [14].

B. Optimum capacity and integer partitions

Let us take M → 0 of Eq. (51) while keeping the in-
verse temperature βB finite. For T (ω) > 0, (T f ±

R )0 = (R +
T f ±

R )0 = 1. For T (ω) = 0, (T f ±
R )0 = 0, and (R + T f ±

R )0 =
1. Therefore, in this limit, Eq. (51) is independent of the
details of the setup and depends only on the statistics of
particles.

We consider the band-limited channel: we introduce a
finite bandwidth, i.e., a high-frequency cutoff ωmax and a
low-frequency cutoff, or a gap, ωmin > 0. As is observed from
Eq. (51), electrons (ω > μA) and holes (ω < μA) contribute
in the same way. Therefore, in the following, when only
electrons contribute, i.e., ωmin < ω < ωmax, we set Nch = 1

2 .

When electrons and holes contribute, i.e., ωmin < |ω| < ωmax,
we set Nch = 1. The Rényi entropy of order zero is

ln S0(X = λ/
E ) = 1


E

∫ ωmax

ωmin

dω ln(eiXω + 1)

=
∫ jmax

jmin

d j ln(1 + eiλ j ), (55)

where j = ω/
E . The energy resolution is 
E =
h/(2Nchτ ) [see Eq. (22)]. It is an approximation of the
logarithm of the generating function for partitions [13]:∏

j∈S (1 + eiλ j ) =∑n�0 p(n|distinct parts in S ) einλ, where
S = { jmin, jmin + 1, . . . , jmax}. The partition function [13]
p(n|distinct parts in S ) stands for the number of integer
partitions of a given integer n into distinct elements of the set
S . The integer partition of n is a way of writing n as the sum
of positive integers. By exploiting Eq. (22), we obtain

〈eJ〉QA ≈ p(QA/
E |distinct parts in S ), (56)

which is exp [τCopt (PA)] according to the previous quantum
information theory approach in Ref. [10] [see Eq. (90c) in
Sec. VIII].

The result presented above verifies our main claim, Eq. (5).
However, precisely speaking, there are differences. The previ-
ous works [9,10] treated dispersionless channels. Our result
is derived from a microscopic Hamiltonian and can be ex-
tended to channels with arbitrary dispersion. We present more
detailed comparisons in Sec. VIII.

The integral in Eq. (55) can be done analytically:

ln S0(X = λ/
E ) = Li2(−eiλ jmin ) − Li2(−eiλ jmax )

iλ
, (57)

where the dilogarithm function is

Li2(x) =
∞∑

k=1

xk

k2
=
∫ 0

x
dz

ln(1 − z)

z
. (58)

For the narrow-band case, when the bandwidth 2πB =
ωmax − ωmin and the frequency 2π f = (ωmax + ωmin)/2
satisfy B 
 f , the generating function is approximately
ln S0(X = λ/
E ) ≈ 2τNchB ln (1 + ei2τNch f λ). Then, by sub-
stituting it into Eqs. (22) and (5), we obtain

Copt (PA) ≈ 2NchBH2(PA/(2Nchh f B)). (59a)

In the particlelike regime, PA 
 2Nchh f B, where the signal
power is small and the particle nature of an electron is
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prominent:

Copt (PA) ≈ PA

h f
ln

2Nchh f B

PA
. (59b)

Here, PA/(h f ) is the rate of transmission of signal quanta.
The argument of the logarithm 2Nchh f B/PA means the max-
imum number of distinguishable modes per signal quantum.
For Nch = 1

2 , the expression is formally compatible with
Eq. (2.22) in Ref. [9] that was obtained for bosons.

For the fermionic band-limited channel, the power of the
signal is bounded from above. Let us set ωmin = 0. The
maximum of the heat quantity is

QA max


E
= lim

iλ→∞
ln S0(X = λ/
E )

iλ
= j2

max

2
, (60a)

where we utilized the Legendre duality [37] and the fact that
a rare event associated with the maximum is realized in the
limit of iλ → ∞. The maximum power is

PA max = QA max

τ
= 2Nch

h

∫ ωmax

0
ω dω, (60b)

which is the Landauer formula of heat current for perfect
transmission.

Let us turn our attention to the wide-band channel jmax →
∞. As long as the inverse Fourier transform is performed
within the saddle-point approximation [see Eq. (22)], it is
sufficient to analyze the generating function (55) for pure
imaginary λ. The integral in Eq. (55) can be done for iλ < 0
and we obtain

ln S0(X = λ/
E ) ≈ − π2

12iλ
. (61a)

Then, by substituting it into Eq. (22) and by using Eq. (5), we
reproduce the optimum capacity of the wide-band channel (1):

Copt (PA) ≈ π

τ

√
QA/
E

3
= CWB(PA), (61b)

where PA > 0.
Figure 3 shows the optimum capacity as a function of

the signal power of the band-limited channel without the gap
ωmin = 0. The horizontal axis is the heat quantity normalized
by 
E , QA/
E = τ 2NchPA/π . For a small cutoff energy
( jmax = Nchτωmax/π = 5), the curve is well fitted by the
optimum capacity of the narrow-band channel (59a) indicated
by the dotted-dashed line. The signal power PA is bounded
from above and the maximum is given by Eq. (60b). The
dashed line indicates the optimum capacity of the wide-band
channel (61b). With the increase in cutoff energy ωmax, the
curve approaches the dashed line.

