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Binding energies of excitonic complexes in type-II quantum rings
from diffusion quantum Monte Carlo calculations
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Excitonic complexes in type-II quantum-ring heterostructures may be considered as artificial atoms due to
the confinement of only one charge-carrier type in an artificial nucleus. Binding energies of excitons, trions,
and biexcitons in these nanostructures are then effectively ionization energies of these artificial atoms. The
binding energies reported here are calculated within the effective-mass approximation using the diffusion
quantum Monte Carlo method and realistic geometries for gallium antimonide rings in gallium arsenide. The
electrons form a halo outside the ring, with very little charge density inside the central cavity of the ring.
The de-excitonization and binding energies of the complexes are relatively independent of the precise shape of
the ring.
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I. INTRODUCTION

Quantum-dot and quantum-ring heterostructures have long
been hailed as “artificial atoms” [1–4] due to their ability to
confine charge carriers in all three spatial dimensions. Mate-
rial combinations exhibiting type-I band alignment produce
nanostructures in which both electrons and holes are confined
to the same spatial region, and such nanostructures have been
studied extensively over the last two decades [5–7]. In type-II
nanostructures, on the other hand, only holes but not electrons
(or vice versa) are confined, presenting a rich variety of new
physics [8–10]. For example, GaSb quantum dots or quantum
rings in GaAs provide very deep confining potentials for holes
[11], while strain in the GaSb raises the conduction-band
minimum, expelling the electrons [12]. Excitonic complexes
in type-II nanostructures are in fact very much more like arti-
ficial atoms than is the case for type-I nanostructures, because
the electrons are bound to the holes in the “artificial nuclei”
purely by the Coulomb interaction, rather than being confined
themselves. Type-II quantum rings are an intriguingly distinct
type of artificial atom with no natural analog due to the radical
difference between the ring-shaped “artificial nucleus” and the
pointlike nucleus of a real atom.

Excitons in type-II quantum dots have been exten-
sively studied both experimentally [13–16] and theoretically
[11,17,18]; however, while there has been some experimental
work on carrier complexes in type-II quantum-ring nanos-
tructures [19–22], there has been little theoretical work to
date. The spatial separation of charge carriers allows for a
variety of interesting optoelectronic properties [19,23], in-
cluding extended recombination times, making type-II quan-
tum rings ideal candidates for applications such as memory
devices [24] and solar cells [16]. Binding energies of excitonic
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complexes reported here are effectively ionization energies
of these artificial atoms. GaSb quantum rings in GaAs may
be produced by molecular beam epitaxy [20,22,23,25] and
can form with a variety of different cross sections ranging
from triangular to semicircular [20] and even trapezoidal [23].
These quantum rings exhibit type-II behavior, with the holes
strongly confined to the rings. Scanning tunneling microscopy
(STM) has been used to investigate the shape and size of the
GaSb rings, and their optical properties have been studied in
photoluminescence experiments [19–22].

In this work we solve an effective-mass model of excitons
(X), positive and negative trions (X+ and X−), and biexcitons
(XX) in type-II quantum-ring heterostructures, focusing on
GaSb rings in GaAs. The holes are confined to the ring, which
is modeled as an infinite potential well, while the electrons are
excluded from the ring but bound to the holes by an isotropi-
cally screened Coulomb interaction. The kinetic energy of the
tightly confined holes is the dominant contribution to the total
energy of each complex; however, the electron-hole attraction
is non-negligible, as is the hole-hole repulsion. The ring was
chosen to have a rectangular cross section for computational
convenience. The ring is centered on the origin, orientated so
that the axis of rotation is the z axis and the midpoint in the
z direction is the x-y plane. The three parameters defining
the ring geometry are the half height of the ring Rz, the
inner radius of the ring ri, and the outer radius ro. In our
model the electron and hole densities do not overlap, so we
cannot estimate recombination rates; however, our model is
reasonable for calculating binding energies.

