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We reexamine the nature of the ground states of bilayer graphene at odd integer filling factors within a
simplified model of nearly degenerate n = 0 and n = 1 Landau levels. Previous Hartree-Fock studies have found
that ferroelectric states with orbital coherence can be stabilized by tuning the orbital splitting between these
levels. These studies indicated that, in addition to a uniform ferroelectric state, a helical ferroelectric phase with
spontaneously broken translational symmetry is possible. By performing exact diagonalization on the torus, we
argue that the system does not have a uniform coherent state but instead transitions directly from the uniform
incoherent state into the ferroelectric helical phase. We argue that there is a realistic prospect to stabilize the
helical ferroelectric state in bilayer graphene by tuning the interlayer electric field in a model that includes all
single-particle corrections to its zero energy eightfold multiplet of Landau levels.
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I. INTRODUCTION

The last two decades have witnessed a rapid and
formidable increase in the richness of the quantum Hall
physics of monolayer and bilayer graphene [1-15]. In particu-
lar, bilayer graphene (BLG) possesses a unique zeroth Landau
level manifold which features two nearly degenerate cyclotron
orbital degrees of freedom with n =0 and n = 1 character
[16], in addition to the two spins and two valleys making
up a manifold with a total of eight levels. The interplay of
strong Coulomb interactions, that stabilize integer quantum
Hall states via quantum Hall ferromagnetism [17], and the
single-particle splitting terms, can lead to an intricate variety
of coherent states in this system [18-23]. A notoriously inter-
esting possibility, pointed out in Ref. [18], is the coherence
between the states with different orbital characters n = 0 and
n = 1. This coherence breaks spontaneously the real space
inversion symmetry, resulting in the formation of a type of
quantum Hall ferroelectric state, which is expected to have
a linearly dispersing Goldstone mode (this form of quan-
tum Hall ferroelectric state is distinct from that proposed in
Ref. [24] which results from spontaneous valley polarization).
Following these initial studies, it was later argued based on
Hartree-Fock theory [21], that an analog of Dzyaloshinskii-
Moriya interaction allowed by the breaking of inversion sym-
metry, can drive the softening of this Goldstone mode at a
finite wave-vector, leading to the formation of ferroelectric
helical state. The phase diagram as a function of the single-
particle splitting of the n =0 and n = 1 orbitals obtained
via Hartree-Fock is depicted in Fig. 1(b), which additionally
features a Wigner crystal state.

To this date there are very few studies incorporating cor-
relation effects beyond Hartree-Fock for this problem. One
exact diagonalization study [25] restricted itself to the case
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of zero single-particle splitting between n =0 and n =1
orbitals, and found that in such case the ground state is a
trivial integer quantum Hall state adiabatically connected to
the state fully polarized into the n = 0O orbital with a full
gap to all excitations. As we will see, however, the interesting
ferroelectric states predicted by Hartree-Fock theory tend to
occur at negative splitting when the n = 1 orbital is ener-
getically favored, explaining why they were not observed in
Ref. [25].

In this paper we concentrate on phases with full spin and
valley polarization and just keep the two orbital degrees of
freedom n = 0 and n = 1, and restrict to total filling factor
v = 1. Using the torus geometry we diagonalize exactly the
Hamiltonian for up to 14 electrons, which allows us to obtain
information on ground states and some of the low-lying ex-
cited states. We pay special attention to the role of a nontrivial
particle-hole symmetry, identified in Ref. [26], which maps
states with filling v onto states with 2 — v in the two-orbital
manifold. Remarkably, this symmetry acts nontrivially on the
bare single-particle splitting between the n =0 and n = 1
orbitals, and for a Hamiltonian to be particle-hole invariant
under this symmetry it must have a negative splitting favoring
the n = 1 orbital.

We will show that the simple polarized incoherent phase
observed in Ref. [25] can be captured by perturbation the-
ory, and that its excited states can be reproduced by time-
dependent Hartree-Fock (TDHF) theory. We also find that
for some range of orbital splitting there is evidence for a
phase with broken translation symmetry that we identify
as the helical ferroelectric phase seen in HF calculations.
However, we find no evidence for a spatially uniform orbitally
coherent state, because we do not observe any translationally
invariant phase with its characteristic Goldstone mode. We
depict the approximate phase diagram resulting from our

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.115139&domain=pdf&date_stamp=2019-03-29
https://doi.org/10.1103/PhysRevB.99.115139

JOLICOEUR, TOKE, AND SODEMANN

PHYSICAL REVIEW B 99, 115139 (2019)

(@)  Exact Diagonalization:

