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Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals
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Nonreciprocal transport phenomena indicate that the forward and backward flows differ and are attributed
to broken inversion symmetry. In this paper, we study the nonreciprocity of the thermal and thermoelectric
transport of electronic systems resulting from inversion-symmetry-broken crystal structures. The nonlinear
electric, thermoelectric, and thermal conductivities are derived up to the second order in an electric field and
a temperature gradient by using the Boltzmann equation with the relaxation time approximation. All the second-
order conductivities appearing in this paper are described by two functions and their derivatives, and they are
related to each other in the same way that linear conductivities are, e.g., via the Wiedemann-Franz law. We found
that nonvanishing thermal-transport coefficients in the zero-temperature limit appear in nonlinear conductivities,
which dominate the thermal transport at a sufficiently low temperature. The nonlinear conductivities and possible
observable quantities are estimated in a 1H monolayer of the transition-metal dichalcogenide MoS2 and a polar
semiconductor BiTeX (X = I, Br).
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I. INTRODUCTION

A system with broken inversion symmetry favors a certain
direction of a larger flow than the opposite direction. This
property is known as nonreciprocity or rectification [1]. A
prominent example of electronic realization of the nonre-
ciprocal transport occurs in a heterojunction of the p- and
n-type semiconductors, where the geometry of two different
materials breaks inversion symmetry. Regulating the carrier
motion by making a directed current is the key to device
applications. In a single-crystalline system, the crystal struc-
ture is the source of inversion-symmetry breaking. In non-
centrosymmetric crystals, the nonreciprocity of the electronic
charge transport requires either breaking of time-reversal
symmetry or the presence of the electronic correlation and
dissipation [2].

In addition to the electronic charge transport, managing a
thermal transport is becoming a growing issue since heat is
generated and fades ubiquitously in electronic devices [3,4].
Unlike the electric current, the heat current is carried by
any elementary excitations in materials. The nonreciprocal
thermal transport has been studied for each carrier, such as
phonons [5–9] and photons [4,10]. However, in this paper, we
focus only on the thermal transport carried by the electrons
in crystals. Under an ac electric field E = Re[Eeiωt ] and a
gradient of temperature −∇T , the linear electric and heat
response is formulated in matrix form as(

j
jT

)
= Re

[(
L11 L12

L21 L22

)( Eeiωt

−∇T/T

)]
. (1)

In the zero-frequency limit (ω = 0), the amounts of charge
and heat carried by electrons are closely connected through
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the Wiedemann-Franz law, which states that the ratio of
two diagonal coefficients gives the constant L22/T 2L11 =
π2/3e2 ≡ L, independent of the materials (we use the natural
unit c = h̄ = kB = 1 throughout this paper.) This constant
is referred to as the Lorentz number. The other two of the
off-diagonal linear conductivities are related by the Onsager
reciprocity as L12 = L21. Moreover, the thermoelectric con-
ductivity and the electric conductivity are related via the Mott
formula representing the Seebeck coefficient S as L12/T =
L11S = −eLT dL11/dμ.

Nonreciprocity results from a nonlinear effect of the ex-
ternal field, where a strong external field drives the system
far from equilibrium. Extending the transport coefficients to
the second order in the external fields, the electric and heat
currents are shown in matrix form as

(
j

jT

)
= Re

⎡
⎢⎢⎢⎢⎢⎣
(

L0
111 L2ω

111 Lω
112 L122 L13

L0
211 L2ω

211 Lω
212 L222 L23

)

×

⎛
⎜⎜⎜⎜⎜⎝

E ⊗ E∗

E ⊗ Ee2iωt

Eeiωt ⊗ (−∇T )/T

∇T/T ⊗ ∇T/T

(∇ ⊗ ∇T )/T

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦. (2)

Notice that we do not consider the oscillating temperature
gradient, which is always assumed to be time independent.
Here, each coefficient tensor in (2) is specified by subscript
indices in the same manner as those in (1), indicating that the
first index is 1 (2) when the current is electric (heat) and the
remaining two indices are 11, 22, and 12 when the applied
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external field is the square of an electric field, the square of
a temperature gradient, and the combination of them, respec-
tively. When the second index is 3, the applied field is the
square derivative of the temperature. The nonlinear electric
and heat currents proportional to the square of the electric field
are decomposed into a part flowing constantly in one direction
and the other part oscillating with frequency 2ω. Nonlinear
conductivities for these two parts are denoted by superscripts
0 and 2ω, respectively. In addition, each coefficient is a three-
rank tensor having three spatial indices; that is, the electric
current in (2) is given by ja = Re[(L0

111)abcEbE∗
c + · · · ] and

so on. Repeated indices in each term imply summation over
the spatial index a = x, y (, z). The coefficients in (2) or, more
generally, conductivity tensors for an even number of external
fields identically vanish when inversion symmetry is present
since the current, the electric field, and the temperature gradi-
ent are polar vectors. In this paper, we address the coefficients
in (2).

From the perspective of application, exploring the nonre-
ciprocal thermal transport provides a possible route toward
functional thermal-transport phenomena such as electronic re-
frigeration [3] and thermoelectric energy conversion [11,12].
It has been shown that the nonlinear thermoelectric transport
modifies the thermoelectric conversion efficiency in addition
to the contribution from the thermoelectric figure of merit
[12]. So far, the nonreciprocal thermal and thermoelectric
transport have been studied for electrons in nanojunctions
[13–16] and heterostructures [17,18]. Inversion symmetry in
such systems is broken by spatially asymmetric coupling or
structures. In this paper, we study the nonreciprocity of the
thermal and thermoelectric transport of the electrons in two
and three dimensions resulting from noncentrosymmetry of
the crystal structure. In combination with Zeeman coupling
breaking time-reversal symmetry, the electric, thermal, and
thermoelectric nonreciprocal transports are realized.