As we noted, if we change the order in which the zero-
temperature limit and the analytic continuation are taken,
the result mentioned above changes [33,34]. When we set
M = 0 while keeping the inverse temperature βA finite, since
( f ±

L )0 = ( f̃ ±
L )0 = 1, Eq. (50) becomes S0(χ ) = s0(χ ) [see

Eq. (34)]. By taking the limit of zero temperature βA → ∞

FIG. 3. The optimum capacity as a function of signal power
PA for various bandwidths ωmax (the gap is zero ωmin = 0). The
dotted-dashed line indicates the optimum capacity of the narrow-
band channel (59a). The dashed line indicates the optimum capacity
of the wide-band channel (61b).

while keeping X = βAχ finite, we obtain

ln S0(X ) = −VAγA

2iX
(iX < 0), (62a)

where γA = CAβA = π2ρA/3 is the electronic specific-heat
coefficient. Then, the size of the Fock subspace is estimated
as

ln S0,QA ≈
√

2VAγAQA, (62b)

which may look similar to τCopt [Eq. (61b)]. However, it is
not universal and depends on the setup; in order to obtain
this form, we assume that the DOS is energy independent in
Eq. (34). Moreover, Eq. (62b) depends not on τ but on VA and
thus is related to bulk states.

VI. PROBABILITY DISTRIBUTIONS

A. Narrow-band channel

For a narrow-band channel, B 
 f , with perfect trans-
mission T (ω) = θ (ωmax − ω)θ (ω − ωmin), the Rényi entropy
(51) becomes

ln SM (X ) = τ2NchB ln[ f +
R (h f )MeiXh f + f −

R (h f )M]. (63a)

Then, by performing the inverse Fourier transform of Eq. (15)
within the saddle-point approximation, we obtain

ln SM (QA) = min
iX∈R

[ln SM (X ) − iXQA] (63b)

= −Mτ2NchBD(p||q) + (1 − M )

× τ2NchBH2(PA/(2Nchh f B)). (63c)

Here, D(p‖q) =∑ j p j ln(p j/q j ) is the relative entropy
between the distribution p = (PA/(2Nchh f B), 1 − PA/

(2Nchh f B)) and q = ( f +
R (h f ), f −

R (h f )), which measures
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the difference between the two distributions p and q. After
the inverse Fourier transform (16a), we obtain the joint
probability distribution, which is the delta distribution:

P(I ′
A, QA) =e−τ2NchBD(p‖q)δ(I ′

A − τ2NchB(H2 + D(p‖q))).
(64)

Here, τ2NchB and τPA/(h f ) are interpreted, respectively, as
the number of modes and the number of signal quanta, i.e.,
electrons transmitted to the receiver side. When the ratio
between these numbers is compatible with the initial elec-
tron distribution probability f +

R (h f ) = PA/(2Nchh f B), the
relative entropy takes its minimum value D(p‖q) = 0. In
this case, the transmitted self-information is always I ′

A =
τ2NchBH2( f +

R (h f )).
The information-generating function (19) can be derived

from Eq. (63c): ln S1−iξ,QA = iξ τ2NchBH2(PA/(2Nchh f B)).
Then, the conditional self-information is delta distributed as

PQA (J ) = δ(J − τ2NchBH2(PA/(2Nchh f B))). (65)

It is independent of the electron distribution probability.
Therefore, the conditional self-information is always

J = τ2NchBH2(PA/(2Nchh f B)) ≈ ln

(
τ2NchB

τPA/(h f )

)
, (66)

which is the number of possible ways to locate transmitted
electrons in available scattering states in subsystem A. In
order to obtain the last expression in Eq. (66), we utilized
the approximate form of the binomial coefficient, ln(N

n ) ≈
NH2(n/N ), which is obtained by applying Stirling’s approxi-
mation ln n! ≈ n ln(n/e) for n � 1.

B. Wide-band channel

Let us consider the wide-band quantum channel
ωmax → ∞, ωmin = 0, and T (ω) = 1. The Rényi entropy
(51) is analytic around X = 0 and M = 1:

ln SM (X ) =τPββ2
B

(
1

MβB − iX
− M

βB

)
+ τ

Pμ

2

MβBiX

MβB − iX
,

(67)

where Pμ = Nchgel
0 (μB − μA)2 is the rate of Joule heat gen-

eration and Pβ = Nchg0/βB is the heat current emitted from
subsystem B, the right reservoir. The coefficients are the con-
ductance quantum gel

0 = 1/(2π ) and the thermal conductance
quantum [41] g0 = π/6 × (β−1

A + β−1
B )/2 = π/(12βB).

Averages are obtained by performing the derivative (18) as

〈〈I ′
A〉〉 = 2τβBPβ, 〈〈QA〉〉 = τ (Pβ + Pμ/2). (68)

When the chemical potential bias is absent, μA = μB, we can
eliminate βB and obtain

〈〈I ′
A〉〉
τ

=
√

π

3
Nch

〈〈QA〉〉
τ

= CWB(〈〈QA〉〉/τ ), (69)

which is the optimum capacity of the wide-band chan-
nel (1). The above derivation follows previous approaches
in Refs. [5,8]. The second cumulant, variances, and cross

correlations are

〈〈
I ′ 2
A

〉〉 = βB〈〈I ′
AQA〉〉 = 〈〈I ′

A〉〉, 〈〈
Q2

A

〉〉 = 2〈〈QA〉〉/βB. (70a)

Since the cross correlation is positive, the correlation coeffi-
cient is also positive:

r = 〈〈I ′
AQA〉〉√〈〈

I ′ 2
A

〉〉〈〈
Q2

A

〉〉 =
√

2Pβ

2Pβ + Pμ

> 0. (70b)

The correlation coefficient r ranges from −1 to 1 and mea-
sures the degree of linear correlation between the two fluctu-
ating variables I ′

A and QA. From this relation, we can see that
when the chemical potential bias is absent, there is a perfect
positive linear correlation r = 1, which means that there is
a one-to-one correspondence between the self-information
content and the heat quantity.