Incoherent Ferroelectric Incoherent

n=1 polarised Helix n=0 polarised
hcg ~ —0.22 her ~—0.1
(b)  Hartree-Fock:
Incoherent Uniform Ferroelectric Uniform Incoherent
n=1 polarised coherent Helix coherent n=0 polarised

%c OAll h

wc wc

FIG. 1. Summary of the phases observed in the mixed n = 0 and
1 orbitals as a function of the orbital single- particle splitting .
(a) The exact diagonalization results of the current study indicate the
presence of only two phases: an incoherent adiabatically connected
to the maximally polarized states, and a ferroelectric helical state.
The red star indicates the orbital bias at which particle-hole sym-
metry is achieved for which the system has equal population of the
n =0 and 1 orbitals. (b) The Hartree-Fock studies find two other
phases: the uniform orbitally coherent ferroelectric and a Wigner
crystal (WC); see, e.g., Ref. [21] for a detailed estimate of the
boundaries.

study in Fig. 1(a). We will also show that there is a realistic
prospect to realize the ferroelectric helical state in BLG. Re-
cent experiments have achieved a detailed understanding and a
remarkable degree of control over the single-particle splittings
in the zeroth Landau level manifold of BLG [27-29]. Because
the valley degree of freedom is locked to the layer index in
the zeroth Landau level of BLG, this degree of freedom can
be easily controlled by applying an interlayer bias. The spin
splitting on the other hand can be controlled with in-plane
fields. It is therefore, possible to achieve the conditions in
which the system is valley and spin polarized and the relevant
active degrees of freedom are the n = 0 and n = 1 orbitals.
The splitting between the n = 0 and n = 1 levels is intimately
related to hopping terms that break particle-hole invariance
in bilayer graphene [30]. We will also show, however, that
there is a way to experimentally control the splitting between
the n = 0 and n = 1 orbitals by tuning the interlayer bias to
sufficiently large values.

Our paper is organized as follows. In Sec. II we discuss
the realistic band structure of BLG and show that the level
crossing between n = 0 and n = 1 lies within a realistic range
of parameters. In Sec. III we explain the peculiar particle-hole
symmetry of the model obtained by assuming full spin and
valley polarization. Section IV contains some definitions of
finite-size torus wave functions. Section V summarize the
Hartree-Fock treatment. In Sec. VI we give results of exact di-
agonalization studies. Section VII is devoted to the incoherent
phase and its excitations. Section VIII contains our findings
about the broken translation symmetry phase. Our conclusions
are presented in Sec. IX.

II. BAND STRUCTURE OF BILAYER GRAPHENE

The four-band model containing all leading corrections to
bilayer graphene’s Hamiltonian for a single spin and valley in
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FIG. 2. Landau levels for a single spin valley in BLG as a
function of interlayer bias. The bias can tune a level crossing between
n =0 and n = 1. There is a sizable energy separation from higher
Landau levels throughout, justifying the projection into the two
n=0andn=1LLs.

the presence of a magnetic field has the form [30]
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Here wg = ﬁvo/ﬂ ~ 30.6 x «/B[T]meV, with the magnetic
length ¢ = /hic/eB, yy ~ 2.61 eV, y; 361 meV, 3 =
283 meV, y4 &~ 138 meV, A’ ~ 15 meV, and u is the energy
difference between top and bottom layers controlled by a
perpendicular electric field. This Hamiltonian has been suc-
cessfully employed in detailed modeling of Landau levels for
integer [27] and fractional quantum Hall states recently [28].

In this Hamiltonian the terms A’ and y4 break particle-hole
symmetry and induce a splitting betweenthe n = 0 and n = 1
LLs at zero interlayer bias # which favors n = 0. This renders
the ground state trivially polarized into n = 0 at u = 0, and
therefore under normal conditions one would not expect the
physics that we will describe in this paper to appear. However,
as illustrated in Fig. 2, the interlayer bias can be used to
control the splitting between these levels and successfully
induce a level crossing, making the n = 1 lower in energy
as we desire. The value required to achieve this crossing is
independent of the magnetic field and, neglecting the trigonal
warping term (y3 — 0), can be estimated to be