This paper is organized as follows. First, we briefly sum-
marize the main results of this paper in Sec. II. In Sec. III,
the nonequilibrium distribution function under an ac electric
field and a temperature gradient is derived by solving the
Boltzmann equation with the relaxation time approximation,
and the linear and second-order electric, thermal, and thermo-
electric conductivities are formulated. A property unique to
the nonlinear thermal and thermoelectric conductivity is that
they contain temperature-independent terms while the linear
terms vanish in the zero-temperature limit. In Sec. IV, we
explain the appearance of the zero-temperature conductivity
from the viewpoint of nonequilibrium variation of heat and
electric charge due to the external fields. The nonlinear ther-
mal and thermoelectric conductivities are estimated for the
transition-metal dichalcogenide MoS2 in Sec. V A and for a
polar semiconductor BiTeX (X = I, Br) in Sec. V B. Finally,
we summarize our results in Sec. VI.

II. MAIN RESULTS

Let us first present our main results so that readers are not
confused by a number of physical quantities appearing in this
paper. Our main findings are that (i) the nonlinear conductiv-
ities are described by two functions [(3) and (4)], (ii) propor-
tionality and derivative relations hold between the nonlinear

conductivities, and (iii) the nonlinear thermal and thermoelec-
tric conductivities remain finite in the zero-temperature limit,
although the corresponding linear conductivities vanish in the
same limit due to vanishing thermal excitations.

We discuss two contributions to the nonlinear conductivi-
ties. One is due to the nonlinear (proportional to the square of
the relaxation time τ 2) distribution function, described by the
function

Cabc(μ) = −
∫

k
vavbvc�(μ − εk ), (3)

where vvv is the velocity,
∫

k is the abbreviation for the integral
over the Brillouin zone and the summation over the band
index

∑
n

∫
dd k/(2π )d , and �(x) is the step function given by

1 for x > 0 and 0 for x < 0. The other results from the com-
bination of the intrinsic Berry curvature �(k) = i〈∂u/∂k| ×
|∂u/∂k〉 and the linear (∝τ ) nonequilibrium distribution func-
tion, described by

Dab(μ) =
∫

k

∂�b

∂ka
�(μ − εk ). (4)

Equation (4) is the zero-temperature part of the Berry curva-
ture dipole [19], which measures the dipole moment of the
Berry curvature in the momentum space, and can be nonzero
even when time-reversal symmetry is present, that is, when the
integral of the Berry curvature itself over the Brillouin zone
vanishes.

The leading-order term in the low-temperature (Sommer-
feld) expansion of each nonlinear conductivity is independent
of the temperature and is given by

(
L0

111

)
abc = e3

2(1 + iωτ )

(
τ 2

2

d2Cabc

dμ2
+ τεabd Dcd

)
+ O(T 2),

(5)(
L2ω

111

)
abc = e3

2(1 + iωτ )

(
τ 2

2(1 + 2iωτ )

d2Cabc

dμ2
+ τεabd Dcd

)

+ O(T 2), (6)

(L122)abc

T 2
= π2eτ 2

3

d2Cabc

dμ2
+ O(T 2), (7)

(
L0

211

)
abc = − e2τ 2

2(1 + iωτ )

dCabc

dμ
+ O(T 2), (8)

(
L2ω

211

)
abc = − e2τ 2

2(1 + iωτ )(1 + 2iωτ )

dCabc

dμ
+ O(T 2), (9)

(L222)abc

T 2
= −π2τ 2

3

dCabc

dμ
+ O(T 2). (10)

In the absence of the Berry curvature dipole or in the
case of a negligible contribution from it (e.g., a nonlinear
longitudinal transport such as abc = xxx), proportionality and
derivative relations hold between the leading-order terms as

(L122)abc/T 2

2
(
L0

111 + L2ω
111

)
abc

� (L222)abc/T 2(
L0

211 + L2ω
211

)
abc

→ L (ω → 0), (11)
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and

2
(
L0/2ω

111

)
abc

� −e
d
(
L0/2ω

211

)
abc

dμ
, (12)

(L122)abc � −e
d (L222)abc

dμ
. (13)

Notice that the ω → 0 limit of L0
111 + L2ω

111 and L0
211 + L2ω

211
appearing in the denominators of (11) is the dc conductivity.

III. NONLINEAR TRANSPORT COEFFICIENTS

In this section, a nonequilibrium distribution function up to
second order in an electric field and a temperature gradient are
derived from the Boltzmann equation. We give the formulas
of the resulting linear and second-order conductivities, which
lead to the leading-order terms shown in Sec. II. Notice that
there appear nonlinear conductivities for the product of the
electric field and the temperature gradient Eeiωt ⊗ (−∇T )/T
and those for the square derivative of the temperature (∇ ⊗
∇T )/T , which are not shown in Sec. II but are also contained
in this section.

A. Nonequilibrium distribution function

We address transport properties in the nonlinear regime
with the Boltzmann equation of the semiclassical dynamics
of the electron, given by

∂ f

∂t
+ ṙa

∂ f

∂ra
+ k̇a

∂ f

∂ka
= − f − f0

τ
, (14)

where f0 = [1 + eβ(εk−μ)]−1 is the Fermi-Dirac distribution
function. The semiclassical equations of motion in the pres-
ence of the Berry curvature but in the absence of the magnetic
field

ṙa = vvv − k̇ × �, (15)

k̇ = −eE (16)

describe the time evolution of the wave packet in the phase
space, where the velocity vvv and the Berry curvature � are
defined from the energy dispersion ε(k) and the Bloch func-
tion u(k) by va = ∂ε/∂ka and �a = iεabc〈∂u/∂kb|∂u/∂kc〉,
respectively.

Applying an ac electric field E = Re[Eeiωt ], the distribu-
tion function satisfies

∂ f

∂t
− eEa

∂ f

∂ka
= − f − f0

τ
. (17)

Up to second order in the electric field, the nonequilibrium
distribution function is written in the form of

f = f0 + Re
[

f ω
E + f 0

E2 + f 2ω
E2

]
, (18)

where the subscript of each term represents the order of the
electric field and the superscript represents the frequency.
Substituting (18) into (17) and making equations at each order

in the electric field and the frequency, one obtains

f ω
E = eτEaeiωt

1 + iωτ

∂ f0

∂ka
, (19)

f 0
E2 = e2τ 2EaE∗

b

2(1 + iωτ )

∂2 f0

∂ka∂kb
, (20)

f 2ω
E2 = e2τ 2EaEbe2iωt

2(1 + iωτ )(1 + 2iωτ )

∂2 f0

∂ka∂kb
. (21)

The zero-frequency term (20) drives a current flowing in one
direction, while a current caused by (21) has an oscillation
with frequency 2ω.