1. Conditional self-information

Let us calculate the probability distribution of the condi-
tional self-information. First, we perform the inverse Fourier
transform of Eq. (67) within the saddle-point approximation

ln SM (QA) = τCWB

√
1 + M2Pμ/(2Pβ )

− τβBM(Pβ + Pμ/2 + PA). (71a)

Then, the Rényi entropy associated with the probability distri-
bution of the conditional self-information (19) becomes

ln SM,QA = τCWB(
√

1 + (r−2 − 1)M2 − Mr−1). (71b)

Finally, the probability distribution is obtained by the inverse
Fourier transform within the saddle-point approximation

ln PQA (J ) = min
iξ∈R

(ln S1−iξ,QA − iξJ ) (71c)

= τCWB

√
1 − [1 − rJ/(τCWB)]2

1 − r2
− J. (71d)

Figure 4(a) shows the Rényi entropy (71b) for various
values of the correlation coefficient. We observe that at M =
0, i.e., iξ = 1, all curves intersect. Equation (71b) satisfies
the universal relation providing the optimum capacity [see
Eqs. (5) and (21)] as

ln S0,QA = τ CWB. (72)

Figure 4(b) shows the conditional probability distribution
function (71d). The vertical and horizontal axes are nor-
malized by τCWB. The curves are tilted semiellipses and
depend only on the correlation coefficient r. The maximum
(minimum) is

Jmax(min) = lim
M→∓∞

ln SM,QA

1 − M

= τ CWB(r−1 ±
√

r−2 − 1). (73)

Here, we utilized the Legendre duality [37] of Eq. (71c)
and the fact that a rare event associated with maximum
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FIG. 4. (a) Information-generating function for wide-band chan-
nel. Curves are for a nearly perfectly linearly correlated case (r =
0.9), for an intermediate case (r = 0.5), and for a nearly uncorrelated
case (r = 0.1). A vertical dotted line indicates the point M = 0,
where the universal relation (72) is satisfied. (b) Probability distri-
butions of the conditional self-information content. A dashed line
corresponds to the exponential distribution (74b).

(minimum) J is realized in the limit of M → ∓∞. From
Eq. (73), the width of the distribution is obtained as Jmax −
Jmin = 2

√
r−2 − 1. The width becomes narrower when the

two quantities are correlated, as we observe in Fig. 4(b). For
the perfect correlation r = 1, the delta distribution

PQA (J ) = δ(J − τCWB) (74a)

is realized. For the uncorrelated case r → 0, the exponential
distribution [dashed line in Fig. 4(b)]

PQA (J ) ≈ e−J (74b)

is approached.

FIG. 5. Contour plot of the logarithm of joint probability dis-
tribution function of self-information content and heat quantity for
wide-band channel. A thick dotted line indicates the boundary of
support [Eq. (77)]. The correlation coefficient is r = 0.9. The contour
interval is 〈〈I ′

A〉〉/4. Two dotted-dashed lines indicate Eqs. (79a)
and (79b).

2. Joint probability distribution

The joint probability distribution function is obtained from
Eq. (71a) by applying Eq. (16b) as

ln P(I ′
A, QA) = min

M∈R
[ln SM (QA) + MI ′

A] − I ′
A (75)

= [4τβBPβ (τβBPβ + δI ′
A) − 2Pβ/Pμ

×(βBδQA − δI ′
A)2]1/2 − I ′

A, (76)

where we introduced δI ′
A = I ′

A − 〈〈I ′
A〉〉 and δQA = QA −

〈〈QA〉〉. Figure 5 is a contour plot of the logarithm of
joint probability distribution for r = 0.9. The maximum
is ln P(〈〈I ′

A〉〉, 〈〈QA〉〉) = 0. A thick dotted line indicates the
boundary of support:

δQA

〈〈QA〉〉 = 2r2

[
δI ′

A

〈〈I ′
A〉〉 ±

√
2

(
1

r2
− 1

)
δI ′

A

〈〈I ′
A〉〉

]
. (77)

The self-information content is bounded from below and the
minimum is half of the average self-information

I ′
Amin = 〈〈I ′

A〉〉/2. (78)

As we observe in Eq. (77), the width of the distribution
vanishes in the perfectly linearly correlated case r = 1, i.e.,
μA = μB. The boundary of support shrinks to

δQA

〈〈QA〉〉 = 2
δI ′

A

〈〈I ′
A〉〉 , (79a)

i.e., the fluctuations satisfy δI ′
A = βBδQA. Here, we note that

the entropy and average heat (68) satisfy 〈〈I ′
A〉〉 = 2βB〈〈QA〉〉 >

βB〈〈QA〉〉, which implies the irreversible nature of the heat
transport process [10]. For r 
= 1, although there is no one-
to-one correspondence between the two quantities, we may
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consider that the two quantities are approximately related
as QA/〈〈QA〉〉 ∝ 2r2I ′

A/〈〈I ′
A〉〉. In the limit of uncorrelated case

r → 0, which corresponds to Pβ/Pμ → 0, Eq. (77) becomes

δQA

〈〈QA〉〉 → 0. (79b)

In Fig. 5, Eqs. (79a) and (79b) are indicated by dotted-dashed
lines.