5 2
Uy = van + A’(l + <ﬁ> ) ~532meV.  (2)
Yo Yo

which should be within experimental reach. In Fig. 3 we
show this value as green dots (including the trigonal warp-
ing term). At this value one expects the boundary between
the state fully polarized into n = 0 and the coherent states.
The orange dots are the required values in order to overcome
the splitting produced by the exchange interactions with the
vacuum (analogous to the well-known Lamb shift in atomic
physics) [26] for bare Coulomb interactions so that the system
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FIG. 3. Expected schematic phase diagram as a function of
interlayer bias u and perpendicular magnetic field. Identification
of phases come from Hartree-Fock calculations. The green dots
are where the bare single- particle energies of n =0 and n = 1
become degenerate. The yellow dots lie where approximate particle
symmetry is expected in the presence of Coulomb interactions, and
the blue dots are the expected locations at which the system polarizes
into n = 1. We assume that the bilayer graphene sample is on top of
a hexagonal boron nitride substrate with screening constant € ~ 6.6
as in Ref. [28].

has approximate particle-hole symmetry. The blue dots depict
the expected Hartree-Fock boundary between coherent and
fully n = 1 polarized states [21]. Taking bare Coulomb inter-
actions, these two boundaries correspond to the single-particle
energy splittings given respectively by

e 1 [n

et16V 2’

1 [n
Ey — Ep = €orb.pol. = sV 72

Finally, in Fig. 4 we illustrate the overlaps of the LL levels in
the full four-band model with the idealized two-band model,

E; —Ey = €Lamp =
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as a function of the interlayer bias and field. We see an
excellent overlap for n =0 and a good overlap for n = 1.
The latter is known to decrease as the magnetic field increases
[28], but as we see there is no substantial change as a function
of interlayer bias.

III. PARTICLE-HOLE SYMMETRY BETWEEN
n =0AND n =1 LANDAU LEVELS

Consider the two-band model of bilayer graphene:

_ 0 (T, — T, )2 /2m
HK__(—(HX+JF5f/bn* 0 >’ ©)

where m* is an effective mass and I'l, , = p, , + eA, ,/c. This
is the Hamiltonian concerning valley K, and spin is polarized.
The single-particle spectrum has then two zero-energy states,

Eoyx =Eix =0, 4)

and the remainder of the spectrum depends upon the magnetic

field:
Eux = sgn(m)we/|n|(|n] — 1),

where n is a positive or negative integer and w, = eB/m*.
The corresponding eigenstates are given by

In| =2, &)

d, = (%") n=0,1; (6)
L ( ) .
P, = — , <=2
V2 <¢|n|—2 "
®, = i(“"") n>+2, (7
\/E ¢|n|—2

where ¢, are standard cyclotron eigenstates for particles with
parabolic dispersion relation. We now consider two-body
interactions written in second quantization:

1 P
V= E Z Vizza Cni, i Cnz, o O3 j3Cnasja ®)
1234

with Landau level indices n; = 0, 1 and guiding center coor-
dinates j;, and the big indices {1234} are a shorthand for the
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FIG. 4. Overlaps between the ideal two-band model Landau level wave functions and the four-band model wave functions, as a function

of interlayer bias and magnetic field.
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combined indices. We now use the particle-hole conjugation
operator C which is defined by

CTCLC = Cpj. 9
When acting on Eq. (8) we find

CVC =V + ) clex(WVimam + Vi — Vot — Vi)
12m

+ const. (10)

The particle-hole transformation generates an additional one-
body term which can written as

AOZCSmCOm + A1 Zcimclmv (11)
m m

The constants Ap; are geometry dependent and they are
distinct: Ay # A1. So even if we start with exactly degenerate
n =0 and n =1 LLs the particle-hole symmetry leads to a
nontrivial splitting between them. If we now focus on the
state with total filling factor v = 1 then the particle-symmetry
above implies that the full spectrum of the Hamiltonian Eq. (8)
should be the same after addition of the one-body splitting,
Eq. (11).

IV. TORUS DEFINITIONS

We consider a torus that is obtained by periodic boundary
conditions applied to a rectangular domain spanned by vectors
L, = L& and L, = L,§. The aspect ratio is defined as

AR = Lt 12

= Z (12)

Periodic boundary conditions are imposed by magnetic
translations [31] #(L) = exp (%L -IT — i%). Using the
Landau gauge A = Bxy for in this study, these act as
t(y(r) = exp(b’z‘—;L)w(r + L). The boundary conditions
read (L 2)¥ (r) = ¥ (r). The two conditions are compatible
only if the rectangle is pierced by an integral number of flux

quanta:
Ly x Lp|  L.L,
T Tomer T 2
The n = 0 states can be written as [32]

(13)

1 it N, 2
o (2) = —ﬁ[m/oNﬂ (’” “’Z\Na)e‘w, (14)
ELQ\/E L2
where m =0, 1,...,(Ny — 1), z = x + iy, and we have used