Energies are given in units of the exciton Rydberg
R∗

y = μe4/[2(4πε)2h̄2] and lengths in units of the exciton

Bohr radius a∗
0 = 4πε h̄2/(μe2), where ε is the permittivity of

the medium, h̄ is the Dirac constant, and e is the magnitude
of the electron charge. The electron-hole reduced mass is
μ = m∗

e m∗
h/(m∗

e + m∗
h ), where m∗

e and m∗
h are the effective

masses of an electron and a hole, respectively. Within
the effective-mass approximation the Hamiltonian for a
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in excitonic units, where ri j = |ri − r j | and Vi is the
confining potential, which is infinite inside the ring and
zero outside for electrons, and vice versa for holes. This
is an inhomogeneous four-body problem, but the diffusion
quantum Monte Carlo (DMC) method [26,27] can be used
to calculate the exact ground-state energy for each complex,
and hence the de-excitonization and binding energies. The
trion and biexciton de-excitonization energies EX±

D and
EXX

D are EX−
D = EX − EX−

, EX+
D = EX + Eh+ − EX+

, and
EXX

D = 2EX − EXX, where Ei is the ground-state total energy
for complex i. These are the energies at which trion and
biexciton peaks are expected to appear relative to the exciton
peak in the photoluminescence spectrum of a quantum ring
[21]. The sign is such that for a free trion or biexciton
ED > 0. The binding energies—the energy difference
between a complex and its most energetically favorable
daughter products, bearing in mind that the holes are confined
to the ring—are EX

b = EX − Eh+
, EX−

b = EX− − EX,
EX+

b = EX+ − E2h+
, and EXX

b = EXX − EX+
, where E2h+

is the energy of two holes confined to the same ring. The
binding energy determines the temperature at which a
complex becomes unstable against dissociation into smaller
complexes.

II. COMPUTATIONAL METHODOLOGY

The CASINO code [28] was used to perform DMC calcula-
tions of the ground-state energies of excitons, trions, and biex-
citons in quantum-ring heterostructures. DMC is a stochastic
projection method that finds the ground-state component of a
trial wave function. In this work the trial wave function was
optimized using the variational Monte Carlo (VMC) method,
in which many-body expectation values are evaluated using
Monte Carlo integration. The trial wave function �T was of
Slater-Jastrow form; e.g., for the biexciton,

�T(R) = exp[J (R)]φe
(
re1

)
φe

(
re2

)
φh

(
rh1

)
φh

(
rh2

)
, (2)

where R = (re1 , re2 , rh1 , rh2 ). The hole orbital φh was taken to
be the exact ground-state solution to the Schrödinger equation
for a single hole confined to the ring:

φh(r) =
[−J0(βr)Y0(βri )

J0(βri )
+ Y0(βr)

]
cos

(
πz

2Rz

)
, (3)

where J0 and Y0 are Bessel functions of the first and second
kind, respectively. The constant β is determined by imposing
the boundary condition φh(ro) = 0 numerically for each ring
size using the Newton-Raphson method; the other boundary
conditions are already satisfied by Eq. (3). The electronic
behavior is dominated by Coulomb attraction to the posi-
tively charged ring together with hard-wall repulsion from the

boundary of the ring. At short range the electron orbital φe

linearly decreases to zero on the ring boundary, while at long
range the electron orbital decays exponentially to keep the
electrons localized to the ring; i.e., the behavior is hydrogenic
at long range. The electron orbital φe enforces the correct
long- and short-range behavior, with the midrange behavior
determined by the Jastrow factor and variational freedom in
the electron orbital. The electron orbital was formed piecewise
in eight regions about the ring, with the functions in each
region being matched at the boundaries to ensure the value
and gradient were smooth everywhere and the orbital was zero
inside the ring. See the Supplemental Material for the full
form of the orbital [29]. The Jastrow exponent J (R) included a
pairwise sum of terms of the form ui j (r) = ±μi j r/(1 + ci jr)
for each pair of particles i and j separated by distance r with
reduced mass μi j . The + sign was used for particles with the
same charge and − for particles with opposite charge. ci j is
a variational parameter, which was different for each particle-
pair type. This form ensured the Kato cusp conditions were
satisfied [30]. Other one-, two-, and three-body polynomial
terms were also included in the Jastrow exponent; these were
smoothly truncated at finite range [31,32]. VMC energy min-
imization was used to optimize the trial wave functions [33].
The fixed-node DMC algorithm is exact for the ground-state
energy of an exciton, trion, or biexciton, because of the distin-
guishability of the particles, which leads to a nodeless wave
function. Pairs of DMC calculations were performed with
time steps in a 1 : 4 ratio and target configuration populations
in a 4 : 1 ratio, and the results were extrapolated linearly to
zero time step and infinite population. Charge densities were
obtained by binning the radial and axial coordinates of each
of the particles sampled during VMC and DMC calculations,
cylindrically averaging, and then calculating the extrapolated
estimate. The errors in the VMC and DMC estimates of the
charge density (ρVMC and ρDMC) are linear in the error in
the trial wave function; however, the error in the extrapolated
estimate 2ρDMC − ρVMC is quadratic in the error in the trial
wave function [27].