Applying a temperature gradient −∇T , the stationary dis-
tribution function satisfies

ṙa
∂ f

∂ra
= − f − f0

τ
, (22)

where f0, in this case, is the Fermi distribution function with
an inhomogeneous temperature β(r) = T −1(r) representing
local thermal equilibrium. The solution up to second order
in the spatial derivative is f = f0 + f∇T + f∇2T + f(∇T )2 ,
where

f∇T = −(∇aT )τva
∂ f0

∂T
, (23)

f∇2T = (∇a∇bT )τ 2vavb
∂ f0

∂T
, (24)

f(∇T )2 = (∇aT )(∇bT )τ 2vavb
∂2 f0

∂T 2
. (25)

In addition to the aforementioned terms, the second-order
terms contain a mixed effect of the electric field and the
temperature gradient given by f = · · · + Re[ f ω

E∇T ], where

f ω
E∇T =eτEaeiωt∇bT

1 + iωτ

[
εabc�c

∂ f0

∂T

− τ
∂vb

∂ka

∂ f0

∂T
−
(

1 + 1

1 + iωτ

)
τvb

∂2 f0

∂T ∂ka

]
. (26)

B. Electric current

First, we formulate the electric current density

j = −e
∫

k
ṙ f − ∇ × morb (27)

up to second order in the external field. The first term is the
usual definition of the electric charge current, and the second
term is the magnetization current [20,21]. Here we define
the zero-temperature limit of the τ -dependent dc electric
conductivity σ and the same limit of the intrinsic anomalous
Hall conductivity σ� by

σab(ε) = e2τ

∫
k
vavbδ(ε − εk ), (28)

σ�
ab(ε) = −e2εabc

∫
k
�c�(ε − εk ), (29)
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respectively. As a consequence of the Wiedemann-Franz law,
the Onsager reciprocity, and the Mott formula, all the linear
conductivities defined in (1) are described by these two func-
tions. The orbital magnetization in the thermal equilibrium is
closely related to the intrinsic anomalous Hall conductivity
(29) since the circulating electric current due to the intrinsic
Berry-phase effect is the source of the orbital magnetization.
The expression of the orbital magnetization can be derived
by considering a confinement potential and estimating the
electric current flowing along the edge due to the intrinsic
effect [21] and is given by

morb
a = −e−1εabc

∫
dεσ�

bc (ε) f0(ε). (30)

In a two-dimensional electronic system, the orbital magneti-
zation points out the out-of-plane direction. Here, we notice
that although we have listed in (2) the nonlinear conductivities
resulting purely from the nonequilibrium distribution function
(∝τ 2) and those from the combination of the distribution and
the intrinsic Berry curvature effect (∝τ�), it is possible that
a purely intrinsic nonlinear conductivity that is independent
of the relaxation time appears. It has been reported that
the intrinsic nonlinear conductivity is related to the orbital
toroidal moment [22] in a way similar to how the intrinsic
anomalous Hall conductivity is related to the orbital magnetic
moment. However, in this paper, we do not discuss the purely
intrinsic contribution to the nonlinear conductivity since it
is independent of τ and is small compared with the terms
mentioned when τ is large.

Let us first review the ac electric conductivity defined by

ja = Re
[(

L11
)

abEbeiωt + (L0
111

)
abcEbE∗

c + (L2ω
111

)
abcEbEce2iωt

]
,

(31)

where

(L11)ab = −
∫

dε

(
σab

1 + iωτ
+ σ�

ab

)
∂ f0

∂ε
, (32)

L0
111 = I0

111 + J111, and L2ω
111 = I2ω

111 + J111, with

(
I0
111

)
abc

= − e3τ 2

4(1 + iωτ )

∫
dε Cabc

∂3 f0

∂ε3
, (33)

(
I2ω
111

)
abc = − e3τ 2

4(1 + iωτ )(1 + 2iωτ )

∫
dε Cabc

∂3 f0

∂ε3
, (34)

(J111)abc = − e3τεabd

2(1 + iωτ )

∫
dε Dcd

∂ f0

∂ε
. (35)

Notice that in the above expressions, Cabc and Dab in the
integrals are functions of ε, not of the chemical potential μ.

Next, the electric current induced by the spatial inhomo-
geneity of the local temperature profile T (r) defines thermo-
electric conductivities by

ja = (L12)ab(−∇bT )/T + (L122)abc(∇bT )(∇cT )/T 2

+ (L13)abc(∇b∇cT )/T, (36)

where

(L12)ab

T
= −e−1 ∂

∂T

∫
dε
(
σab + σ�

ab

)
f0, (37)

(L122)abc

T 2
= −eτ 2 ∂2

∂T 2

∫
dε Cabc

∂ f0

∂ε
, (38)

(L13)abc

T
= −eτ 2 ∂

∂T

∫
dε Cabc

∂ f0

∂ε
. (39)

Notice that the magnetization current resulting from the sec-
ond term in (27) contributes only to the linear conductivity
(37) since the magnetization is defined in local thermal equi-
librium where higher-order corrections due to the external
field are not considered. An intriguing thing to note is that
L122/T 2 can be finite in the zero-temperature limit T → 0,
while the other conductivities L12/T and L13/T vanish lin-
early as the temperature goes to zero. This can be seen from
the order of the temperature derivative since the Sommer-
feld expansion contains even orders of the temperature. The
zero-temperature conductivity will be examined in Sec. IV.
Notice that, in a strict sense, the presence of a temperature
gradient requires temperature to be nonzero. However, we
mean finiteness of the zero-temperature limit of the transport
coefficient by the fact that, at a sufficiently low temperature,
the transport coefficient has finite contributions independent
of the temperature.