C. Short summary of Secs. V and VI

In Secs. V and VI, we provided rather detailed derivations.
Here, we summarize relevant results in these two sections:

(i) The Rényi entropy of order zero is related to the
generating function of integer partitions:

S0(X = λ/
E ) ≈
∏
j∈S

(1 + eiλ j ), (55)

where S = { jmin, . . . , jmax} and j = ω/
E is assumed to
be integers. The energy resolution 
E = h/(2Nchτ ) is due
to the energy-time uncertainty relation. The expression is
independent of details of the mesoscopic quantum electric
conductor and only depends on the statistics of particles and
the bandwidth.
The optimum capacity for the narrow-band case is

CNB(PA) = 2NchBH2(PA/(2Nchh f B)), (59a)

where H2(x) = −x ln x − (1 − x) ln(1 − x) is the binary en-
tropy. Here, τ2NchB and τPA/(h f ) are the number of modes
and the number of signal quanta. Then, eτCNB is regarded as
the number of possible ways to distribute signal quanta into
available modes.
The optimum capacity for the wide-band case is

CWB(PA) = π

τ

√
QA/
E

3
. (61b)

The above-mentioned results derived systematically from the
Rényi entropy (51) based on the microscopic Hamiltonian
reproduce previous theories (see Refs. [9,10]).

(ii) The conditional self-information for the narrow-band
case is delta distributed as

PQA (J ) = δ(J − τ CNB(PA)). (65)

Thus, the conditional self-information does not fluctuate.
For the wide-band channel,

ln PQA (J ) = τCWB

√
1 − [1 − rJ/(τCWB)]2

1 − r2
− J, (71d)

which depends on the correlation coefficient

r = 〈〈I ′
AQA〉〉√〈〈

I ′ 2
A

〉〉〈〈
Q2

A

〉〉 =
√

〈〈I ′
A〉〉

2βB〈〈QA〉〉 . (70b)

It measures how much two variables I ′
A and QA are linearly

correlated and satisfies 0 � r � 1. For r = 1, the two vari-
ables are perfectly linearly correlated and there is one-to-
one correspondence between the two quantities. It is realized
when the chemical potential bias is absent, μA = μB, and the
averages of self-information and heat quantity satisfy 〈〈I ′

A〉〉 =

2βB〈〈QA〉〉 = τNchπ/(6βB). In this case, Eq. (71d) is reduced
to the delta distribution (74a), PQA (J ) = δ(J − τCWB). When
the chemical potential bias is much larger than the temperature
bias |μB − μA| � β−1

B , the two quantities become uncorre-
lated, r → 0. In this case, Eq. (71d) becomes the exponential
distribution PQA (J ) ≈ e−J [Eq. (74b)].

VII. RESONANT TUNNELING AND COULOMB
INTERACTION

A. Energy-dependent transmission probability

In this section, we consider the resonant tunneling con-
dition �L = �R and μA = εD = 0, where the transmission
probability is

T (ω) = 1

1 + 4(ω/�)2
. (80)

Figure 6 is a contour plot of the logarithm of joint probabil-
ity distribution of self-information content and heat quantity
obtained by numerically solving Eqs. (17) and (51). In this
figure, the voltage difference is small μB = 0.01� and the
temperature of the subsystem B is comparable to the
level broadening βB� = 1. A dotted-dashed line indicates
the boundary of support for the wide-band channel (77),
i.e., the result when T = 1, which implies a perfect linear cor-
relation I ′

A ≈ βBQA [Eq. (79a)]. We checked that the perfect
linear correlation is approached when the temperature is low
βB� 
 1. In Fig. 6, since the temperature is comparable to
the level broadening, the perfect linear correlation is spoiled.

A dotted line indicates the minimum self-information con-
tent for a given heat content. It is almost parallel to the

FIG. 6. Contour plot of the logarithm of joint probability distri-
bution function of self-information content and heat quantity close to
the resonant tunneling condition. The contour interval is 〈〈I ′

A〉〉WB/4.
A dotted line indicates Eq. (81c). A dotted-dashed line is the bound-
ary of support for the wide-band channel (77). Axes are normalized
by the corresponding values of the wide-band channel 〈〈I ′

A〉〉WB and
〈〈QA〉〉WB [Eqs. (68)]. The average values are 〈〈I ′

A〉〉 = 0.371〈〈I ′
A〉〉WB

and 〈〈QA〉〉 = 0.139〈〈QA〉〉WB. Parameters: βR� = 1, μR = 0.01�, and
ωmax = 103�.
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FIG. 7. Probability distribution of conditional self-information
close to the resonant tunneling condition. Curves are for various
values of heat quantity QA/〈〈QA〉〉 = 0.5, 1, and 5. A dotted-dashed
line indicates the result of the wide-band channel (71d). Dotted lines
indicate the minimum of conditional self-information, Eq. (82). The
parameters are the same as those in Fig. 6.

dotted-dashed line. The minimum can be estimated in the fol-
lowing. For M → ∞, the Rényi entropy (51) is approximately

ln SM (X ) ≈ MIm + τ
π

12

1

iX − βBM
(iX < βBM ), (81a)

Im = τ

π

∫ ∞

0
dω ln[1 − T (ω) f +

R (ω)]. (81b)

Then, after a few steps of calculations, the minimum is
obtained as

I ′
Amin = Im + τβBPA, (81c)

where we used the Legendre duality I ′
Amin =

limiξ→−∞ ln S1−iξ (QA)/(iξ ).
Figure 7 shows the probability distribution of condi-

tional self-information for various values of heat quantity.
A dotted-dashed line indicates the result of the wide-band

FIG. 8. Diagrams correspond to (a) the Hartree term and (b) the
bare interaction vertex. Thick solid lines correspond to the full
Green function matrix, Eq. (43). Dotted lines indicate the Coulomb
interaction.

channel (71d). The vertical and horizontal axes are normalized
by the optimum capacity of the wide-band channel. With an
increase in signal power, the peak position shifts leftward,
which means that the transmitted information decreases as
compared with that of the wide-band channel. At the same
time, the width increases, which means that the number of typ-
ical sequences decreases. Dotted lines indicate the minimum
of conditional self-information corresponding to the dotted
line in Fig. 6. The minimum in Fig. 6 and that in Fig. 7 are
related as we can deduce from Eq. (13);