Jacobi elliptic functions with characteristics [33]

o0
a _ in T (n+a)*+2i(n+a)(z+bm)
z9|:bi|(z|t)_ E e . (15)

n=—oo
Higher Landau orbitals are obtained using the LL rais-
ing operator, which in our gauge takes the form at =
%(iax +0o,— %)= Lz(ziaz — ). Thus we have
AT\

@'
Nn,j(2) = ﬁﬂno(z)

1 x kL, 2mjt
= N'g (- =
(Ly/m)1/? ; (Z 14 L, >

kL, 2mj
X eXp | —1¢ £_2+L_ y
y

1 27 j2\°
_ﬁ(x—ka— ”L] )) (16)
;

where H, is a Hermite polynomial. We note that 7,,,(z) is
normalized for the principal domain of the torus:

L L.
/ dy/ dx U:/m/ (.X + iy)nnm(-x + ly) = 8nn’8mm’~ (17)
0 0

V. HARTREE-FOCK TREATMENT

The difference of the spatial profile of then = O and n = 1
Landau states allows for nontrivial electric dipole structures
when both of these states are relevant to the ordering in a
partially filled Landau band. Cété, Fouquet, and Luo [21]
have elaborated the Hartree-Fock mean-field theory for such
systems. Treating the energy splitting 4 between the n = 1 and
the n = 0 orbitals as a parameter, the mean-field energy per
particle reads, in units of e?/(¢£) and having the thermody-
namic limit in mind, as

EHF 11 /=

1
+5 2 A@Up (=) (@) + (o (— ) (pr(@)]
q
1
+5 qu b(@)({px(—@)) (py(—q))
sin(2¢,) ) ((px(q)>)
—c0s(2¢9) ) \ (oy (@)

1
+5 Xq: c(@){p(=q)){p-(q))

« (cps(2<pq)
sin(2¢,)

+ 2 d@Ex @) (@) x G@).  (8)
q

where the pseudospin density operator p(q) is writ-

ten as p.(q) = —[p1.0(q) + £01(@)1/2, py(q) = [p1.0(q) —
po,1(@)1/2i, p(q) = [po,0(q) — p1,1(q)]/2, with

1 i i 2/2
pn,n’(q) = ]7 Z e igxxtiqugy €/ CZXCn/,X—q}.ZZ; (19)
¢ x

@, is the angle of vector q, and we have used real-valued
functions that eventually follow from the matrix elements of
the Coulomb interaction, defined in Ref. [21], which can be
written in closed form as

a(g) = qle 1 — \/g (14 ¢*€2/2)e T 1 1 (222 /4)
- @qzeze-‘f‘”“h (202 /4),
b(g) = qle™ 17 — \E e TCP (P2 4)

T 2
* \/;u + P 12)e T L (PR 4,
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393 292 4 p4

q £ —g2e%)2 \/— —g20%/4 3 q £ q £

S — 2med R S
)= —=¢ e st s T 16

4£4 262
X Ip(q202)4) + V2me T (L 1~

16 4
x I(q°€*/4),

d(q)==«/iquze‘f@”z—F,/§3q3e3e—ff”4kxqzez/4>
—v%m3+fﬁwfﬂmhm%7®.

Here, & can be related to the interlayer bias u but we prefer
to handle it as a parameter throughout this study. The a(q)
and c(gq) terms are anisotropic exchange coupling between
pseudospins, reminiscent of the XXZ model; the b(g) term
is basically the dipole-dipole electrostatic interaction; and
the d(q) term is a Dzyaloshinskii-Moriya type interaction
between pseudospins. We emphasize that even though the
above formulas refer to Ny flux quanta, the N, — oo limit is
implied; several assumptions in the analysis based on Eq. (18)
are applicable only this case. In the phase diagram based on
Eq. (18) the region around the particle-hole symmetric value
of h = 0 the system exhibits a pseudospin helical state, while
a uniform liquid is expected outside of this region. The latter
uniform state may exhibit orbital phase coherence with the
ensuing ferroelectric dipole ordering.

For a comparison with exact diagonalization, we consider
the Hartree-Fock approximation on the torus. By standard
mean-field decoupling of the interaction part of the Hamil-
tonian,

”H,c:% >

ny,ny,n3,ns=0

Ny—1
ni,na,n3,ny .
X § : 'Aml my,m3,ny pﬂ1171|~n4m4p”2m2,n3m3 *
my,my,ms,my=0
(20)
i
Prump'm' = CppCuint » (21)

where the matrix elements A;! 72" among the basis states
Nam are given in Eq. (25) below. The uniform state on the torus
is the one where each guiding center position is occupied by

the same linear combination of the n = 0, 1 orbitals:

Ny—1

0 0 .
|Wy) = 1_[ (cos<2> 92 T +sm<2) ’¢/2c4{m>|0).

