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The formation of band offset (BO) at isovalent semiconductor heterojunctions has been branded “bulklike”
because of an insensitivity of the BO to the interface orientation and atomic structure and a transitivity in BOs.
Even though tunability and nontransitivity of BO are frequently found for heterovalent interfaces, empirical
theories with built-in bulklike characteristics have thus far dominated the explanation of experimental BOs.
Presently, the distribution of charge density and the formation of BO at a large number of interfaces between
lattice-matched perovskite oxides are studied in detail using density functional theory. Ionic screening is found to
dominate the formation of the BO, as a sharp dependence of the (apparently tunable) BO on atomic structure for
unrelaxed interfaces is essentially washed out upon lattice relaxation. Numerical experimentation with deliberate
embedding of dipolar layers in perovskite oxides and their interfaces corroborates the effectiveness of ionic
screening. The relaxed, converged (bulklike) BOs are found to be in good agreement with the prediction of
the neutral polyhedra theory (NPT). The success of the NPT, presently for ionic interfaces and previously for
covalent zinc-blende interfaces, unmasks a possible connection between the partition into neutral symmetric cells
and the energy-minimization requirement on the interface charge distribution. The independence of the BO on
interface specifics, i.e., bulklike behavior, is shown to stem directly from such a property of charge distribution
with minimized electrostatic energy. As energy minimization governs the formation of charge distribution in
general, NPT is expected to describe the band offset of a wide variety of material interfaces.
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I. INTRODUCTION

The band offset (BO) for isovalent semiconductor het-
erojunctions is often found to be independent of interface
orientation, atomic structure, and abruptness [1], and follows
a transitivity rule [2–4]. This has led to the suggestion that
the BO depends only on bulk properties of the constituents
[1], i.e., the formation mechanism is “bulklike.” Many models
with a built-in bulklike mechanism were proposed to explain
experimentally observed BOs [1,5]. The most common of
these suggested the alignment of a specific feature in the band
structure of the semiconductor, such as the charge neutrality
level [6–8] or impurity/defect levels [9,10]. Quite the opposite
behavior, namely, significant tunability and nontransitivity
of the BO, has been found experimentally for heterovalent
interfaces [11–14]. Because the magnitude of the BO is a
direct result of the equilibrium charge distribution at the
heterojunction interface, and the formation of the latter is
governed by energy minimization, the observed bulklike be-
havior for some interfaces and tunability for others must both
have explanations within the concept of energy minimization.
In the present work, charge distribution at heterojunctions
between lattice-matched perovskite oxides is investigated in
detail to shed light on these issues.
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Perovskite oxides have attracted much attention because
of a richness in their dielectric, ferroelectric [15,16], piezo-
electric [17], ferromagnetic, resistance switching [18], and
other properties that are suitable for applications. In particular,
the discovery of a two-dimensional electron gas (2DEG)
at polar heterojunction interfaces between perovskite oxides
led to much basic and application-oriented scientific interest
[19–22]. The BO between an oxide and a semiconductor
or between two oxides is an important interface property
[1,23] that has been investigated both experimentally and
theoretically [4,24–26]. Experimental BO results have been
closely reproduced from first principles using density func-
tional theory (DFT) based on hybrid-functional calculations,
with the exact-exchange fraction optimized individually for
bulk perovskite oxides [27]. Such calculations have emerged
as a convenient and reliable method for both oxide and semi-
conductor interfaces [21,27–31].

While great strides have been made in the computation
of the experimentally observed BOs at oxide interfaces, the
physical picture of the mechanisms of BO formation has
remained largely at the stage of empirical models [1]. As
discussed previously [32,33], the valence-band offset (VBO)
at a heterojunction between two semiconductors or insulators
A and B, �A−B

VBO, can be decomposed into two bulk terms and
one interface term:

�A−B
VBO = μA − μB + e�int. (1)
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In the above equation μ, the internal chemical potential, is
the difference between the valence-band maximum (VBM)
and the average electrostatic potential energy on either side
of the junction. The interface dipolar term, e�int, is the dif-
ference between the averaged electrostatic potential energies
across the interface. Being a purely intensive property, μ is
obtainable from a bulk calculation with periodic boundary
conditions. The only term in Eq. (1) that is not known a priori
for any heterojunction is e�int, which is purely electrostatic
in nature, as it results entirely from the charge distribution in
the interface region. Therefore, a comprehensive explanation
of the magnitude of BO can be obtained if one is able to
predict the equilibrium charge distribution at heterojunction
interfaces. Recently, we have shown that this can indeed
be achieved for interfaces between covalent semiconductors
with zinc-blende/diamond structures [34,35]. Specifically, we
showed that thanks to the nearsightedness of many-electrons
systems [36], the equilibrium charge density at those inter-
faces is well predicted by model solids constructed of neutral
polyhedra obtained from a knowledge of the charge distri-
bution in bulk semiconductors [34]. The success of neutral
polyhedra theory (NPT) in reproducing first-principles com-
putational data appears to be rooted in the ease with which
the charge distribution associated with the strongly directional
bonding in zinc-blende/diamond covalent semiconductors can
be precisely predicted. NPT would then seem applicable
only to such covalent systems. In the present work, charge
distribution at perovskite oxide interfaces is analyzed in detail
in search of a density-based approach, perhaps different from
NPT, that is suitable for modeling the BO at ionically bonded
interfaces.

II. COMPUTATIONAL APPROACH

All perovskite oxides studied in this work were calculated
in the cubic structure, with some oxides that ordinarily oc-
cupy the orthorhombic crystal structure studied with lattice
parameters optimized in cubic lattice. The perovskite oxides
studied belong to three groups—“II-IV-Ox”, “I-V-Ox”, and
“III-III-Ox”—based on the formal charge states of the cations
occupying the corner sites and the body-center sites, with the
oxygen atoms occupying the face-center positions. All calcu-
lations were spin unpolarized, such that magnetic properties,
exhibited by some oxides, were suppressed. To simulate het-
erojunctions between oxides, supercells containing back-to-
back heterointerfaces in the (100), (110), or (111) orientations
were investigated for BO determination, while making sure
that the supercell is large enough to avoid spurious effects
of the periodicity on the interface behavior. Lattice-matching
considerations have led to the study of both isovalent inter-
faces (e.g., between CaHfO3 and SrSnO3, both of the II-IV-Ox
group) and heterovalent interfaces (e.g., between one II-IV-Ox
oxide and an oxide from either the I-V-Ox, e.g., KTaO3, or the
III-III-Ox, e.g., LaGaO3, groups).