Jmin = I ′
Amin + ln P(SA). (82)

B. Coulomb interaction

Here, we discuss the effect of the onsite Coulomb interac-
tion. For this purpose, we adopt the same model in Ref. [33].
Namely, we introduce the spin degree of freedom ârk → ârkσ

and d̂ → d̂σ (σ =↑,↓). The onsite Coulomb interaction is
included in the Hamiltonian of subsystem B:

ĤB =
∑
kσ

εRkâ†
Rkσ

âRkσ +
∑

σ

εDd̂†
σ d̂σ + Ud̂†

↑d̂↑d̂†
↓d̂↓. (83)

Because of the spin degree of freedom, the number of chan-
nels is doubled Nch = 2.

We perform the perturbative expansion of the Keldysh
partition function [33] (37a) in powers of the Coulomb in-
teraction U . The zeroth-order contribution is Eq. (51). The
Hartree term, the first-order contribution, is depicted in Fig. 8
(a):

iU
M∑

m=1

∑
s=±

s
∫ τ

0
dt G

{χ j}
D (tms, tms)G{χ j}

D (tms, tms) = iUMτ
∑
s=±

s
∫ τ

0
dt (G{χ j}

D (tms, tms))2

= iUMτ
∑
s=±

s

(∫
dω

2π

[
U†Gχ̄

D(ω)U
]

ms,ms

)2

= τ2UMnM,χ̄ ,qδnM,χ̄ . (84)

Since [U†Gχ̄
DU ]ms,ms = [Gχ̄

D]ms,ms, the result is independent of the phase φm. The classical and quantum components of electron
occupancy inside the dot are calculated by using the local Green function matrix (D8):

δnM,χ̄ =
∫

dω

2π

Gχ̄ ,m+,m+
D (ω) + Gχ̄ ,m−,m−

D (ω)

2i
=
∫ ωmax

−ωmax

dω

(
1 − 1

M

∂εD ln �M,−χ̄SA(ω)(ω)

∂εD ln ρ(ω)

)
ρ(ω)

∑
r

�r

�
[ f +

r (ω) − 1/2], (85)

nM,χ̄ ,q =
∫ ωmax

−ωmax

dω

2π

[
Gχ̄ ,m−,m−

D (ω) − Gχ̄ ,m+,m+
D (ω)

] = ∂εD ln SM (χ̄ )/(MNchτ ), (86)
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where we introduced the cutoff energy ωmax. Since δn0,χ̄ and n0,χ̄ ,q are finite, we confirm that the Hartree term vanishes when
we take the limit M → 0. Therefore, the optimum capacity is not affected by the weak Coulomb interaction.

As we mentioned, the first-order contribution is independent of the phase φm. The same is true for any closed diagram. Let us
analyze the interaction vertex on the s branch of the mth Keldysh contour [Fig. 8(b)]:

sU
[
U†Gχ̄

D(ω + ν)U
]

m2s2,ms

[
U†Gχ̄

D(ω)U
]

ms,m1s1

[
U†Gχ̄

D(ω′ − ν)U
]

m′
2s′

2,ms

[
U†Gχ̄

D(ω′)U
]

ms,m′
1s′

1

= sUGχ̄ ,m2s2,ms
D (ω + ν)Gχ̄ ,ms,m1s1

D (ω)Gχ̄ ,m′
2s′

2,ms
D (ω′ − ν)Gχ̄ ,ms,m′

1s′
1

D (ω′)ei[φm2 (ω+ν)+φm′
2

(ω′−ν)−φm1 (ω)−φm′
1

(ω′ )]
. (87)

It is independent of phase φm defined on the mth Keldysh con-
tour. The phase cancels because of the conservation of energy:
−φm(ω + ν) − φm(ω′ − ν) + φm(ω) + φm(ω′) = 0. Therefore,
any closed diagram is independent of the phase φm since at
each bare vertex, the phase cancels [40].

The above discussion implies that at the steady state,
operators ρ̂A and ĤA are effectively commutative even in the
presence of the intra-Coulomb interaction. This is because the
energy associated with the coupling between the two subsys-
tems V̂ is negligible compared to the net energy transferred to
subsystem A, which grows linearly in τ . Because ρ̂A and N̂A

are commutative [34], we expect

[ρ̂A(τ ), Q̂A] ≈ 0 (88)

in the steady state. In other words, in the steady state, the local
heat quantity is a classical quantity, as anticipated.

VIII. PREVIOUS APPROACH

We compare our approach and the previous quantum in-
formation theory approach [9,10]. The previous approach is
as follows. The communication channel is characterized by
an input (output) alphabet B (A) with letters labeled b (a).
The input letter b is encoded in a quantum state ρ̂b. The
probability of transmitting the input letter b is pB(b). The
conditional probability of output letter a given input letter b is
pA|B(a|b) = Trρ̂bF̂a, where F̂a is the effect satisfying

∑
a F̂a =

1̂. The capacity is the average mutual information H (A; B)
maximized over all possible input distributions pB(b):

C = 1

τ
max
{pB (b)}

H (A; B),

H (A; B) =
∑

b

pB(b)
∑

a

pA|B(a|b) ln
pA|B(a|b)

pA(a)
, (89a)

where pA(a) =∑b pA|B(a|b)pB(b) is the probability to ob-
tain the output a. A further maximization over measurement
schemes and over input states yields the optimum capacity
Copt = max{ρ̂b} max{F̂a} C. By exploiting Holevo’s theorem,
max{F̂a} H (A; B) � S(ρ̂ ) −∑b pB(b)S(ρ̂b), where ρ̂ =∑b
pB(b)ρ̂b, one can find a link between the mutual in-
formation and the von Neumann entropy: max{ρ̂b} max{F̂a}
max{pB (b)} H (A; B) � maxρ̂ S(ρ̂). The maximum turned out to
be the optimum capacity