m=0
(22)

With the definition oY, = ((O1m,0m) + (Pom, 1m))/ 25 Py =

(o1m,om ) = {Oom, 1m )21, 0y = (C0m,0m) — (Plm,1m))/2,
this state corresponds to the dipole density
sin 6 cos ¢
I_émm’ = 8mm’ = | sin@ sin ¢ . (23)
cos 6

By some algebra, we arrive at the energy expression

E
£=_€N+

N

H ) 2
cosf +Asin“ 6 + Ccos” 6

+ Bsin? 0 cos(2¢), 24)

where A, B,C,H are some constants and the energy ey
has a lengthy expression that goes to —;—é\/? for large N.
These quantities have the symmetry A(AR) — C(AR) =
A(1/AR) — C(1/AR), B(AR) = —B(1/AR), and H(AR) =
H(1/AR). Hence B vanishes for a square torus AR = 1, and
we also have B > 0 <= AR < 1. Thus, for AR > 1 we
have ¢ = 7 /2, otherwise ¢ = 0; if AR — 1/AR, the prefer-
ential direction of the pseudospins rotates by 7 /2, and there is
no preferential direction on the square torus. Numerical values
for various Ny are shown in Fig. 5. Clearly, the deviation from
the infinite-system values is a finite-size effect that disappears
with increasing Ng. We note that H is a tiny correction as
compared to &, even for small systems.
Finally we have

E—Hl: = —€N—|—h+THCOSQ~I—(A—
V()
This energy is minimized by cosf = m Figure 6
shows the 6 angle that corresponds to the pseudospin polar-
ization as a function of the bias h:f at fixed aspect ratio, as
well as the function of the aspect ratio at fixed bias values.
We conclude that the finite system size hardly changes
the Hartree-Fock prediction that the uniform phase exhibits
orbital coherence in a wide range of the orbital bias, —0.15 <
h < 0.15, irrespective from the aspect ratio. The deviation of
the orbital polarization for system sizes accessible in exact
diagonalization from the thermodynamic limit is small.

|B|)sin? 0 + C cos? 6.

VI. EXACT DIAGONALIZATION RESULTS

‘We now expose results from our studies using exact diago-
nalization for a small number of electrons in the torus geome-
try, as defined in Sec. IV. The matrix elements of the Coulomb
interaction among the single-body states in Egs. (14) and (16)
are

’
2
ny,np,n3,ng __ 1 2me

P
St = e_%(qf+q§) 621”@(11—13)
J1,J2,J3,]4 LxLy — €q

X Fm n4(qxv Q}')Fnz,ng(_QXv _QV)
x 8 s (25)

Jtia,gztis Tm,ji—ja?

where the sum over n, m also includes momenta given by g, =
27n/Ly, gy = 2wm/Ly, and 8, stands for Kronecker delta
modulo Nj. The prime over the double sum means that we
omit the n =m = 0 term, i.e., the g, = g, = 0 contribution
of the Coulomb potential due to the neutralizing background.
The form factors F, ,,(qx, qy,) encapsulate the dependence
upon orbital index n;:

Fo=1, Fi(gq)=1-3( x+q§), (26)

1
2
12

X 27
ﬁ(zq qy)- (27

I
Foi = _ﬁ(qu +qy),
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FIG. 5. (a) Values of A and C in Eq. (24) for a torus of N, = 8, 12, 16, 32. The cutoff in momentum space was |m|, [m’'| < 100N,. The
value for an infinite system would be —%\/? ~ —0.039. (b) The same for B in Eq. (24). This term would vanish for the infinite system.
(c) The same for H in Eq. (24). This term would vanish for the infinite system.

Static effects of screening can be taken into account by where the pseudomagnetic field 4 parametrizes the bare split-

multiplying the Coulomb potential 27re? /¢ by an appropriate ting between n = 0 and n = 1 Landau levels.

function. The Hamiltonian we diagonalize is thus given by If we consider the particle-hole symmetry, then the Hamil-
tonian Eq. (28) undergoes the change of field

T T
Z Aljlll ;’22 ]”33 1’14 ny,Ji nz ]zc"3 JsCna.js + th’ (28)
n, i +hN; — —(h+ Ao + ANy, (29)
’F i o 1
sl ; 25;_ ._._._._._._:
2 ] 2 —h/ el =-022 1
] [ - 20.13 ]
®1.5F 1 ®usp 0 3
[ [ - 0.13
[ [ 0.22
1r B 1+ ]
I f
(]:‘H\‘;:‘HH\H\‘H\H\HH\H\‘H\H’ 07\ L 1 PR PR PR
-0.25 -0.2 -0.15 -0.1 -0.05 O 0.05 0.1 0.15 0.2 0.25 0.5 1 1.5 2 2.5
h/ (62 Jel) aspect ratio AR = LX/Ly

FIG. 6. Left panel: The 6 angle of the uniform state that corresponds to the pseudospin polarization as a function of the bias % at fixed
aspect ratio for Ny = 12. Right panel: 6 as a function of the aspect ratio at fixed bias.
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which implies that particle-hole symmetry requires the change
h — h. — h with a special critical field h, = —1/2(Ag + Ay)
which is nonzero.