Heterojunctions between isovalent, lattice-matched, per-
ovskite oxides can be constructed with any orientation.
For planar interfaces with polar orientations, such as (100)
and (111), there are two possible atomic arrangements be-
tween oxides without common cations. For example, between
CaHfO3 and SrSnO3, there could be an interface with corner

FIG. 1. Ball-and-stick models for interfaces between perovskite
oxides: (top) planar (110) and (bottom) (100) interface with
mixed-corner cations. Large spheres represent corner-cation atoms,
medium-sized spheres represent body-center metal atoms, and small
light-colored spheres represent oxygen atoms. Color is used to dis-
tinguish chemical species. The interface plane for (bottom) contains
oxygen atoms and a 50-50 mixture of the two corner-cation kinds.

cations (CC) of the first oxide, Ca, and body-centered (BC)
metal atoms of the second oxide, Sn, on adjacent planes,
along with stoichiometric oxygen atoms. Such an interface
is distinctive from one with BC Hf atoms and CC Sr atoms
occupying adjacent planes. These two types of interfaces
are referred to below as CC1-BC2 and BC1-CC2 interfaces,
respectively.

While isovalent oxide interfaces can be constructed in
any orientation without interface charging (as is the case in
compound semiconductor interfaces [35]), planar heterovalent
oxide interfaces are “charged” along polar directions. (The
most famous examples are charged interfaces that exhibit
2DEG [19], although the much-lower-than-expected 2DEG
densities observed experimentally would suggest that these
interfaces exhibit a mixed structure [37–39].) In the present
work, which is focused on BO formation mechanism(s), only
interfaces that are neutral and therefore free from free carrier
complications were studied in detail. As shown in Table SM1
of the Supplemental Material (SM) [40] for two instructive
test cases, the non-neutral interfaces are not favored ener-
getically. A ball-and-stick model of a nonpolar planar (110)
interface is shown in Fig. 1. Along the polar (100) or (111)
direction, analyses similar to those previously used in the
design of neutral heterovalent interfaces between compound
semiconductors [35] suggest that a 1:1 mixture of the two
corner cations on a common interface plane separating the two
perovskite oxide crystals should lead to interface neutrality.
A (100) heterojunction with mixed corner atoms is shown
in Fig. 1, with some models of other interface orientations
and atomic arrangements given in Fig. SM1 of the SM [40].
For example, a (100) interface between the II-IV-Ox BaTiO3

and the I-V-Ox KTaO3 has a stacking sequence of –BaO-
TiO2-(Ba0.5K0.5)O-TaO2-KO- at the “mixed BaK” interface.
A similar analysis also suggests that a 1:1 mixed plane of the
BC species should result in neutral interfaces. The plane-by-
plane sequence at such a mixed-TiTa (111) interface between
the same two oxides would be -Ti-BaO3-Ti0.5Ta0.5-KO3-Ta-.
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Mixed atomic species on the interface plane are simulated by
doubling the two-dimensional unit cell in size to accommo-
date each of the two distinct atoms.

All DFT calculations presented in this work were
performed using a plane-wave basis, along with a projector
augmented wave treatment of core electrons, as implemented
in the Vienna Ab initio Simulation Package (VASP) [41–43].
Bulk calculations were performed using the generalized-
gradient approximation (GGA) functional of Perdew, Burke,
and Ernzerhof (PBE) [44], as well as the conventional hybrid
functional (PBE0) [45] and the screened hybrid functional
(Heyd-Scuseria-Ernzerhof, HSE) [46,47] that are based on
PBE. Each supercell was initially calculated in the unrelaxed
structure, i.e., with all atoms clamped to their bulk positions.
At least four layers of atoms at each interface were then
allowed to relax, using the PBE functional for energy
minimization. The smaller (∼ 60 atoms) of all fully relaxed
supercells were also studied with the HSE functional, with
some supercells further studied with the PBE0 functional for
comparison.

Valence-band offsets (VBOs) were deduced using Eq. (1)
[34,35]. The interface dipolar term in this equation was
computed from differences in the average potential energy
across an interface. The chemical potential terms in the
equation were obtained by mapping the valence-band max-
imum (VBM) position with respect to the average potential
energy, using a calculation of the bulk oxide residing on
either side of the heterojunction interface. Throughout, and
in agreement with previous work [28,48], differences in the
average potential energy across an interface were found not
to be significantly affected by the type of functional used
for the calculation, with a difference smaller than 0.15 eV.
Two examples are shown in Fig. SM2 of the SM [40] to
illustrate this insensitivity of junction charge distribution to
functionals, with the similarity between HSE and PBE0 re-
sults for the VBO demonstrated in Table SM2 of the SM
[40]. Furthermore, as previously pointed out [49], none of the
heterojunctions studied in this work suffers from qualitative
errors in the charge density due to band-gap errors. Therefore,
for BO determination, it suffices to rely on charge densities
calculated for large supercells with the PBE functional. Be-
cause band-edge positions for bulk oxides and semiconduc-
tors may vary significantly with the functional used in the
calculation, we used HSE-based values. We note, however,
that the comparison of DFT-calculated VBOs with values
obtained from model solids, discussed in detail below, relies
only on the electrostatics across the interface and is there-
fore essentially independent of the functional used for VBM
determination.