In the presence of both the electric field and the tempera-
ture gradient, there appear combined terms as

ja = Re
[(

Lω
112

)
abc

Ebeiωt (−∇cT )/T
]
, (40)

where Lω
112 = Iω

112 + Jω
112, with(

Iω
112

)
abc

T
= e2τ 2

1 + iωτ

∂

∂T

∫
dε

(
1

2
+ 1

1 + iωτ

)
Cabc

∂2 f0

∂ε2
,

(41)(
Jω

112

)
abc

T
= −e2τ

∂

∂T

∫
dε

(
εbcd Dad

1 + iωτ
+ εabd Dcd

)
f0. (42)

Both conductivities (41) and (42) vanish at zero temperature.

C. Heat current

The heat current of the wave packet in the presence of the
Berry phase is given by [21,23]

jT =
∫

k
(εk − μ)ṙ f + E × morb. (43)

The first term is the usual definition of the heat current, and
the second term is the correction due to the Berry curvature.

The heat current induced by the ac electric field is written
as

jT
a = Re

[
(L21)abEbeiωt + (L0

211

)
abcEbE∗

c

+ (
L2ω

211

)
abc

EbEce2iωt
]
, (44)

where

(L21)ab = e−1
∫

dε (ε − μ)

(
σab

1 + iωτ
+ σ�

ab

)
∂ f0

∂ε
, (45)
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L0
211 = I0

211 + J211, and L2ω
211 = I2ω

211 + J211, with

(
I0
211

)
abc = e2τ 2

4(1 + iωτ )

∫
dε (ε − μ)Cabc

∂3 f0

∂ε3
, (46)

(
I2ω
211

)
abc = e2τ 2

4(1 + iωτ )(1 + 2iωτ )

∫
dε (ε − μ)Cabc

∂3 f0

∂ε3
,

(47)

(J211)abc = − e2τεabd

2(1 + iωτ )

∫
dε (ε − μ)Dcd

∂ f0

∂ε
. (48)

The heat current induced by the spatial inhomogeneity of
the temperature is written as

jT
a = (L22)ab(−∇bT )/T + (L222)abc(∇bT )(∇cT )/T 2

+ (L23)abc(∇b∇cT )/T, (49)

which gives thermal conductivities by

(L22)ab

T
= ∂

∂T

∫
dε (ε − μ)σab f0, (50)

(L222)abc

T 2
= −τ 2 ∂2

∂T 2

∫
dε (ε − μ)

dCabc

dε
f0, (51)

(L23)abc

T
= −τ 2 ∂

∂T

∫
dε (ε − μ)

dCabc

dε
f0. (52)

Finally, combined terms of the electric field and the tem-
perature gradient are defined by

jT
a = Re

[(
Lω

212

)
abcEbeiωt (−∇cT )/T

]
, (53)

where Lω
212 = Iω

212 + Jω
212, with(

Iω
212

)
abc

T
= eτ 2

1 + iωτ

∂

∂T

∫
dε

dCabc

dε

×
[
−1

2
f0 +

(
1

2
+ 1

1 + iωτ

)
(ε − μ)

∂ f0

∂ε

]
,

(54)(
Jω

212

)
abc

T
= eτ

∂

∂T

∫
dε (ε − μ)

(
εbcd Dad

1 + iωτ
+ εabd Dcd

)
f0.

(55)

The low-temperature expansion of the nonlinear conductivi-
ties in this and the preceding sections results in the leading-
order terms shown in Sec. II. The entire expression of the
leading-order terms, including those proportional to T and T 2,
is shown in Appendix A.

D. Symmetry

The symmetry property of the nonlinear conductivities can
be read off from that of the two functions Cabc and Dab since
the nonlinear conductivities are described by them. In this
section, we consider how the conductivities are affected by
the spatial-inversion and time-reversal transformations. The
results are summarized in Table I.

In the presence of inversion symmetry, the velocity
and the Berry curvature satisfy va(n,−k) = −va(n, k) and
�a(n,−k) = �a(n, k), respectively, where n is the band in-
dex. In the presence of time-reversal symmetry, the velocity

TABLE I. Symmetry property of the functions representing the
linear and second-order conductivities under inversion and time
reversal. The first two columns indicate cases of the presence (+)
or the absence (−) of inversion (I) and time-reversal (TR) symmetry.
The last four columns indicate that each tensor vanishes (0) or is not
restricted (−) by corresponding symmetries.

I TR σ σ� C D

− − − − − −
− + − 0 0 −
+ − − − 0 0
+ + − 0 0 0

and the Berry curvature satisfy va(n,−k) = −va(n̄, k) and
�a(n,−k) = −�a(n̄, k), respectively, where n̄ is the band
index that is the counterpart of the time-reversal pair of n.
Thus, regarding the linear response, the intrinsic anomalous
Hall conductivity σ� vanishes in the presence of time-reversal
symmetry.

The function Cabc changes sign under either time-reversal
or inversion transformation; that is, the presence of either
symmetry forces part of the nonlinear conductivities described
by Cabc to be identically zero. On the other hand, the Berry
curvature dipole Dab vanishes in the presence of inversion
symmetry since the presence of inversion and time-reversal
symmetries imposes (�b/ka)(n,−k) = −(�b/ka)(n, k) and
(�b/ka)(n,−k) = (�b/ka)(n̄, k), respectively. More details
about the crystallographic property of the Berry curvature
dipole can be found in [19].

IV. THERMAL TRANSPORT AT ZERO TEMPERATURE

As was shown in the previous section, some of the nonlin-
ear thermal and thermoelectric conductivities are finite in the
zero-temperature limit. In the absence of the Berry curvature
dipole, they are described by a single function, Cabc(μ), and
thus, proportionality relations (11) hold between them. In
this section, these properties are examined in connection with
the relations between the linear conductivities, that is, the
Wiedemann-Franz law and the Mott formula. Throughout this
section, we consider negligible Berry curvature dipole and the
limit of the vanishing frequency and temperature.