III. RESULTS AND DISCUSSION

All energies and charge densities are reported for a ring
composed of GaSb surrounded by GaAs. The electron and
hole masses are taken to be m∗

e = 0.063 me and m∗
h = 0.4 me,

respectively, where me is the bare electron mass. The former is
the effective mass of an electron in bulk GaAs and the latter is
the mass of a heavy hole in bulk GaSb [34]. The permittivity
is taken to be ε = 12.9 ε0, where ε0 is the permittivity of
free space. This is the permittivity of bulk GaAs [34]. Data
from Ref. [20] were used to obtain experimentally relevant
values for the ring size; these values were Rz = 2.5 nm =
0.199 a∗

0, ri = 6 nm = 0.479 a∗
0, and ro = 10 nm = 0.799 a∗

0.
This geometry was used as the starting point for our calcu-
lations; the aspect ratio 2Rz/(ro − ri ) of the ring was then
varied subject to the constraints that the volume of the ring
2πRz(r2

o − r2
i ) was constant and the center of the ring in the

radial direction (ri + ro)/2 was fixed. A ring with aspect ratio
much less than 1 is akin to a thin disc with a hole in the center,
while a ring with aspect ratio much greater than 1 resembles
a pipe.

115306-2



BINDING ENERGIES OF EXCITONIC COMPLEXES IN … PHYSICAL REVIEW B 99, 115306 (2019)

0.5 1 1.5 2 2.5 3
Aspect Ratio

20

25

30

35

40

G
ro

un
d-

st
at

e 
E

ne
rg

y 
pe

r 
H

ol
e 

(R
y*

)

89

111

134

156

178

G
ro

un
d-

st
at

e 
E

ne
rg

y 
pe

r 
H

ol
e 

(m
eV

)

X
--

X
+

XX
X
2h

+

h
+

FIG. 1. Ground-state total energies per hole of a single hole (h+),
two holes (2h+), an exciton (X), a negative trion (X−), a positive
trion (X+), and a biexciton (XX) in a quantum ring plotted against
the aspect ratio 2Rz/(ro − ri ) of the ring’s cross section. The mean
radius and ring volume are appropriate for the GaSb/GaAs quantum
rings reported in Ref. [20]. Error bars are smaller than the size of the
symbols. The exciton Rydberg R∗

y is 4.45 meV for the experimentally
relevant geometry.

The analytically evaluated variation in the hole energy
against aspect ratio is shown in Fig. 1. The minimum
energy occurs when the cross section is square; away from
the minimum, the energy goes roughly as 1/L2, where L =
min{2Rz, ro − ri}. Also shown in Fig. 1 are DMC ground-state
total energies per hole for 2h+, X, X−, X+, and XX, all of
which are bound. These confirm that the ground-state energies
of the single-hole complexes (X and X−) are very close to
the energy of a single hole, while the ground-state energies
of the two-hole complexes (X+ and XX) are comparable with
the energy of two confined holes. The ground-state energies
for single- and two-hole complexes vary slightly differently
as a function of aspect ratio due to the interaction between the
holes. The capacitive charging energy ECC = E2h+ − 2Eh+

for the experimentally relevant ring geometry [20] is
ECC = 8.8546(8) meV; this compares to an experimentally
measured value [35] of ECC = 24(2) meV. STM images of
quantum rings [20,21] suggest that the GaSb/GaAs interface
is not clean in practice. This disorder could lead to trapping
of holes, strongly affecting capacitive charging energies while
having relatively little effect on binding energies.