Model solids for the bulk oxides were constructed based
on Bader’s atoms in molecule (AIM) analysis, which renders
basins associated with individual ions [50–53]. A corner-
cation-centered (CCC) Bader model solid of the perovskite
oxide was constructed from a building block that anchors
on one corner-cation Bader atom, surrounded by 1/8 of the
transition-metal Bader atoms at the eight body-center posi-
tions, and ¼ oxygen Bader atoms at the 12 face-centered
positions. Alternatively, a building block centered on one full
transition-metal Bader atom at the body-centered position,
1/8 of the Bader corner cations at the eight corner positions,

and ½ oxygen Bader atoms at the six face-centered positions
can be used to construct a body-center-atom-centered (BAC)
Bader model solid. Building blocks centered on oxygen Bader
atom can also be used to construct model solids, but offered
no additional advantage in analysis and were not employed.
For either model solid, the building block is itself devoid
of net monopole, dipole, or quadrupole moments, resulting
in the absence of long-range external electric fields. The
calculation of the potential energy for a model solid based on
Bader atoms, averaged over each unit cell, has been discussed
previously [33] and is explained in detail in Discussion SM1
of the SM [40] for the perovskite structure. Charge densities
calculated for supercells were also analyzed by the Bader
method, for comparison with bulk results.

The charge distribution in the bulk crystal has also been
analyzed using NPT, which proposes the partition of the
density into neutral regions and the construction of a model
solid by stacking these neutral regions together. For covalent
semiconductors, it appeared natural to employ a planar bound-
ary to partition each directional bond into two neutral parts
[34]. The model-solid potential was then simply related to the
sum of the spherapoles of all neutral polyhedra in a unit cell
[34], where the spherapole for a polyhedron is defined as [33]

�polyh =
∫

r2ρ(�r)d�r (2)

with ρ(�r) being the charge density. For “ionic” perovskite
oxides, the absence of directional bonds may seem to leave the
strategy for neutral partitioning open. However, as explained
in detailed in Discussion SM2 of the SM [40], a planar
boundary perpendicular to a line connecting two atomic po-
sitions represents a stationary solution to a minimized sum
of spherapoles, under the constraint that the charge within
each region is conserved. Therefore, the use of planar facets
partitions the charge distribution of a unit cell into neutral
polyhedra with a total spherapole that is minimal, independent
of the bonding type or the structure of the crystal. The average
potential of the presently employed model solid based on
neutral polyhedra is then minimal among all possible ways
to construct model solids from atom-centered neutral cells
[54]. This NPT potential energy thus reflects a fundamental
property of a bulk charge distribution, corresponding to a
maximally confined electric field. The main results of NPT
analysis of bulk perovskite oxides can be found in Table II,
with additional volume information described in Table SM3
of the Supplemental Material [40].

III. DFT RESULTS

DFT calculations of the VBO at unrelaxed isovalent per-
ovskite interfaces, shown in Fig. 2 (on the left for each
interface), indicate that the VBO is nearly independent of the
interface atomic arrangement and orientation. Furthermore,
the VBO does not change significantly (by at most 0.25 eV)
when the interface structure is allowed to relax (on the right
for each interface in Fig. 2). Due to differences in cation size,
the two possible structures of a polar interface (CC1-BC2 and
BC1-CC2) typically relax with small expansion/contraction
of opposite signs. In agreement with previous reports [4,55],
the absolute values of the VBOs found for the relaxed iso-
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FIG. 2. Valence-band offsets calculated for isovalent heterojunc-
tions of perovskite oxides. The orientation and the atomic arrange-
ment of the interface are marked by the identities of atoms on
interface planes, where distinction is necessary. For example, under
the BaSnO3/SrZrO3 heading, the Ba-Zr(100) is a (100) interface
with Ba and Zr on adjacent planes, and the BSO/SZO(110) is a
planar (110) interface between these two oxides. Within each group,
the data shown on the left are VBO’s calculated for unrelaxed,
clamped interfaces and those shown on the right are from the final,
relaxed interfaces. The VBO predicted by the NPT with face density
correction for each heterojunction is drawn as a horizontal solid bar.

valent heterojunctions are small, <0.4 eV, resulting in the
conduction-band offset accounting for much of the difference
between the two band gaps. Also indicated on Fig. 2 are the
VBOs expected for each of the oxide heterojunctions from
NPT.

Turning to heterovalent junctions, we first consider
the macroscopically averaged electrostatic potential en-
ergy curves across the junction. An example, using the
BaTiO3/KTaO3 junction, is shown in Fig. 3 for various inter-
face orientations and compositions, both before and after re-
laxation. The fact that the average potential is nearly constant
in the bulk oxide regions of all curves establishes that these
interfaces are indeed neutral [35]. For the unrelaxed interface,
the change in the average potential energy across the interface
shows a large dependence, of as much as ∼ 2 eV, on the
atomic structure and orientation of the interface (see top part
of Fig. 3). This shows that unlike in the unrelaxed isovalent
case, there is significant variation of the VBO. However,
when the heterovalent interfaces are allowed to relax, the
charge distribution and associated potential energy profile are
significantly modified. As shown in the lower part of Fig. 3,
the shifts in the average potential energy across the interface,
widely scattered for the unrelaxed interfaces, collapse into a
narrow range upon relaxation. Figure 4 graphically captures
these changes in the VBOs, with unrelaxed interfaces plotted
on the left of each group and the relaxed VBOs on the right.
Numerical values for the VBO of relaxed heterojunction are
tabulated in Table III. Lattice relaxation renders the VBO for
neutral heterovalent heterojunction between two perovskite
oxides essentially independent of interface orientation and
initial atomic arrangement, as shown in Fig. 4. The implica-

FIG. 3. Macroscopically averaged potential energy distributions
calculated for neutral BaTiO3/KTaO3 interfaces. The orientation and
the atomic arrangement of the interface are as marked. Curves are
vertically shifted for clarity. For each interface, the potential distri-
bution before and after lattice relaxation is shown in the upper and
lower part of the figure. The significant dependence of the potential
energy offset on interface orientation and atomic arrangement before
relaxation becomes negligible after the lattice is relaxed.

tions of Figs. 2–4 are striking. Taken together, they show that
independent of the interface orientation and atomic arrange-
ment one starts out with, the relaxation process governs the
formation of BO, as only then does the final VBO emerge.
This relaxation process can be referred to as “ionic screening”:
The shifts in ion positions, driven by nonzero electric fields,
by and large screen out the difference in initial dipoles at the
unrelaxed interfaces.