τCopt = max
ρ̂

S(ρ̂ ) = ln rankρ̂. (89b)

The rank of the density matrix ρ̂ is estimated by counting
the number of possible particle-number eigenstates [9,10].
In the following, we assume only electrons above the Fermi

energy carry the information. For a linear dispersion channel,
allowed energies are 
E j, where j ∈ S = {1, 2, . . . } and

E = h/τ is the minimum level spacing. Then, the rank of
ρ̂ is the number of Fock states,

|n1, n2, . . . 〉 = |{n j}〉, (90a)

where n j = 0, 1 is the electron occupation number of the
mode j. The signal energy corresponds to the energy of the
Fock state |{nj}〉 as

Pτ =
∞∑
j=1


E j n j . (90b)

Therefore, when Pτ/
E =∑∞
j=1 j n j is a positive integer,

the number of Fock states with a given energy Pτ is the
number of integer partitions into distinct elements of the
set S , p(Pτ/
E |distinct parts in S ). The partition function
is, for example, p(6|distinct parts in S ) = 4 since 6 can be
partitioned into 4 ways 6 = 1 + 5 = 2 + 4 = 1 + 2 + 3. In
the end, we obtain

τCopt = ln p(Pτ/
E |distinct parts in S ), (90c)

which is the result obtained previously for fermions in
Ref. [10]. The above-mentioned derivation was first applied
to bosons in Ref. [9].

One may think that Eq. (89b) is equivalent to Eq. (23), if
one regards ρ̂ here as ρ̂A,QA . Precisely speaking, we consider
that Eqs. (23) and (89b) would be different. In Ref. [10], it
was pointed out that the operators F̂a and ρ̂b act on the Fock
subspace of left-moving states (in our setup, the information
flows from right to left; see Fig. 1). Thus, the right-hand
side of Eq. (89b) is the logarithm of the size of the Fock
subspace of left movers containing a given total energy. In
our approach, the operator ρ̂A,QA acts locally on the subsystem
A, the receiver side. Therefore, our approach accounts for
the spatial separation between the transmitter side and the
receiver side to a certain extent. On the other hand, we did not
calculate the mutual information. Indeed, we do not know how
to calculate it based on the Keldysh technique. This problem
is beyond the scope of this paper.

IX. SUMMARY

In summary, we have investigated fluctuations of self-
information and heat quantity. We bipartition the quantum
conductor and regard subsystem A (B) as the receiver (trans-
mitter) side and considered the reduced-density matrix of
subsystem A. By exploiting the multicontour Keldysh Green
function technique, we calculate the Rényi entropy of a posi-
tive integer order subjected to the constraint of the local heat
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quantity of subsystem A. By performing the analytic contin-
uation, we relate it to the information-generating function.
When the thermal noise of the receiver side is absent, there
exists the Jarzynski equalitylike universal relation (5), which
relates the Rényi entropy of order 0 at the steady state with the
optimum capacity of information transmission. For electrons,
the optimum capacity is related to the number of integer
partitions into distinct parts. The optimum capacity obtained
in this way is consistent with that of the quantum information
theory approach [9,10].

We applied our theory to the resonant-level model. The ex-
pressions of average self-information and average heat quan-
tity are consistent with those of the previous scattering theory
[12,14]. We analyzed the fluctuations of self-information and
conditional self-information for a narrow-band channel, for a
wide-band channel, and for a resonant tunneling condition.
We calculated the correction to the Rényi entropy induced by
the onsite Coulomb interaction within the Hartree approxima-
tion and checked that the weak Coulomb interaction does not
alter the optimum capacity.

We also pointed out that in the steady state, even in
the presence of the intra-Coulomb interaction, the reduced-
density matrix of subsystem A may be diagonal in the eigen-
states of the operator of “local heat quantity” acting locally on
subsystem A.
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APPENDIX A: PROJECTION OPERATOR

Here, we relate Eq. (11) with the standard form of the
projection operator [42]. Let |SA, j〉 be an orthonormal basis
such that

ŜA|SA, j〉 = SA|SA, j〉, j ∈ {1, . . . , NSA}. (A1)

Here, the index j is used to label possible degeneracies. We
assumed that the dimensionless heat quantity is discrete, SA =

n, where n is an integer. Then, we obtain

〈SA
′, j′|�̂SA |SA

′′, j′′〉 = 


2π

∫ π/


−π/


dχ e−iχ (SA−SA
′ )δSA

′,SA
′′ δ j′, j′′

= δSA,SA
′δSA

′,SA
′′δ j′, j′′ . (A2)

By combining it with the completeness relation

∑
SA

NSA∑
j=1

|SA, j〉〈SA, j| = 1̂, (A3)

the projection operator is rewritten as

�̂SA =
NSA∑
j=1

|SA, j〉〈SA, j|, (A4)

which is the standard form of the rank-NSA projector (see
Chap. 1.2.2 of Ref. [42]). From Eq. (A4), one can derive

�̂SA�̂SA
′ = δSA,SA

′ �̂SA . (A5)

APPENDIX B: DERIVATION OF EQ. (36)

Here, we write the initial density matrix as ρ̂eq = ρ̂Aeq ρ̂Beq.
Our setup satisfies the following conditions: (i) The total
particle number is conserved during the time evolution

[Ĥ , N̂A + N̂B] = 0. (B1)