A. Nonlinear heat current and dissipation

The proportionality relation

(L222)abc/T 2(
L0

211 + L2ω
211

)
abc

→ L (ω → 0) (56)

between the zero-temperature limits of the nonlinear conduc-
tivities for the heat current is explained by the heat generated
by external fields. Let us consider the equation for the elec-
tronic energy in the presence of the external fields. In general,
a static equation of the energy is obtained by multiplying
εk − μ by the Boltzmann equation (14) and integrating over
the momentum to give

〈εk − μ〉 = −τ∇ · 〈vvv(εk − μ)〉 + τE · 〈−evvv〉, (57)
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where 〈· · · 〉 = ∫k · · · f . The left-hand side of (57) is the excess
kinetic energy density of the electrons measured from the
local-equilibrium value and is proportional to the dissipation
rate of the kinetic energy by relaxation processes. The first
term of the excess kinetic energy represents the divergence of
the heat current, which appears when the heat current depends
on the temperature. The second term represents the Joule heat
generated by the acceleration of the electrons by an electric
field. The Lorentz number appears when we estimate the ratio
of two energies in the linear regime as

−∇ · 〈vvv(εk − μ)〉
E · 〈−evvv〉 = −∇ · [L22(−∇T/T )]

E · L11E
→ L |∇T |2

|E|2
(58)

in the zero-temperature limit since the linear electric and
thermal conductivities are related by the Wiedemann-Franz
law.

With these equations in mind, the nonlinear heat current
induced by an electric field can be rewritten as

jT
a = lim

T →0

∫
k
va[τE · (−evvv)] f ω→0

E . (59)

This expression is analogous to the linear thermoelectric cur-
rent jT

a = (L21)abEb = ∫k va(εk − μ) f ω→0
E , where the excita-

tion energy εk − μ is replaced by the Joule heat τE · (−evvv)
appearing in (57). In a similar way, the nonlinear heat current
induced by the square of a temperature gradient is rewritten as

jT
a = lim

T →0

∫
k
va[−τvvv(εk − μ) · ∇] f∇T , (60)

which, in comparison with the linear thermoelectric current
representing the transport of the excitation energy, can be
regarded as a transport of the divergence of the heat current
since −τ∇ · 〈vvv(εk − μ)〉 = ∫k[−τvvv(εk − μ) · ∇] f .

Expressions (59) and (60) explain intuitively the reason
why a heat current flows in the zero-temperature limit because
the zero-temperature part of the second-order conductivities
represents the transport of the Joule heat and the divergence
of the heat current, respectively, not of the thermal exci-
tation energy. This also explains the reason why the zero-
temperature nonlinear conductivities obey the proportionality
relation because the Joule heat and the divergence of the
heat current are related by the Lorentz number in the linear
regime, as shown in (58) (see Appendix B for a bit more
rigorous argument regarding the relation between the linear
and nonlinear conductivities).

B. Nonlinear electric current and charge density

The proportionality relation

(L122)abc/T 2

2
(
L0

111 + L2ω
111

)
abc

→ L (ω → 0) (61)

of the electric current can also be explained by the linear
conductivities. The equation of the electric charge density is
obtained by integrating the Boltzmann equation (14) as

〈−e〉 = τ

[
−eE · ∂〈−evvv〉

∂μ
− ∇T · ∂〈−evvv〉

∂T

]
, (62)

where the gradient of the chemical potential is identified with
the electric field −∇μ = −eE. The left-hand side of (62)
is the electric charge density measured from its equilibrium
value. Provided external fields are applied in the x direction,
the ratio of the electric charge density induced by a tempera-
ture gradient and that by an electric field is given in the linear
regime by

−∇T · (∂〈−evvv〉/∂T )

−eE · (∂〈−evvv〉/∂μ)
→ L |∇T |2

|E|2 , (63)

where the Mott formula (L12)xx/T = −eLT (∂ (L11)xx/∂μ) is
used.

The property (63) explains intuitively the proportionality
relation since the nonlinear electric current induced by an
electric field and that induced by a temperature gradient are
rewritten as

2 ja =
∫

k
va

[
−eτE · (−evvv)

∂

∂μ

]
f ω→0
E , (64)

ja = lim
T →0

∫
k
va

[
−τ∇T · (−evvv)

∂

∂T

]
f∇T , (65)

where the square brackets in (64) and (65) correspond to the
electric charge density appearing in the first and second terms
on the right-hand side of (62), respectively. Therefore, the
second-order electric current represents the transport of the
electric charge raised by the external fields.

V. APPLICATIONS

As applications of our theory, we estimate the thermal
and thermoelectric coefficients of the electronic systems in
noncentrosymmetric crystals. Here, we focus only on the
zero-temperature part of the nonlinear conductivity since it
dominates the transport at sufficiently low temperature.

A. The 1H monolayer of MoS2

First, we consider the 1H-type monolayer of the transition-
metal dichalcogenides, where the crystal has threefold ro-
tational symmetry and broken inversion symmetry. The
low-energy effective Hamiltonian accompanied by Zee-
man coupling with an out-of-plane magnetic field is given
by [24]

H = k2

2m
+ τ zλkx

(
k2

x − 3k2
y

)− Zσ z − SOσ zτ z, (66)

where σ z and τ z are ±1 for each component of the spin and
valley (the K and K ′ points) degrees of freedom, respectively.
We assume that the Fermi level is above the bottoms of the
four energy bands, that is, μ > |Z| + |SO|. Perturbatively
expanding by the parameter λ, the Fermi surface is modified
up to the linear order in λ as

kF =
√

2mμστ − 2m2μστ τ
zλ cos 3θ (67)

as a function of θ = tan−1(ky/kx ), where μστ = μ + Zσ z +
SOσ zτ z. The electric current has no nonreciprocal con-
tribution within the relaxation time approximation due to
the cancellation by the spin and valley components [25].
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Moreover, we cannot expect the nonlinear Berry curvature
effect described by the Berry curvature dipole since rotational
symmetry cancels out the Berry curvature dipole in two
dimensions. However, the Berry curvature dipole in the 1T ′
and 1Td structures of the transition-metal dichalcogenides is
being studied widely [26–30]. Notice that the presence of the
nonlinear electric conductivity J111 due to the Berry curvature
dipole in these materials implies the presence of another
nonlinear conductivity Jω

212 since the leading terms of these
conductivities are described by Dab.