The de-excitonization energies for the trions and biexciton
in the geometry modeling the quantum rings described in
Ref. [20] can be found in Table I. The de-excitonization
energy is positive for X−, but negative for X+ and XX.

TABLE I. De-excitonization ED and binding Eb energies for
excitonic complexes in the quantum-ring geometry modeling the
samples described in Ref. [20].

Complex ED/R∗
y Eb/R∗

y ED (meV) Eb (meV)

X 0 − 0.5004(6) 0 − 2.226(3)
X− +0.0446(4) − 0.0446(4) +0.199(2) − 0.199(2)
X+ −1.111(2) − 1.379(2) −4.944(7) − 6.137(7)
XX −0.911(2) − 0.701(2) −4.052(8) − 3.11(1)

0 1 2 3 4 5
h
_ ω  (meV)

X
+

XX
X

X
--

FIG. 2. Expected peak positions for the excitonic complexes in
a photoluminescence spectrum relative to the exciton peak, for a
model of the quantum rings reported in Ref. [20]. The peak heights
represent the relative stability of the complexes.

The negative de-excitonization energy is a result of the
large energy penalty when two holes are confined to the
same ring; e.g., two excitons on two separate quantum rings
would be the energetically preferred four-particle state rather
than a biexciton on a single ring. The expected positions
of these peaks in a photoluminescence spectrum are shown
in Fig. 2. The X− peak is very close to the X peak, while
the peaks for X+ and XX are separated from the X peak by
a few meV. The heights of the peaks indicate the relative
stability of the complexes, using binding energy data from
Table I. Experimental work has not yet progressed to the
point where excitonic complex peak positions have been
identified. The only published work showing sharp lines in
the photoluminescence spectra of GaSb/GaAs quantum rings
is Ref. [21]; however the spectra in this work would likely
contain peaks from many, highly positively charged rings,
making a direct comparison with theoretical values difficult.
The de-excitonization energy is plotted against the aspect
ratio of the cross section of the ring for X−, X+, and XX in
Fig. 3(a). For each complex it can be seen that there is some
slight change in the de-excitonization energy as a function
of aspect ratio. The de-excitonization energies are largely
independent of the aspect ratio, and hence exact shape of the
ring, somewhat justifying the use of a ring with a rectangular
cross section in our model. Furthermore, the energetic effects
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FIG. 3. (a) De-excitonization energies and (b) binding energies
against the aspect ratio 2Rz/(ro − ri ) of a quantum ring’s cross sec-
tion for different charge-carrier complexes. The mean radius and ring
volume are appropriate for the GaSb/GaAs quantum rings reported
in Ref. [20]. Error bars are smaller than the size of the symbols. The
dashed lines shows the experimentally relevant aspect ratio [20].
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FIG. 4. Electronic charge density ρ for (a) an exciton, (b) a
negative trion, (c) a positive trion, and (d) a biexciton in the exper-
imentally relevant quantum-ring geometry [20]. The shaded regions
represent the ring and ρm is the maximum density across all four
plots. The free exciton Bohr radius is a∗

0 = 12.5 nm.

of the slight interpenetration of the electron and hole orbitals
are likely to be well described by a slight renormalization
of the cross section of the ring; however, the effects of such
small changes in the cross section appear to be small.

The binding energies for each complex are shown in Table I
for the experimentally relevant geometry [20]. The X binding
energy is about half the value for a free X due to the exclusion
of the electron from the ring. As expected, X− is the most
weakly bound (against dissociation into a free electron and a
neutral exciton), while X+ is the most stable (against removal
of an electron from a ring of charge of +2e). From these
binding energies the temperatures up to which the complexes
are stable are 26, 2.3, 71, and 36 K for X, X−, X+, and XX,
respectively. As with the de-excitonization energies, the bind-
ing energy depends weakly on the aspect ratio of the ring’s
cross section, but again these differences are much smaller
than the differences in binding energy between complexes; see
Fig. 3(b). Therefore, the binding energy appears to be largely
independent of the exact shape of the cross section of the ring
for a given ring volume and mean radius.