(ii) The initial state is diagonal in the particle-number sector

[ρ̂eq, N̂A + N̂B] = 0, (B2)

and in the energy sector of the unperturbed Hamiltonian

[ρ̂eq, ĤA + ĤB] = 0. (B3)

Then, the commutation relation, the left-hand side of
Eq. (36), is

[ρ̂A(τ ), Q̂A] = [ρ̂A(τ ), ĤA] − μA[ρ̂A(τ ), N̂A]. (B4)

The second term on the right-hand side of Eq. (B4) is further
calculated as

[ρ̂A(τ ), N̂A] = TrB([e−iĤτ ρ̂eqeiĤτ , N̂A + N̂B])

− TrB([e−iĤτ ρ̂eqeiĤτ , N̂B]). (B5)

The first line of the right-hand side is zero because of
Eqs. (B1) and (B2). The second line of the right-hand side
is also zero from the cyclic property of the partial trace over
the subsystem B:

TrB([Ô, N̂B]) = 0. (B6)

Here, an operator Ô acts on the subsystems A and B. There-
fore, Eq. (B5) is zero, which is the consequence of the local-
particle-number superselection (see Appendix A of Ref. [34]).

By exploiting Eqs. (B3) and (B6), the first term on the
right-hand side of Eq. (B4) is transformed as

[ρ̂A(τ ), ĤA] = TrB([e−iĤτ ρ̂eqeiĤτ , Ĥ ])

− TrB([e−iĤτ ρ̂eqeiĤτ , ĤB + V̂ ]) (B7)

= TrB(e−iĤτ [ρ̂eq, V̂ ]eiĤτ )

− TrB([e−iĤτ ρ̂eqeiĤτ , V̂ ]) (B8)

= TrB(e−iĤτ [ρ̂eq, V̂ − eiĤτV̂ e−iĤτ ] eiĤτ ). (B9)

In general, Eq. (B9) is not necessarily zero. By summarizing
above, we obtain Eq. (36).

APPENDIX C: EXPLICIT EXPRESSIONS OF THE
MULTICONTOUR KELDYSH GREEN FUNCTION

A 2M × 2M Keldysh Green function matrix gA con-
sists of 2×2 submatrices in the normal Keldysh space.
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A (m, m′) component (m, m′ = 1, . . . , M) is

[
g{χ j}

A (t, t ′)
]

m,m′ =
⎡
⎣g

{χ j},m+,m′+
A g

{χ j},m+,m′−
A

g
{χ j},m−,m′+
A g

{χ j},m−,m′−
A

⎤
⎦

= − ie−iεA(t−t ′ )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei
∑m−1

j=m′ δχ j sA

[
f χ̄

A,m−m′ (εA) f χ̄

A,m−m′+1(εA)e−iχ̄sA/M

f χ̄

A,m−m′−1(εA)eiχ̄sA/M f χ̄

A,m−m′ (εA)

]
(m > m′)

[
f χ̄

A,0(εA)θ (t − t ′) − f χ̄
A,M (εA)θ (t ′ − t ) f χ̄

A,1(εA)e−iχ̄sA/M

− f χ̄

A,M−1(εA)eiχ̄sA/M f χ̄

A,0(εA)θ (t ′ − t ) − f χ̄
A,M (εA)θ (t − t ′)

]
(m = m′)

e−i
∑m′−1

j=m δχ j sA

[ − f χ̄

A,M+m−m′ (εA) − f χ̄

A,M+m−m′+1(εA)e−iχ̄sA/M

− f χ̄

A,M+m−m′−1(εA)eiχ̄sA/M − f χ̄

A,M+m−m′ (εA)

]
(m < m′),

(C1)

where we write sA = sA(εA). The modified Fermi distribution
function is given by

f χ̄
A,m(ω) = e−m(1−iχ̄/M )sA(ω)

1 + e−M(1−iχ̄/M )sA(ω)
. (C2)

Equation (C1) is Eq. (57) in Ref. [34] replaced χ j with χ j sA.
For detailed derivations, see Ref. [34].

The 2M × 2M Keldysh Green function matrix gχ̄
A in

Eq. (39b) is obtained after the Fourier transform in time. It
is a block skew-circulant

gχ̄
A (ω) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A0 −AM−1 −AM−2 · · · −A1

A1 A0 −AM−1 · · · −A2

A2 A1 A0 · · · −A3

...
...

...
. . .

...

AM−1 AM−2 AM−3 · · · A0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (C3)

A diagonal component is

A0 = P
1

ω − εA
τ3 − 2π i δ(ω − εA)

×
[

1/2 − f χ̄
A,M (ω) f χ̄

A,1(ω)e−i χ̄

M sA(ω)

− f χ̄

A,M−1(ω)ei χ̄

M sA(ω) 1/2 − f χ̄
A,M (ω)

]
, (C4)

where τ3 = diag(1,−1). The phase factor e−iχ̄sA(ω)/M is
equivalent to what appears in the full counting statistics
[43–46] of heat current [47–53]. The delta function is

δ(ω) = Im
1

π (ω − iη)
, (C5a)

where η is a positive infinitesimal. P stands for the Cauchy
principal value

P
1

ω
= Re

1

ω − iη
. (C5b)

An off-diagonal component is

Am = − 2π i δ(ω − εA)

×
[

f χ̄
A,m(ω) f χ̄

A,m+1(ω)e−i χ̄

M sA(ω)

f χ̄

A,m−1(ω)ei χ̄

M sA(ω) f χ̄
A,m(ω)

]
, (C6)

where m = 1, . . . , M − 1.