1. Nonlinear heat current

The nonlinear dc heat current induced by an electric field
at zero temperature is given by

jT = 12e2τ 2mλZSO

π (1 + ω2τ 2)

(
|Ex|2 − |Ey|2

−ExE∗
y − E∗

x Ey

)
. (68)

The dc heat current flows in one direction and can be dis-
tinguished from the other heat currents, which oscillate and
have vanishing total current when averaged over a period that
is much longer than the inverse of the frequency. From the
proportionality relation (11), the nonlinear thermal conductiv-
ity is also nonvanishing in the zero-temperature limit and is
given by

jT = 8πτ 2mλZSO

(
(∇xT )2 − (∇yT )2

−2(∇xT )(∇yT )

)
. (69)

Regarding the derivative relation (13), this result is consistent
with the vanishing nonlinear electric current since the nonlin-
ear heat current is independent of the chemical potential.

Even though the nonlinear heat currents (68) and (69)
dominate the external-field-driven heat current at a sufficiently
low temperature, they are overwhelmed by the diffusion of
dissipated heat. The external-field-driven heat current is pro-
portional to the width of the sample, and the diffusion of heat
is proportional to the area of the sample. The ratio of these
two contributions is given by

α = | jT |
L j · E

= 6τmλZSO

μL
, (70)

where jT is given in (68) and j is the linear electric current.
For MoS2, parameters estimated by ab initio calculations

h̄2/2m = 8.15 eV Å
2
, λ = −4.42 eV Å

3
, and SO = 7.5 meV

[24,31]; empirical parameters from n � 2mμ/π ∼ 1014 cm−2

and σ−1
xx � π/2e2τμ = 140 � [25]; and the assumption

Z = 0.1 meV give α ∼ 10−6 for a sample with the linear
dimension L ∼ 1 μm. This result indicates that 10−6 of the
heat dissipated in a sample is transported in one direction due
to the nonlinear effect.

2. Nonlinear Ettingshausen and Hall effects

Here, we consider a setup consisting of a transition-metal
dichalcogenide monolayer terminated by two electrodes. If
we apply an electric field in the y direction between the two
electrodes, the nonlinear heat current flowing in the x direction
will be safely separated from the diffusion of the dissipated
heat flowing almost into the electrodes (in the y direction). If

the boundary perpendicular to the x direction is open, the non-
linear heat current generates a temperature difference and an
electric potential difference between two boundaries to form a
stationary state. These nonlinear Ettingshausen and nonlinear
Hall effects are estimated by requiring the transverse heat and
electric current to vanish. Then, we obtain

−∇xT = 18e2τmλZSO

aπ2μT (1 + ω2τ 2)
|Ey|2, (71)

Ex = 6eτmλZSO

aμ2
|Ey|2, (72)

where a = 1 − π2/3β2μ2. Considering a temperature far be-
low the chemical potential (kBT  μ) and a frequency ω

of the electric field much smaller than τ−1, we can replace
a and 1 + ω2τ 2 by unity. The coefficient of the nonlinear
Ettingshausen effect of MoS2 multiplied by the temperature is
T (−∇xT/|Ey|2) = −3.5 K2μm/V2 and that of the nonlinear
Hall effect is Ex/|Ey|2 = −3.4 × 10−7 μm/V from the same
parameters used to estimate (70). Owing to the temperature-
independent part of the nonlinear conductivity, the nonlinear
Ettingshausen effect can be enhanced as the temperature
becomes lower.

B. Polar semiconductor BiTeX (X = I, Br)

Next, we consider a polar semiconductor BiTeX (X =
I, Br), in which inversion symmetry is broken by the order
of stacking layers [32]. The inversion asymmetric crystal
structure generates large bulk Rashba coupling. Although
the Berry curvature dipole of this material has been studied
under pressure [33], we focus only on nonlinear transport
independent of the Berry curvature, that is, that described by
Cabc. We consider the low-energy effective Hamiltonian under
an in-plane magnetic field applied in the y direction, given
by [34]

H = k2
z

2m‖
+ k2

x + k2
y

2m⊥
+ λ(kxσ

y − kyσ
x ) − Zσ y. (73)

Here, we assume that the Rashba parameter λ is positive.
Results for a negative λ can be obtained from the positive
case by the spatial inversion, which inverts the sign of the
second-order conductivities.

Let us first estimate two-dimensional conductivities carried
by the electrons in the two-dimensional section of the whole
Brillouin zone by fixing μ − k2

z /2m‖. The three-dimensional
conductivity is evaluated by integrating the two-dimensional
conductivity over kz. The shape of the two-dimensional Fermi
surface changes as kz changes. There are three regions in the
space spanned by Z and μ − k2

z /2m‖ distinguished by the
Fermi surface topology and the helicity. The three regions
are (I) −|Z| − m⊥λ2/2 < μ < |Z| − m⊥λ2/2, having a
single Fermi surface, (II) |Z| − m⊥λ2/2 < μ < 2

Z/2m⊥λ2,
having two Fermi surfaces with the same helicity, and (III)
2

Z/2m⊥λ2 < μ, having two Fermi surfaces with opposite
helicities [34] (Fig. 1). Notice that, on the boundary between
regions II and III, the Fermi level lies at the charge neutral
point of the linear dispersion, where the density of states of
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FIG. 1. (a) The two-dimensional nonlinear conductivity of the
electric current [∝(L0,2D

111 )xxx/Z ∝ (L2D
122)xxx/Z] of BiTeX is shown

as a function of the chemical potential and Zeeman coupling.
(b) The two-dimensional nonlinear conductivity of the heat current
[∝(L0,2D

211 )xxx/Z ∝ (L2D
222)xxx/Z] in BiTeX is shown.

the inner Fermi surface vanishes and the semiclassical picture
is no longer applicable.