Plots of the electronic charge density for each complex in
the experimentally relevant geometry are shown in Fig. 4. The
electrons form a diffuse halo around the ring, with negligible
charge density in the ring’s central cavity. The kinetic-energy
cost of localizing in the ring’s cavity significantly exceeds
the gain in electrostatic potential energy. Correlation effects
further reduce the probability of finding multiple electrons
inside the ring’s cavity. XX and X+ are the most localized
complexes, as reflected in their relatively large binding ener-
gies shown in Table I. These two-hole complexes have slightly
higher electronic charge densities in the regions directly above
and below the center of the ring compared to the regions to the
left and right of the ring. STM images of the electronic density
of states in Ref. [20] suggest the electrons are localized to the
ring’s cavity, which does not agree with the results presented
here. However, in the STM experiments the sample is cleaved
in the x-z plane. This is a drastic modification to the system,
which is not described by our model. It is plausible that the
reduced screening and hence smaller free exciton Bohr radius

TABLE II. Sensitivity of the biexciton binding energy to the
electron and hole effective masses me and mh, the relative permittivity
ε, the ring volume V , and the mean radius of the ring rm.

∂EXX
b /∂me ∂EXX

b /∂mh ∂EXX
b /∂ε ∂EXX

b /∂V ∂EXX
b /∂rm

(meV/me) (meV/me) (meV) (meV/nm3) (meV/nm)

−7.4(3) −0.20(4) 0.39(1) 0.0004(2) 0.07(2)

in the cleaved system allows electrons to localize within,
rather than above or below, the quantum ring.

The sensitivity of the XX binding energy to various param-
eters is presented in Table II. The XX binding energy depends
most strongly on the electron effective mass, and is relatively
insensitive to the hole effective mass, relative permittivity,
ring volume, and mean ring radius. Our conclusions are robust
against reasonable uncertainties in model parameters.

Kehili et al. [36] have recently investigated excitons in
GaSb rings in GaAs quantum wells using the effective-mass
approximation, modeling the ring with a finite potential, and
including strain effects due to lattice-constant mismatch. In
their work the interaction between charge carriers is described
by a Hartree mean-field approximation, in contrast to the
complete treatment of correlation effects used here. Neverthe-
less, their electronic charge density is qualitatively consistent
with our results. Their X binding is slightly larger than our
value reported in Table II, however, partly due to their use
of slightly different effective masses and mean ring radii. A
DMC calculation of the X binding energy using the same
ring geometry and effective masses as Kehili et al. gives
EX

b = 2.695(2) meV, which is comparable with the binding
energy of about 2.6 meV that they report for a GaAs well of
width of 40 nm (the largest well width they consider). The
X binding energies reported by Kehili et al. do not appear
to have converged with respect to well width at this point,
however, and it looks as if they will be significantly smaller
than the DMC exciton binding energy in the limit of large well
width. This is consistent with the fact that, by the variational
principle, Hartree theory underestimates the magnitude of the
X binding energy.

IV. CONCLUSION

In conclusion, total energies of excitonic complexes in
type-II quantum-ring heterostructures are dominated by the
confinement energy of the holes in each complex. The de-
excitonization energy is positive for X− as would be the case
for a free trion; however, for X+ and XX this energy is neg-
ative due to the energy penalty associated with confining two
holes in the same ring. X− is the least stable of the complexes
studied; it is predicted to be stable only at temperatures below
2.3 K, while the most stable complex, X+, endures up to
71 K. De-excitonization and binding energies were shown to
be largely independent of the aspect ratio at fixed ring volume
and mean radius, suggesting these energies may also be fairly
independent of the precise shape of the cross section of the
ring. The electrons form a halo around the outside of the ring,
with a low density in the central cavity. This reflects the fact
that the ring size is comparable with the free exciton Bohr
radius. Furthermore, X+ and XX are the most tightly bound
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complexes, with a preference for the electrons to position
themselves above and below the ring. For X−, the electronic
charge density is much more diffuse, consistent with its very
small binding energy.

All relevant data can be accessed through Lancaster
University [37].
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