The algebra of magnetic translations can be used by build
many-body conserved momenta [34], allowing us to factor
out the degeneracy due to the center of mass momentum. If
we have N, electrons at flux Ny then one defines N = N, /N,
as the GCD when the filling fraction is p/q, i.e., N./Ny =
PN/gN and p and q are coprime. There are two conserved
momenta K., K, that are living in a Brillouin zone and are
discrete. We define two conserved infeger quantum numbers
s, t by

K, =—s, K, =-—1, (30)

where s,¢ can be taken to vary in the interval (0, N — 1)
because there is a period N, i.e., s+ N =s,1t+ N =t. The
modulus of the many-body momentum vector is then given
by

2 | s?
k= Jkr+k2= [ ]2 Lo AR (31
A= N VAR TS (D

One can now plot the eigenstates vs the total momentum K.
The quantum numbers s, ¢ form a grid of N? points, but in
fact due to discrete symmetries many of them are symmetry
related. Notably there are symmetries with respect to s —
N — s and t — N —t that are the discrete symmetries of the
rectangular unit cell. As a consequence it is enough to get
spectra in the region s, =0, ..., N/2 since reflections then
lead to all states.

There is a subtlety to note: the origin of the quantum num-
bers s, ¢ is not always zero. In fact when pg(N, — 1) = 2k + 1
the origin should be taken as sg, fp = N/2, otherwise when
pq(N, — 1) = 2k the origin is zero. It means that one has to
include a shift of N/2 in the momentum definition, Eq. (2).
This is important in practice but has no other consequences.

The way we analyze numerical results is as follows: the
nature of the phase of the system is set by the value of the
control parameters in the projected Hamiltonian. In our case
it is the pseudofield %z and any kind of screening parameter
modifying the Coulomb interaction. For fixed parameters we
put the system on a rectangle whose aspect ratio can be chosen
at will. This change will not tune the nature of the phase.
However some phases may be revealed more easily for some
special aspect ratio. In the case of incompressible fluid states
exhibiting the fractional quantum Hall effect, it is known that
they are very insensitive to the geometry as expected for a
liquid state of matter. In contrast, states which break transla-
tion symmetries are very sensitive to the aspect ratio. It is by
fine tuning that one can observe a set of quasidegenerate states
that are the hallmark of broken translation symmetry [35-37].
This happens in the case of the Wigner crystal state at low
filling factors in the lowest Landau level and also in the case
of stripe states observed at half-filling in high enough LLs.
When the aspect ratio is not tuned to the optimal value then
the spectrum is featureless, as expected for a compressible
system.
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FIG. 7. Exact eigenstates of an N, = 8 electron system at v = 1
when the bare splitting & favors the accumulation into the lowest
Landau level. The first excited states are expected to be magneto-
excitons obtained by promoting a single electron into the n = 1 LL.
This consistent with the well-defined excitation branch above the
K = 0 ground state. Here the aspect ratio is tuned to AR = 1. The
branch is flatter when we increase the n = 0 and n = 1 splitting given
by the field .

VII. POLARIZED INCOHERENT PHASE

When the splitting between the two n =0 and n =1
Landau levels is very large, then the physics becomes simple.
If for example the n = 1 states are at very large energy then
the v = 1 ground state is obtained by filling all orbitals of the
n = 0 levels. For v = 1 there is only one way to do it, and
this leads to a single Slater determinant. As a consequence
this state is uniform and has total momentum K = 0. Excited
states are also simple. The first excited state is obtained by
promoting only one electron in the upper n = 1 band. As can
be observed in Fig. 7 there is a well-defined collective mode
that we interpret as the magnetoexciton. This magnetoexciton
has a dispersion that can be computed by standard analytical
techniques. Within random-phase approximation (RPA) the
dispersion relation is given by the zeros of 1 — v, x0(q, @)
where v, = 27 e?/eq is the Fourier transform of the Coulomb
potential and x((g, @) the so-called Lindhard function:

1 n(e;) — n(e’)
_ F: 2 J
= ? D

_ e—q262/2 q2 1 1
- 2n 2 )| hwo—h+in ho+h+in]|

(32)

x0(q, )

where n(e) is the occupation number and 7 a vanishing
regulator. This leads to the RPA formula

2
1
w(I;PA —h4+ (:7>§q€ e 33)

It is also possible to derive the time-dependent Hartree-Fock
dispersion relation following the treatment of full Landau
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FIG. 8. Dispersion of the collective mode in the incoherent
phase. Here we have N, = 8§ electrons at aspect ratio 0.9 and the
level splitting is taken to be /1/[e?/(e£)] = 5. The ED points are blue
discrete points while random-phase approximation to the magnetoex-
citon is the red line and the TDHF result is green.

levels [38]:

e? 202 é?
PHE — 4 [ = Jgee 78 + [ —
K el

_ é /d_w—e—w?/z _ w_z’ (34)
el 2r \w+qf xZ| 2

which leads to the following explicit formula:

2 2 1 |n 292
TDHF _ p, E\gpe (£ _\/j —C /422
“q )t et)ay2® 1
262 2(2
X 10 q_ _Il q_
4 4
62 1 |m 292 ngz
— )= /=1 =T —) | 35
+<ee)2\/;[ ¢ 74 (35)

These two dispersion relations tend to w = h when g — O,
which a remnant of the Kohn theorem in this system restricted
to two LLs. However, note that the behavior at large momen-
tum is very different between RPA and TDHE. While of™ —
h for g — oo, the TDHF result goes to a finite limit greater
than h. Indeed for large momentum the separation between
the electron and its associated hole depends on the quantity
q¢ x Z, which is the separation between them in units of £, so
for large ¢ the electron and hole are far apart and the energy of
the magneto-exciton approaches the sum of the HF energies of
the two particles plus their Coulomb interaction —e?/(eqt?).
This is behavior is observed in our exact diagonalization (ED)
studies. In Fig. 8 for i = 5 x €?/(e£) we see that the RPA fails
to reproduce the large momentum behavior, while the TDHF
approximation is in good agreement with ED results. However
this is true only in the large splitting 4 limit.

The HF theory thus predicts that the incoherent polarized
state would become unstable for & < 0. We find instead

0.050

0.025

Excitation energies

0.000 -

0.1 0.2 0?3 014 015 Orﬁ 0.7 0.8 0.9
Aspect Ratio

FIG. 9. Excitation gap above the K = 0 ground state of N, = 10
electrons as a function of the aspect ratio. The pseudomagnetic field
is tuned at the particle-hole invariant value which is in the middle
of the helical phase. The ground state degeneracy is clear when the
aspect ratio is close to 0.35.

that the incoherent phase is stable up to negative values of
the bare field A, ~ —0.1¢*/(e£) and also, by use of the
particle-hole symmetry discussed in Sec. III, it extends also
from the symmetric field from 4, = —oo to h., = —0.2. This
means that the special case with 2 = 0 is in fact within the
incoherent phase, in agreement with the findings of Ref. [25].
The excitation spectrum 1is just a distortion of that in Fig. 7.
A hypothetical uniform orbitally coherent phase would be ac-
companied by a Goldstone mode [18-21]. We do not observe
such a softening of the low-lying excitations. Instead, as we
will see in the next section, we find evidence for a phase that
breaks spontaneously translation symmetry.

VIII. HELICAL PHASE

The incoherent phase is quite insensitive to the aspect
ratio of the rectangular system. If now we tune the field & to
negative values we observe a change of behavior. The ground
state is no longer at zero momentum and its location in the
Brillouin zone depends on the aspect ratio. We have varied the
aspect ratio to find the characteristic behavior of the system.
Typical spectra are displayed in Fig. 9. There is a range
of aspect ratio close to 0.3-0.4 for which the ground state
becomes degenerate and excited states appear clearly above as
a discrete set of states. These states have many-body momenta
that differ by a one-dimensional wave vector; see Fig. 10. This
is the behavior expected from a quantum system that breaks
a symmetry, as observed previously in quantum Hall systems
[35-37]. There is a characteristic wave vector associated with
this manifold of states which is the momentum difference of
the low-lying states. It is important to note that the region in
aspect ratio where this degeneracy appears is not adiabatically
connected to the thin torus of AR going to zero. There are
many level crossings before this limit, so the helical phase we
observe is not a simple electrostatic limit of the quantum Hall
problem but a real nontrivial many-body state. We have also
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FIG. 10. Spectrum of N, = 12 electrons for aspect ratio 0.45.
The pseudomagnetic field is tuned at the particle-hole invariant
value which is in the middle of the helical phase. The ground
state degeneracy is evidence for a state with spontaneously broken
translation symmetry.

checked that these spectral features are stable if we distort the
torus into an oblique cell.