An additional perspective of the ionic screening effect is
obtained by considering the embedding of a submonolayer
of heterovalent polar pairs into perovskite oxides, i.e., the
creation of an “artificial” dipolar interface in an otherwise
bulk structure. The embedded heterovalent pairs are chosen
to be nominally lattice matched to the hosts, to minimize
effects due to strain. For example, one-half monolayer of II-IV
SrTi pairs can be embedded in the III-III-Ox LaGaO3 (be-
cause of the lattice-matching condition between LaGaO3 and
SrTiO3) and complementarily, one-half monolayer of III-III
LaGa pairs can be embedded into SrTiO3. A second example
involves similar cross embedding of polar pairs between the
lattice-matched II-IV-Ox BaTiO3 and I-V-Ox KTaO3. Profiles
of the macroscopically averaged electrostatic potential energy
distributions obtained from such “embedded homojunctions”
are given in Fig. 5. Clearly, the as-embedded heterovalent
pairs induce large potential energy offsets (>1.5 eV) in the
bulk oxide, with a sign consistent with the polarity of the
embedded dipole. However, here too these large potential
energy shifts are almost completely wiped out after lattice re-
laxation. This is markedly different from the results of similar
calculations for covalent semiconductors, where large starting
potential shifts due to embedded heterovalent pairs remained
largely intact even after relaxation [35]. The consequences of
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FIG. 4. Valence-band offsets calculated for heterovalent (top)
II-IV-Ox/I-V-Ox and (bottom) II-IV-Ox/III-III-Ox heterojunctions
of perovskite oxides. The orientation and the atomic arrangement of
the interface are marked by atoms on the interface plane, when neces-
sary. For example, from the BaTiO3/KTaO3 group, “mxBaK(100)”
is a (100) interface with 50-50 mixture of Ba and K, and an appro-
priate number of oxygen atoms, on the interface plane. Within each
group, the data shown on the left are VBO’s calculated for unrelaxed,
clamped interfaces and those shown on the right are from the final,
relaxed interfaces. The VBO predicted for each heterojunction by the
NPT with corrections for density on the polyhedra face is drawn as a
horizontal solid bar. In the top panel, the NPT predictions corrected
according to the intermediate density are also shown, as broken
horizontal bars.

similar embedding at several isovalent interfaces are given in
Fig. 6. Once again, the inserted dipoles lead to large potential
energy shifts, >2 eV, for the unrelaxed interfaces (see inset
of Fig. 6), but upon lattice relaxation the induced potential
energy shifts become much smaller, often (but not always)
to the point of being indistinguishable from those of the
unembedded interfaces. Thus, the results of Figs. 5 and 6
show that unlike the tunability in BO demonstrated previously
for heterovalent heterojunctions of covalent semiconductors
[35], ionic screening makes it very difficult to adjust the VBO
of a perovskite heterojunction by means of dipole alteration
through interface modification.

FIG. 5. Macroscopically averaged electrostatic potential energy
distributions calculated for perovskite oxide embedded with one-half
monolayer of heterovalent pairs in the 〈100〉 direction. Before relax-
ation, the results for SrTi embedded in LaGaO3, LaGa embedded in
SrTiO3, BaTi embedded in KTaO3, and KTa embedded in BaTiO3

are shown as dash-dot-dotted, dashed, dash-dotted, and dotted lines,
respectively. Potential distributions after relaxation are shown as thin
solid lines.

IV. BADER AND NPT ANALYSES

VBO systematics for the unrelaxed heterojunctions, shown
in Figs. 3 and 4, can be understood with the help of Bader
model solids. VBM positions, calculated for such solids based
on results obtained with the HSE functional, are given in
Table II, with corresponding volumes given in Table SM3 of
the SM [40]. These results include a correction for the offset
between the average electrostatic potential energy calculated
for the model solid and the average potential energy computed
by DFT, arising from the use of pseudopotentials in the latter.
As previously shown [34], this correction is performed by
equating the DFT and model-solid potential energy profiles
in interstitial positions.

For unrelaxed II-IV-Ox/I-V-Ox interfaces, junctions with
mixed corner cations and mixed body-center atoms invariably
exhibit larger and smaller VBOs, respectively, compared to
those found for the planar (110) interface. Bader analyses of
these and other interfaces show that the charges for interface
atoms are only slightly modified from their respective values
in bulk oxides, which now provides a basis for explaining
the observed systematics. If one assumes that the charge
distribution of all Bader atoms at the interface is frozen at
its bulk distribution, then the VBO of the five unrelaxed
interfaces between heterovalent oxides [the mixed-BC (100),
the mixed-CC (100), the planar (110), the mixed-BC (111),
and the mixed-CC (111)] would simply be given by the differ-
ences between the VBM values of the two oxides in the five
consecutive columns in Table II. Using the BaTiO3/KTaO3

heterojunction as an example, the VBOs deduced from this
Bader model-solid analysis for the mixed-BaK(100), the
mixed-TiTa(100), the (110), the mixed-BaK(111), and the
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FIG. 6. Macroscopically averaged potential energy distributions
calculated for isovalent BaSnO3/SrZrO3 (upper), LaGaO3/NdGaO3

(middle), and KTaO3/NaNbO3 (lower) interfaces. The orientation
and the atomic arrangement of the interface are as marked. Included
are results for (100) interfaces that have been embedded with one-
half monolayer of heterovalent pairs. NdIn pairs are used for the
upper II-IV-Ox heterojunction, SrTi pairs for the middle III-III-Ox
heterojunction, and BaTi pairs for the lower I-V-Ox heterojunction.
The embedded interfaces are marked by identities of atoms on
consecutive interface planes. For example, the “(100)–SrLa-TiGa-”
interface (upper) has a stack of -GaO2-(Sr0.5La0.5)O-(Ti0.5Ga0.5)O2-
NdO- planes separating pure LaGaO3 and NdGaO3. The embedded
dipoles lead to large potential energy shifts for the unrelaxed inter-
faces, as shown in the insets. After relaxation, these huge shifts all
but disappear, as shown in the main panel.