1. Electric current

The electric conductivity up to second order in the electric
field was reported in [34] and is given by

(
L0,2D

111

)
xxx = 3e3τ 2

16π (1 + iωτ )

Z√
2m⊥μ′ + O

(
T 2,2

Z

)
(74)

in region II, where μ′ = μ + m⊥λ2/2 is the chemi-
cal potential measured from the bottom of the energy
band, and by (L0,2D

111 )xxx = O(T 2,2
Z) in region III. From

(11), the nonlinear thermoelectric conductivity is obtained
with (L2D

122)xxx/T 2 = 4L(1 + iωτ )(L0,2D
111 )xxx. Numerical in-

tegration is performed to estimate the nonlinear electric

FIG. 2. For BiTeX (X = I, Br), (a) the density of states in
units of

√
m3

⊥m‖λ/π 2, (b) the three-dimensional nonlinear elec-
tric conductivity (L0,3D

111 )xxx/Z [proportional to the thermoelectric
conductivity (L3D

122)xxx/Z] in units of 3e3τ 2
√

m‖/m⊥/16π 2(1 +
iωτ ), and (c) the three-dimensional nonlinear thermoelectric con-
ductivity (L0,3D

211 )xxx/Z [proportional to the thermal conductivity
(L3D

222)xxx/Z] in units of 3e2τ 2λ2√m⊥m‖/8π 2(1 + iωτ ) are plotted
as functions of the chemical potential μ in units of m⊥λ2. All
quantities are estimated in the limit of the vanishing magnetic field
(Z → 0).

conductivity (L0,2D
111 )xxx/[e3τ 2Z/4πm⊥λ(1 + iωτ )], which is

shown in Fig. 1(a).
Let us analytically estimate the three-dimensional non-

linear electric conductivity. A magnetic field of 1T corre-
sponds to Z/m⊥λ2 ∼ 6 × 10−3 for BiTeI, and Z/m⊥λ2 ∼
2 × 10−2 for BiTeBr [34], using parameters m⊥ = 0.15me (me

is the electron mass), m‖ = 5m⊥, and λ = 3.85 eV Å for BiTeI
and λ = 2.00 eV Å for BiTeBr estimated by an ab initio cal-
culation. So it is reasonable to evaluate the three-dimensional
conductivities in the vanishing-magnetic-field limit, where the
two-dimensional conductivity divided by Zeeman coupling
L0,2D

111 /Z is finite while the conductivity itself vanishes [34].
In this limit, it is possible to avoid considering the contribution
from region I, where the analytical expression for the two-
dimensional conductivities is hard to obtain (see Fig. 1). We
obtain

(
L0,3D

111

)
xxx �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3e3τ 2Z
√

m‖/m⊥
32π (1 + iωτ )

(−m⊥λ2/2 < μ < 0),

3e3τ 2Z
√

m‖/m⊥
16π2(1 + iωτ )

cos−1
√

μ

μ′ (μ > 0),

(75)

after integrating over kz [Fig. 2(b)].
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2. Heat current

In two dimensions, the thermoelectric conductivity of the
heat current induced by the electric field is given by

(
L0,2D

211

)
xxx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− 3e2τ 2Z

8π (1 + iωτ )

√
2m⊥μ′

m⊥
+ O

(
T 2,2

Z

)
(II),

− 3e2τ 2Z

8π (1 + iωτ )
λ + O

(
T 2,2

Z

)
(III).

(76)

From (11), the nonlinear thermal conductivity is obtained
with (L2D

222)xxx/T 2 = 2L(1 + iωτ )(L0,2D
211 )xxx. In the entire re-

gion, numerical estimation of the nonlinear conductivity
(L0,2D

211 )xxx/[e2τ 2λZ/4π (1 + iωτ )] is shown in Fig. 1(b). Un-
like the case of the electric current, the nonlinear heat current
is finite even if the Fermi surface has opposite helicities (seen
in region III).

The three-dimensional nonlinear conductivity of the heat
current is evaluated in the same manner as the electric current
case and is given by

(
L0,3D

211

)
xxx = − 3e2τ 2Z

√
m‖/m⊥

8π2(1 + iωτ )

×
{

πμ′/2 (−m⊥λ2/2 < μ < 0),√
μ(μ′ − μ) + μ′ cos−1√μ/μ′ (μ > 0).

(77)

The derivative relation (13) indicates that the positive nonlin-
ear electric conductivity (75) leads to monotonically decreas-
ing thermoelectric conductivity [see Fig. 2(c)].

3. Nonlinear Seebeck effect

The density of states is given by [Fig. 2(a)]

dn

dμ
=
√

m3
⊥m‖λ

π2

⎧⎨
⎩

π
2 (−m⊥λ2/2 < μ < 0),

cos−1
√

μ

μ′ +
√

2μ

m⊥λ2 (μ > 0).
(78)

The second term of the density of states for μ > 0 converges
to that for the quadratic energy band without Rashba coupling
dn/dμ = √2m‖μm⊥/π2 in the limit λ → 0. The empiri-
cal value n = 4 × 1019 cm−3 for BiTeI [35] corresponds to
μ/m⊥λ2 = −0.24 (μ′ = 75 meV), and n = 4 × 1018 cm−3

for BiTeBr corresponds to μ/m⊥λ2 = −0.32 (μ′ = 14 meV).
Thus, it is legitimate to consider the case μ < 0, where
conductivities have relatively simple forms.

We consider a setup consisting of a sample terminated by
two heat baths at different temperatures. The ratio of the linear
and nonlinear Seebeck coefficients is given by

SNL

SL
= (L122)xxx(∇xT )2/T 2

(L12)xx(−∇xT )/T
= 3τZ

2m⊥λ

∇T

T
. (79)

When a magnetic field of 1 T and a temperature difference
T/T = 0.1 between both sides of a sample with a linear
dimension of 1 μm are applied, empirical values g ∼ 60 [36]
and (L11)−1

xx = 0.3 m� cm for BiTeI [32] give SNL/SL =
4 × 10−5.