The block-skew circulant matrix is block diagonalized by
the following discrete Fourier transform [33,34]:

gλ�−χ̄sA(ω)/M
A =

M−1∑
m−m′=0

[
gχ̄

A

]
m,m′e

iπ 2�+1
M (m−m′ ), (C7)

where λ� = π [1 − (2� + 1)/M] and the 2 × 2 Green function
matrix in the left-hand side is

gλ
A(ω) = P

1

ω − εA
τ3 − 2π iδ(ω − εA)

×
[

1/2 − f +
A,λ(ω) f +

A,λ(ω)eiλ

− f −
A,λ(ω)e−iλ 1/2 − f +

A,λ(ω)

]
. (C8)

Equation (C8) is the modified Keldysh Green function
appeared in the theory of the full counting statistics
[40,45,46,54–62]. Precisely, the standard scheme of the full
counting statistics is based on the two-time measurement
protocol, which means that the measurement is done twice:
once in the beginning and once in the end [40,46]. In the
present case, the measurement is effectively done once in the
end [35]. Because of this difference, the electron and hole
distribution functions are modified:

f +
A,λ(ω) = f +

A (ω)

f +
A (ω) + f −

A (ω)eiλ
, f −

A,λ(ω) = 1 − f +
A,λ(ω).

(C9)

The Fourier transform of the 2M × 2M Keldysh Green
function matrix for subsystem B [see Eq. (40)] is

gB(ω) =1 ⊗ gB(ω), (C10)

gB(ω) = P
1

ω − εB
τ3 − 2π i δ(ω − εB)

×
[

1/2 − f +
B (ω) f +

B (ω)

− f −
B (ω) 1/2 − f +

B (ω)

]
, (C11)

where 1 is the M × M identity matrix.
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APPENDIX D: DOT GREEN FUNCTION MATRIX

The self-energy of the Dyson equation (47) is
∑

k (J2
L gλ

Lk + J2
RgRk ) = �λ

L + �λ=0
R , where

�λ
r (ω) = −i

�r

2

[
1 − 2 f +

r,λ(ω) 2 f +
r,λ(ω)eiλ

−2 f −
r,λ(ω)e−iλ 1 − 2 f +

r,λ(ω)

]
. (D1)

By paying attention to Eqs. (C5a) and (C5b), the matrix inverse of the bare dot Green function matrix, i.e., Eq. (C11) replaced B
with D, is calculated as

gD(ω)−1 =(ω − εD)τ3 + 2iητ3

[
1/2 − f +

D (ω) f +
D (ω)

− f −
D (ω) 1/2 − f +

D (ω)

]
τ3. (D2)

The second term of the right-hand side depends on the parameters βD and μD characterizing the initial dot state, through the
electron distribution function f +

D (ω) = 1/(e−βD (ω−μD ) + 1). It is noticed that these parameters disappear in the steady state, as
we anticipated, because the second term of Eq. (D2) is proportional to the positive infinitesimal η and thus is negligible as
compared with the self-energy in the Dyson Eq. (47). Then, the solution is independent of these parameters as

Gλ
D(ω) = GD(ω)

�1,λ(ω)
+ ρ(ω)

�L

�

2π i(1 − eiλ)

f̃ +
L (ω) + f̃ −

L (ω)eiλ

[
f +
L (ω) f −

L (ω) f +
L (ω)2

f −
L (ω)2 f +

L (ω) f −
L (ω)

]
, (D3)

where the DOS of dot is ρ(ω) = T (ω)�/(2π�L�R) and

GD(ω) = 2π

�
ρ(ω)

[
ω − εD − i

∑
r �r[1/2 − f +

r (ω)] −i
∑

r �r f +
r (ω)

i
∑

r �r f −
r (ω) εD − ω − i

∑
r �r[1/2 − f +

r (ω)]

]
. (D4)

The following relations can be derived by exploiting Eq. (E1):

M−1∑
�=0

1

�1,λ�−χsA(ω)/M (ω)
= M − ∂εD ln �M,−χsA(ω)/M (ω)

∂εD ln ρ(ω)
, (D5)

M−1∑
�=0

1 − eiλ�−iχsA(ω)/M

f̃ +
L (ω) + f̃ −

L (ω)eiλ�−iχsA(ω)/M
= ∂εD ln �M,−χsA(ω)(ω)

∂εD ln ρ(ω)T (ω)[ f +
R (ω) − f +

L (ω)]
. (D6)

Then, the local Green function in the replicated Keldysh space is

[
Gχ

D(ω)
]

m,m = 1

M

M−1∑
�=0

Gλ�−χsA(ω)/M
D (ω) = GD(ω) (D7)

− 1

M

∂εD ln �M,−χsA(ω)(ω)

∂εD ln ρ(ω)

(
GD(ω) − 2π i(�L/�)ρ(ω)

T (ω)[ f +
R (ω) − f +

L (ω)]

[
f +
L (ω) f −

L (ω) f +
L (ω)2

f −
L (ω)2 f +

L (ω) f −
L (ω)

])
. (D8)

The result does not change when we account for the spin degree of freedom.

APPENDIX E: SUMMATION

The summation over � in Eq. (46) can be done by ex-
ploiting the following relation [63]. Let g be a function. The
summation is rewritten as the contour integral as

M−1∑
�=0

g(eiλ� ) =
∫

Codd

du

2π i

M−1∑
�=0

g(u)

u − eiλ�

=
∫

Codd

du

2π i

−M(−u)M−1

1 + (−u)M
g(u), (E1)

where λ� = π [1 − (2� + 1)/M]. The contour Codd encloses M
poles eiλ� (� = 0, . . . , M − 1) (see Fig. 9).

FIG. 9. Contour Codd enclosing poles eiλ� (� = 0, . . . , M − 1)
(M = 8 in this panel). The dotted line indicates a unit circle.
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