mixed-TiTa(111) interfaces would be +4.17, −2.58, +0.21,
+1.52, and +0.07 eV, respectively. Supercell calculations
yield values of +1.08, −0.77, +0.16, +0.45, and −0.17 eV,
respectively, for the same five interfaces, i.e., the trend pre-
dicted by the Bader analysis is correct, although the range
of VBOs is less than predicted. The latter is likely due to
the redistribution of charge within each Bader atom, arising
from changes in the chemical environment, that occur even
though the net Bader charge remains essentially unchanged
from bulk value. Thus, the strong dependence of the VBO
on the orientation and structure of the unrelaxed heterovalent
interface is attributable to ionic charges being held at fixed
positions at the interface.

Clearly, the most significant and surprising finding of the
present work is the disappearance of the sharp dependence
of the VBO on the atomic arrangement and orientation upon
lattice relaxation. Seemingly responsible for the final BO, the
lattice relaxation process needs to be carefully considered here
in order to understand the VBO at relaxed perovskite oxide in-
terfaces. With either an unrelaxed interface or a relaxed inter-
face, the electronic optimization process in a DFT calculation
is identical. The difference between the unrelaxed and relaxed
calculations is that in the latter, the Hellmann-Feynman force
[56] on each atom is required to be zero (in practice, smaller
than some small numerical limit) through position optimiza-

tion, whereas the forces are not managed for the former. It thus
appears likely that the nulling of electric field at all atomic
sites has a dominant effect on the charge distribution and the
BO at the relaxed interface. It seems plausible that the final
BO could then be explained, or even derived, simply from this
requirement for the electric field to vanish.

To explore the effect on charge distribution of the condition
of vanishing electric field at all ion core sites, we first consider
a “thought experiment” on one possible method to construct
such a charge distribution. It is known that external to a “sym-
metric neutral cell” of charge distribution possessing no net
charge, dipole moment, or quadrupole moments, the electric
field falls off rapidly and may thus be ignored [33]. If such a
neutral cell is to contain a single atom and to be centered about
the atomic position, as in NPT, the internal electric field due to
its own charge must vanish at the central atomic position, from
symmetry. Therefore, when symmetric neutral cells, not all of
which are necessarily identical, are used to build a volume of
charge distribution, the electric field on any internal atomic
site vanishes because neither the charge distribution within its
own cell nor the charge distribution from any neighboring cell
provides a nonzero contribution. Thus, any charge distribution
put together by stacking symmetric neutral cells necessarily
satisfies the zero-field condition required of relaxed structures.
Such an assembled charge density, which induces no external
electric field, would have no influence on the potential distri-
bution outside of its confines. Therefore, if a certain volume is
known to be stackable from symmetric neutral cells, then the
charge inside this volume can be completely ignored as far
as the potential distribution elsewhere is concerned. It follows
that for the BO problem at hand, any region of the interface
where the charge distribution is known to be decomposable
into symmetric neutral cells is irrelevant for the purpose of
BO computation, regardless of the precise position, chemical
identity, or shape of the symmetric neutral cells.

While distributions constructed with symmetric neutral
cells must have vanishing electric fields at its atomic sites, the
reverse statement (i.e., that charge distributions with vanishing
field at atomic sites are stackable from symmetric neutral
cells) is not necessarily correct. NPT would only be suitable
for the BO of perovskite oxides if there are reasons to expect
that the interface charge distribution may be approximated
by stacked symmetric neutral cells. One factor that would
preclude such an expectation is significant charge transfer.
Indeed, in our previous studies of zinc-blende heterojunctions,
we found that NPT was quite successful with relaxed isovalent
junctions [34] but not able to account, by itself, for the wide
range of BOs calculated for relaxed heterovalent junctions
[35]. From quadrant-by-quadrant analysis of zinc-blende
interfaces, charge transfer was found to be significant (>0.1e)
at heterovalent interfaces, but was largely absent for isovalent
interfaces [35]. Subsequent Bader analysis shows that the
charge for atoms at some zinc-blende interfaces is different by
more than 0.2e (>30%) from its value in the bulk [57]. In the
presence of heterovalent covalent bonds, the interface charge
density can still be partitioned into individual cells that are
electrically neutral, but the charge distribution can no longer
be symmetric within all cells. This will result in nonvanishing
dipole moments for these cells, which would mean that their
contribution toward the formation of the zinc-blende BO
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cannot be ignored. At any of the neutral perovskite oxide
interfaces studied in this work, Bader analysis shows that the
net charge for cations rarely differs by more than 0.02e from
its bulk value. Oxygen Bader charges on the interface plane
of a heterovalent heterojunction may differ by as much as
0.06e from that of either of the two bulk oxides (see Table II).
However, changes in oxygen charge are dictated by the
overall neutrality of the interface and have little effect on the
BO because the direction of such charge transfer is parallel
to the interface. The significant shifts in BO associated with
relaxation of perovskite oxide interfaces are thus mainly a
result of ionic movement and not of charge transfer between
ions, in agreement with what is generally expected of ionic
compounds.

Without significant charge transfer, the charge distribution
at perovskite oxide interface appears at least amenable to
modeling with NPT. The actual applicability of NPT for
perovskite oxide interfaces rests on the presence of symmetry
in charge distribution around each ion/atom. To see that this
is not an unreasonable assumption, one first uses the fact
that the Bader charge of any atom remains approximately
unchanged to reduce each Bader atom to a point charge of
fixed quantity. The total energy of such a model system is
the electrostatic potential energy, the minimization of which
using the variational principle yields the equilibrium positions
for all point charges. These are locations where the electric
field vanishes and, because of the importance of potential
energy for ionic systems, these are approximate locations
where actual ions relax to. One now replaces each point charge
with the (frozen) charge distribution of bulk Bader atoms.