VI. CONCLUSION

We studied nonreciprocal thermal and thermoelectric trans-
port phenomena of electrons resulting from an inversion-
symmetry-broken energy band structure. We derived the
electric, thermoelectric, and thermal conductivities up to sec-
ond order in an electric field and a temperature gradient
by solving the Boltzmann equation with the relaxation time
approximation. These second-order conductivities describe
the nonreciprocal transport of the electric charge and the
heat.

The nonlinear conductivities due to the nonequilibrium
distribution function are nonvanishing when both inversion
and time-reversal symmetries are broken, and those due to
the combination of the nonequilibrium distribution function
and intrinsic Berry curvature effect are nonvanishing when
inversion symmetry is broken. The nonlinear conductivities
are related to each other by proportionality or derivative
relations, which originate from the fact that all the non-
linear conductivities defined in this paper are formulated
by two functions. Moreover, the leading-order terms of the
nonlinear thermal and thermoelectric conductivities in the
low-temperature (Sommerfeld) expansion are independent of
temperature, unlike the corresponding linear conductivities.
We explained the proportionality relation and the temperature
independence by the fact that the nonlinear electric and heat
currents represent the transport of an electric charge variation
and heat generated by external fields, respectively.

We have estimated the temperature-independent part of
the nonlinear conductivities for the 1H monolayer of the
transition-metal dichalcogenide MoS2 and the polar semi-
conductor BiTeX (X = I, Br) by using the low-energy ef-
fective Hamiltonian. In the transition-metal dichalcogenide
monolayer under an out-of-plane magnetic field, we showed
that the nonreciprocal heat current appears by applying an
electric field or a temperature gradient. We also showed that
the nonreciprocal heat current can be separated from the other
currents in a sample and that the nonlinear Ettingshausen
effect can be a signature of the nonlinear heat current. In
BiTeX under an in-plane magnetic field, both nonlinear elec-
tric and heat currents occur in the longitudinal direction. We
estimated the nonlinear contribution to the Seebeck coefficient
in comparison with the linear contribution.
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APPENDIX A: THE LEADING-ORDER CONTRIBUTIONS

In this Appendix, we present all the leading terms in the low-temperature expansion of the second-order conductivities
studied in this paper. There are 14 terms representing the nonlinear electric and heat currents (when a conductivity tensor
Li jk is decomposed to Ii jk and Ji jk , we count them distinctively as two.) The nonlinear electric and heat currents are given by(

ja

jT
a

)
� Re

{
− e2

2(1 + iωτ )

[
τ 2

(−eC′′
abc/2

C′
abc

)
+ τ

( −eεabd Dcd

π2T 2εabd D′
cd/3

)]
EbE∗

c

− e2

2(1 + iωτ )

[
τ 2

1 + 2iωτ

(−eC′′
abc/2

C′
abc

)
+ τ

( −eεabd Dcd

π2T 2εabd D′
cd/3

)]
EbEce2iωt

− π2eT

3(1 + iωτ )

[
τ 2

2

(−e[1 + 2/(1 + iωτ )]C′′′
abc

[3 + 4/(1 + iωτ )]C′′
abc

)
− τ

(−e[εbcd D′
ad + (1 + iωτ )εabd D′

cd ]

εbcd Dad + (1 + iωτ )εabd Dcd

)]
Ebeiωt (−∇cT )

}

− π2τ 2

3

(−eC′′
abc

C′
abc

)
(∇bT ∇cT + T ∇b∇cT ), (A1)

where the prime indicates the derivative with respect to the chemical potential. Here, we notice that subleading terms are not
shown, while some of them are of the same order as the leading term of the conductivity J211.

APPENDIX B: PROPORTIONALITY RELATIONS
OF LINEAR AND NONLINEAR CONDUCTIVITIES

Let us explain the proportionality relation between
the second-order conductivities (11) from the perspective
of the Wiedemann-Franz law for the linear conductivities.
By the Sommerfeld expansion of the integrand of the linear
electric and thermal conductivities, we obtain

(L11)ab = −e2τ

∫
k

cab(μ; n, k) + O(T 2), (B1)

(L22)ab

T
= −π2τT

3

∫
k

cab(μ; n, k) + O(T 3), (B2)

where cab(ε; n, k) = vavbδ(ε − εk ) and n is the band index.
This indicates that the same relation as the Wiedemann-Franz
law holds for each momentum and the band index. Also,
relation (58) between the Joule heat and the divergence of the
heat current holds for each momentum and the band index in
the linear regime, that is,

τE · (−evvv) f ω→0
E = e2τ 2EaEbcab(μ; n, k) + O(T 2), (B3)

− τ∇ · vvv(ε − μ) f∇T

= π2τ 2

3
(∇aT )(∇bT )cab(μ; n, k) + O(T 2). (B4)

Notice that integrating over the momentum and summation of
the band index turns the above equations back to (58).

Then, we rewrite the zero-temperature limit of the second-
order heat currents (59) and (60) in terms of cab as

jT
a = e2τ 2EbEc

∫
k
vacbc(μ; n, k) + O(T 2), (B5)

jT
a = π2τ 2

3
(∇bT )(∇cT )

∫
k
vacbc(μ; n, k) + O(T 2), (B6)

where the proportionality (L222/T 2)/(L0
211 + L2ω

211) →
L(ω → 0) between the second-order conductivities becomes
obvious and is reminiscent of the Wiedemann-Franz law of
the linear conductivities.

In a similar way, the electric charge variations induced by
an electric field and a temperature gradient are related by the
Mott formula, and the relevant second-order electric currents
(64) and (65) are written by

2 ja = e2τ 2EbEc

∫
k
(−eva)

dcbc(μ; n, k)

dμ
+ O(T 2), (B7)

ja = π2τ 2

3
(∇bT )(∇cT )

∫
k
(−eva)

dcbc(μ; n, k)

dμ
+ O(T 2),

(B8)

where dcbc(μ; n, k)/dμ appears in describing the Mott for-
mula in the linear response regime.
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