To pin down the phase boundary of the helical phase we
have used two indicators. The first one is the value of the
orbital polarization of the ground state in the K = 0 sector. We
define it as the normalized population of the n = 1 orbitals,

P = (WIN1|W)/N,, (36)

so that 0 < P < 1 and the polarization goes to zero for large
positive & and goes to unity for large negative h. We expect
that by the particle-hole symmetry the curve has a center of
symmetry for a nontrivial value of the field. This is exactly
what we observe. See Fig. 11 for the polarization of 10
electrons in a rectangle of aspect ratio 0.9. Here we have
used the polarization of the ground state in the K = 0 sector.
This does not mean that this state remains the strict absolute
ground state for all values of 4 and also for various values
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0.7 o
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0.1+
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FIG. 11. The polarization of the ground state as a function of the
field & for aspect ratio 0.9 and 10 electrons.
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FIG. 12. The quantum fidelity F of the K = 0 ground state as a
function of the field 4 for aspect ratio 0.9 and 14 electrons.

of the aspect ratio. Note also that in the incoherent phases
for large h values the polarization is either small or close to
unity but remains nontrivial, as expected from conventional
perturbative considerations.

The other indicator for phase transitions is the quantum
fidelity of the ground state. This is computed by changing the
h field by a small value and computing the overlap between
the ground states for these neighboring values:

F = (W()|W(h+e€)). (37

We have computed the fidelity as a function of / for an aspect
ratio fixed to 0.9. It varies very weakly in the fully polarized
phase and has strong variations only at what we define as the
helical state. See Fig. 12, where we display data for N = 14
electrons. The apparent two-peak structure allows us to define
finite-system critical values by taking the 4 values where the
fidelity has peaks. This is an alternate way to characterize
phase boundaries of the helical state. We do not have access
to enough system sizes to perform a meaningful finite-size
scaling of the fidelity.

The boundaries of the helical phase can thus be pinned
down either by looking at the maximum value of the derivative
of the polarization, Eq. (36), and at peak fidelity, Eq. (37).
These two estimators are plotted in Fig. 13 as a function
of the inverse system size. By use of a linear fit we ob-
tain h.; ~ —0.1 and h., ~ —0.22. Changing the aspect ratio
slightly changes these values, and the associated uncertainty
is estimated to be of the same order at that coming from the
extrapolation to the thermodynamic limit.

IX. CONCLUSIONS

By means of exact diagonalization on the torus, we have
shown that at filling factor v =1 a system of two Landau
levels with orbital character n = 0 and 1 exhibits a nontrivial
ground state with spontaneously broken translational sym-
metry that is stabilized by an orbital single-particle splitting
(h), within the range —0.1 2 h 2 —0.22. Here negative h
favors polarization into the n = 1 LL. This state is consistent
with the orbitally coherent ferroelectric helical phase that was
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FIG. 13. The two critical field delimiting the stability region
of the helical phase. The values are plotted as a function of the
inverse system size. The blue circles are obtained from the maximum
derivative of the polarization defined in Eq. (36) and the red squares
from the peak values of the fidelity defined in Eq. (37)

identified in previous Hartree-Fock studies [18-23]. Outside
of this range of orbital splittings the system has an incoherent
ground state that is adiabatically connected to the trivial states
fully polarized into n =0 or n =1 orbitals depending on
the sign of 4, including the case of & = 0 previously studied
in Ref. [25]. The low lying excitations of these incoherent
states are well captured by TDHF to a precision of a few
percent.

We observe a direct transition from this incoherent state
into the broken translational symmetry state. Aside from the
incoherent and the broken translational symmetry phases,
we see no evidence for a potential uniform state with or-
bital coherence, and, in particular, we do not observe the
appearance of its characteristic Goldstone mode. The loca-
tion of the helical phase is in rough agreement with HF
predictions, whose boundaries we pin using two criteria:
quantum fidelity and polarization change. Therefore, we con-
clude that while HF correctly predicts a helical phase, it
overestimates the tendency toward a uniform orbital coherent
state.

Using a model that includes all the single-particle split-
tings of BLG, we estimate that the orbital splittings can be
effectively tuned by applying an interlayer electric bias. Our
estimates indicate that there is a realistic prospect to achieve
the regime in which the ferroelectric helical phase becomes
the ground state in current experiments [27-29] by applying a
large interlayer bias on the order of u ~ 80 meV.
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