Because of the internal symmetry of bulk Bader atoms, the
electric field still vanishes on all atomic sites immediately
after the switch. Furthermore, because of the absence of field
on atomic sites initially, it is reasonable to expect the charge
distributions about atomic sites to remain largely symmetric
when the rigid Bader charge densities are allowed to relax.
Thus, with its main underlying assumption on the symmetric
of charge distribution about each atomic position appearing
justifiable, NPT can be used to model the BOs of perovskite
oxides. One notes that an important consequence/requirement
of the NPT, namely, that the perovskite oxide BO is insensitive
to interface orientation and atomic structure, is already borne
out by supercell calculations.

VBM values for NPT model solids are given in Table III,
with volume information given in Table SM3 of the SM [40].
To model the BO of perovskite oxides with NPT, one starts
with the charge distribution of an entire heterojunction and
partitions the two bulk oxide regions away from the interface
into neutral polyhedra. This step is valid because neutral
polyhedra are obtained from such partition in the first place.
Between the two NPT model solids is the interface specific re-
gion (ISR), which borders on neutral polyhedra and is overall
neutral. If the charge distribution in the ISR is decomposable
into symmetric neutral cells as assumed in the NPT, the ISR
would have no effect on the BO and may be removed entirely,
leaving behind only the two NPT model solids separated by
vacuum. The VBO for such a gapped charge distribution is
simply the difference in VBM positions of the two oxide
model solids that can be found in Table II. However, to model
the potential distribution at the interface more carefully, the

TABLE I. Properties of bulk perovskite oxide as analyzed by Bader’s atoms-in-molecules method. The charges of Bader atoms are listed.
The VBM positions of model solids constructed with Bader atoms listed are calculated with the HSE functional. Corner-cation-centered (CCC)
unit cells and body-center-atom-centered (BAC) unit cells are used to construct two model solids for each bulk oxide. VBM positions of model
solids constructed to model (110), mixed-BC (111), and mixed-CNR (111) interfaces are also listed. These values are obtained by taking
adjustments due to shifts in atomic positions from the CCC or the BAC model solids, as explained in detail in the Supplemental Material [40].

CNR Bader BC Bader Oxygen Bader VBM CCC VBM BAC VBM (110) VBM Mx-BC VBM Mx-CNR
Oxide charge (e) charge (e) charge (e) (Mx-BC (100)) (eV) (Mx-CNR (100)) (eV) (eV) (111) (eV) (111) (eV)

SrTiO3 1.58 2.14 −1.24 −4.58 −0.66 −9.74 1.48 −6.71
LaGaO3 2.08 1.69 −1.26 −6.93 2.56 −9.40 1.05 −5.42
NdGaO3 2.12 1.69 −1.27 −7.11 2.67 −9.51 1.01 −5.45
PbTiO3 1.38 2.16 −1.18 −3.56 −1.26 −9.15 1.70 −6.52
NaTaO3 0.89 2.54 −1.15 −2.19 −5.08 −10.16 1.20 −8.47
BaTiO3 1.51 2.14 −1.22 −4.35 −1.06 −9.56 1.32 −6.73
NaNbO3 0.90 2.57 −1.16 −2.33 −5.24 −10.28 1.03 −8.60
KTaO3 0.80 2.53 −1.11 −1.77 −5.23 −9.76 1.25 −8.25
CaSnO3 1.62 2.49 −1.37 −4.35 −1.58 −10.58 1.65 −7.58
KNbO3 0.81 2.55 −1.12 −1.95 −5.38 −9.90 1.06 −8.39
SrSnO3 1.61 2.46 −1.36 −4.31 −1.51 −10.37 1.59 −7.41
CaHfO3 1.62 2.45 −1.36 −4.26 −1.34 −10.25 1.69 −7.28
CaZrO3 1.63 2.47 −1.37 −4.25 −1.42 −10.30 1.66 −7.34
SrHfO3 1.61 2.45 −1.35 −4.07 −1.28 −10.05 1.78 −7.12
BaSnO3 1.56 2.41 −1.32 −4.22 −1.66 −10.11 1.41 −7.29
SrZrO3 1.61 2.47 −1.36 −4.08 −1.37 −10.08 1.73 −7.17
PbZrO3 1.35 2.50 −1.28 −3.34 −2.59 −9.92 1.54 −7.48
NdInO3 2.12 1.59 −1.24 −6.94 2.60 −8.87 0.70 −5.05
BaZrO3 1.54 2.47 −1.34 −3.77 −1.56 −9.83 1.75 −7.08
LaInO3 2.11 1.60 −1.24 −6.89 2.48 −8.84 0.66 −5.07
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TABLE II. Charge distribution in bulk perovskite oxide analyzed by the method of neural polyhedra theory. The potential energy, face
density, and VBM are the average potential energy, the charge density at the surface, and the valence-band maximum position calculated with
the HSE functional, respectively, of model-solids constructed from neutral polyhedra of bulk oxides. The average charge density in the volume
bound by neutral polyhedra and Bader atoms is listed as intermediate density.

NPT mod. sol.

Oxide Lattice constant (Å) Avg. pot. eng. (eV) Face density (e/Å
3
) Intermediate density (e/Å

3
) NPT mod. sol. VBM (eV)

SrTiO3 3.940 −12.74 0.22 0.18 −4.29
LaGaO3 3.940 −13.12 0.20 0.19 −4.29
NdGaO3 3.940 −12.50 0.20 0.17 −4.31
PbTiO3 3.970 −9.20 0.22 0.15 −4.94
NaTaO3 3.970 −13.93 0.21 0.20 −4.02
BaTiO3 4.020 −13.56 0.21 0.18 −4.51
NaNbO3 4.020 −9.99 0.21 0.18 −4.92
KTaO3 4.020 −10.24 0.21 0.14 −5.06
CaSnO3 4.070 −12.16 0.24 0.16 −4.75
KNbO3 4.070 −10.97 0.20 0.17 −5.06
SrSnO3 4.115 −12.68 0.23 0.16 −4.83
CaHfO3 4.115 −12.02 0.23 0.15 −4.83
CaZrO3 4.145 −11.81 0.22 0.14 −4.67
SrHfO3 4.145 −12.42 0.23 0.16 −4.65
BaSnO3 4.180 −13.48 0.23 0.17 −4.96
SrZrO3 4.180 −12.36 0.23 0.15 −4.69
PbZrO3 4.180 −13.52 0.22 0.17 −4.84
NdInO3 4.180 −11.34 0.20 0.14 −4.33
BaZrO3 4.220 −13.29 0.22 0.17 −4.74
LaInO3 4.220 −11.67 0.22 0.14 −4.39

disparity in the average charge densities on the surfaces of
the two NPT model solids, as listed in Table II, needs to be
handled. As shown previously for zinc-blende heterojunctions
[34,35] and explained in detail in Discussion SM3 in the SM
[40], the expected smoothing of densities on the surfaces when
different model solids are stitched necessitates a correction to
the NPT. The horizontal solid bars in Figs. 2 and 4 are NPT
predictions with the polyhedra face density difference (found
in Table II) assumed to linearly “smear out” over a distance of
¼a (where a is the cubic lattice constant).

The good agreement of NPT predictions with the DFT-
computed, relaxed, VBOs seems to suggest that the charge
distribution at perovskite oxide interface indeed can be ap-
proximately partitioned into symmetric neutral cells. The
length chosen for charge smoothing in perovskite oxides here
is similar, in relationship to the shortest interatomic distance,
to that previously used for zinc-blende heterojunctions [34].
As the perovskite oxides presently studied span groups of
different valences, the actual chemistry at their interfaces may
be varied. For heterovalent systems, the sizes of the neutral
polyhedra (or the sizes of the Bader atoms, see Table SM3 of
the SM [40]) are typically poorly matched across the interface.
The expected volumetric adjustments at some heterojunctions
may lead to charge relaxation effects beyond what can be ac-
counted for by face density correction. For significant charge
rearrangement, a more representative charge density for the
bulk oxides is that in the entire region/volume away from
the ion cores. The availability of NPT and Bader analysis
data actually provides an easy and reasonable estimate of the
average density in the “intermediate region” of the unit cell:
The number of excess electrons in the oxygen Bader atom
divided by the volumetric difference between the oxygen neu-

tral polyhedron and the oxygen Bader atom well represents,
and is here called, the “intermediate density” for a perovskite
oxide. For example, dividing the number of the excess elec-
trons in an oxygen Bader atom in SrTiO3, 1.24 (Table I),

by the oxygen volume difference, 12.50−5.50 = 7.00 Å
3

(Table SM3 of the SM [40]), gives 0.177 e/Å
3
, which is

the value listed in Table II as the intermediate density for
SrTiO3. The assumption that the intermediate density differ-
ence smooths out over a length of 1/3a provides an alternative
correction to the NPT, listed under “NPT (interm. dens.)” in
Table III and shown as horizontal broken lines on Fig. 4(a) for
heterovalent interfaces. The difference between solid and bro-
ken horizontal bars in Fig. 4(a) may be viewed as an inherent
uncertainty in NPT analysis, as it reflects how NPT could be
affected by typical assumptions on the charge smoothing.

V. DISCUSSION

The bulklike behavior of BO is well known for various
heterojunction interfaces and it has dominated theoretical
models for heterojunction BO [1]. It has been inferred from
the bulklike BO that the band edges of semiconductors can
be placed on a universal scale, with the difference between
two semiconductors on that scale being the magnitude of the
BO at their heterojunction [1]. Analysis based on Eq. (1),
however, makes it clear that the magnitude of BO is, in
general, intimately related to equilibrium charge distribution
at the interface. The observed tunability and nontransitivity
of BO at heterovalent interfaces also attests to the important
role played by the interface in BO formation [11,12,35]. The
bulklike behavior of BO observed for some heterojunctions
thus necessarily reflects a particular property of those relaxed
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TABLE III. Valence-band offset (eV) calculated for relaxed heterojunctions between perovskite oxides. The VBO is the VBM position
of the first oxide subtract the VBM of the second oxide, both calculated with the HSE functional. For heterovalent heterojunctions with
polar (100) and (111) orientations, the interface calculated has either mixed corner-cation atoms (Mx-CR) or mixed body-center metal atoms
(Mx-BC) on the interface plane. For isovalent heterojunctions with polar orientations, the stacking sequence is either corner atom of first
oxide to body-center atom of second oxide (CR1-BC2) or body-center atom of first oxide to corner atom of second oxide (BC1-CR2) at the
interface. Listed under “NPT (f. dens.)” and “NPT (interm. dens.)” are VBO’s modeled with NPT, using corrections based on polyhedra-face
and intermediate densities, respectively.

Mx-Cnr or Mx-BC or Mx-Cnr or Mx-BC or NPT
Hetero-junction Cr1-BC2 (100) Cr2-BC1 (100) Planar (110) Cr1-BC2 (111) Cr2-BC1 (111) NPT (f. dens.) (interm. dens.)

SrTiO3/LaGaO3 − 0.114 0.007 0.012 − 0.091 − 0.084 − 0.112
SrTiO3/NdGaO3 − 0.163 − 0.033 − 0.023 − 0.079 − 0.129 − 0.101
LaGaO3/NdGaO3 − 0.035 − 0.129 − 0.041 0.011
PbTiO3/NaTaO3 0.891 0.760 0.829 0.708 0.820 0.989
BaTiO3/KTaO3 0.300 0.279 0.199 0.199 0.249 0.427 0.324
BaTiO3/NaNbO3 0.126 0.213 0.237 0.061 0.106 0.520 − 0.023
KTaO3/NaNbO3 0.027 0.086 − 0.051 − 0.041 − 0.022 0.093 − 0.347
CaSnO3/KNbO3 0.265 0.162 0.195 0.103 0.152 0.028 0.456
CaHfO3/SrSnO3 0.296 0.264 0.311 0.164 0.099 − 0.012 0.206
CaZrO3/SrHfO3 0.124 0.083 0.104 0.090 0.094 0.010 0.175
BaSnO3/SrZrO3 − 0.174 − 0.329 − 0.327 − 0.191 − 0.331 − 0.265
BaSnO3/PbZrO3 − 0.089 − 0.128 − 0.166 − 0.092 − 0.249 − 0.202
SrZrO3/PbZrO3 − 0.004 0.040 0.096 0.064
SrZrO3/NdInO3 − 0.651 − 0.913 − 0.691 − 0.673 − 0.822 − 0.568
BaZrO3/LaInO3 − 0.893 − 0.904 − 0.677 − 0.798 − 0.892 − 0.359 − 0.743

interfaces, namely, the shift in the average potential energy
across such an interface is insensitive to its atomic structure
and orientation. The present perovskite oxide heterojunctions,
as well as previously investigated isovalent zinc-blende het-
erojunctions, all display bulklike BOs that agree with the pre-
dictions of NPT [34]. This agreement thus identifies another
important property of the bulklike BO: the shift in potential
energy across the ISR of such an interface, or the total dipole
moment of the ISR, vanishes. As pointed out above, this
property is well expected when the charge distribution in
the ISR is stackable from symmetric neutral cells, a key
assumption in NPT. Because the charge distribution is the
result of energy minimization, one comes to the deduction
that a charge distribution that minimizes the energy in the
ISR does not contribute to an overall potential energy shift.
This suggests a possible connection between energy mini-
mization and a charge density approximately constructible
from symmetric neutral cells. For ionic compounds, the total
energy is dominated by the electrostatic potential energy, the
minimization of which amounts to a reduction in the average
electric field strength or the energy stored in the electric field.
For covalent compounds and interfaces, a minimization in
energy associated with electric field is also an important factor
governing the formation of charge distribution. NPT partitions
the equilibrium charge density into neutral polyhedra with
internal charge distributions that satisfy the chemical driving
force of the system and, at the same time, confine the electric
field due to its own charge to within each polyhedron. The lack
of net electrostatic interactions between neutral polyhedra nat-
urally minimizes the electric field and energy. It is this connec-
tion between neutral polyhedra and energy minimization that
is likely behind the success of the NPT in predicting the BOs
for both ionic-type and covalent-type heterojunctions. Being
well in line with the concept of nearsightedness in quantum

mechanical systems [36], this connection is an essential part
of the explanation of the bulklike behavior of BO. In the
absence of heterovalent covalent bonds, the charge density
distribution at the interface is likely symmetric about atomic
sites to minimize the electrostatic potential energy, leading to
BOs that are bulklike.

A dependence of the BO on the atomic arrangement and
orientation of the interface, when observed, suggests asym-
metry in charge distribution around some atoms at the in-
terface. Symmetry in local charge distribution about atomic
positions cannot be maintained at these interfaces and the
NPT alone cannot account for the BO, likely because of
the dominance of bond chemistry in the total energies of
such systems. Among systems considered thus far, significant
BO tunability was only found for heterojunctions between
heterovalent zinc-blende semiconductors. These covalently
bonded systems are known to incur significant charge transfer
among interface atoms involved in heterovalent bonds [35].
Such charge transfers and the accompanying local asymmetry
in charge distribution about atomic positions contribute to
net dipole moments from the ISR of these interfaces. For
heterovalent zinc-blende interfaces, such dipolar contributions
were successfully modeled, using the concept of dielectric
screening, as corrections to the BO predicted by NPT [35].
The well-known large ionic contribution to the static dielectric
constants of perovskite oxides [58], as illustrated in Figs. 5
and 6, is apparently responsible for both the lack of significant
charge transfer and the bulklike behavior displayed by BO at
their heterojunctions. Therefore, the entire behavior of the BO
presently found for perovskite oxide heterojunctions is nearly
identical to that previously reported for zinc-blende hetero-
junctions [34,35], when the large static dielectric constants of
the oxides are considered, but here they are dominated by the
ionic, rather than the electronic, response.
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Although the absence of electric field on all atomic sites is
obviously a condition that is satisfied in all previous studies
of relaxed solid interfaces, it has not been recognized as
crucial for the explanation of the bulklike BO behavior. The
vanishing of electric field is generally conducive to symmetry
in the local charge density about each atomic site, which
in turn underpins the simplicity offered by partitioning the
interface charge density into neutral symmetric cells. While
the equilibrium charge distribution of the entire relaxed in-
terface, which is daunting to predict, controls the magnitude
of the BO, the validity of such a partition obviates the need
for detailed knowledge of the interface charge distribution in
accurately predicting the BO. When NPT was proposed to
account for the BOs of the covalent zinc-blende heterojunc-
tions, the expectation was (with evidence given) that a model
charge distribution stitched together with those of NPT model
solids would resemble the equilibrium charge distribution
at the relaxed interface [34]. With lessons learned from the
present work on perovskite oxide interfaces, it now appears
that the validity of the NPT depends only on the symmetry
in local charge distribution about atoms at the interface, and
not necessarily the ability to accurately predict the charge
distribution as such. The task of predicting and understanding
heterojunction BOs is thus simplified drastically.

VI. CONCLUSIONS

In the present work, the formation of BOs at a large number
of lattice-matched interfaces between perovskite oxides is
studied numerically using DFT. Ionic screening is found to
render the BO of a relaxed heterojunction essentially indepen-
dent of the atomic structure and the orientation of the inter-
face, i.e., to be bulklike. Through analysis of the requirement
of zero electric fields on all atomic sites of a relaxed interface,
NPT is justified and shown to well account for calculated
BOs at perovskite oxide heterojunctions. The success of the
NPT, presently for ionic interfaces and previously for covalent
zinc-blende interfaces, unmasks a connection between energy
minimization and the partition of interface charge distribution
into neutral symmetric cells. The bulklike behavior of BO,
experimentally observed and numerically calculated for var-
ious heterojunctions, stems directly from such a connection.
As energy minimization governs the formation of charge
distribution in general, NPT is expected to describe the band
offsets at a wide variety of material interfaces.
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