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Density-wave steady-state phase of dissipative ultracold fermions with nearest-neighbor interactions
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In this work, we investigate the effect of local dissipation on the presence of density-wave ordering in spinful
fermions with both local and nearest-neighbor interactions as described by the extended Hubbard model. We
find density-wave order to be robust against decoherence effects up to a critical point where the system becomes
homogeneous with no spatial ordering. Our results will be relevant for future cold-atom experiments using
fermions with nonlocal interactions arising from the dressing by highly excited Rydberg states, which have finite
lifetimes due to spontaneous emission processes.
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I. INTRODUCTION

Coupling to the environment is expected to change the
properties of a quantum system. In experiments it usually
leads to linewidth broadening [1,2], decoherence and finite
lifetime of states [3,4]. These dissipative effects are usually
limiting experiments. However, coupling between a system
and the environment can also lead to exciting new phenomena,
such as the quantum Zeno effect [5–7]. Dissipation might
also be seen as a tool, allowing to drive the system towards
a desired state. Recent proposals include engineering dis-
sipative dynamics to create entangled states [8], fermionic
pairing states [9], to prepare antiferromagnetic order [10], or
to drive the system to Bose-Einstein condensation [11]. The
study of open quantum systems is also useful for investigating
transport properties of quantum dots [12–15] or correlated
structures [16–19].

An approach often followed in investigations of open
quantum systems involves using well-established methods in
quantum optics, e.g., the master equation [20,21], to describe
dissipation in lattice models, e.g., the Hubbard model [22–24],
or the Bose-Hubbard model [25]. These can be experimentally
realized with optical lattices [26–30], which allow for a close
comparison between theory and experiment.

The fermionic Hubbard model was originally proposed to
study magnetic properties of materials with strong electronic
correlations [31]. Its extended version, including nonlocal
interactions, has been extensively studied due to its relevance
for understanding strongly correlated electronic materials
[32–44]. In these theoretical investigations phases such as
spin density-wave (SDW), charge density-wave (CDW), and
charge-ordered metals (COM) were observed. Some evidence
suggests also that a “half-metallic” phase could be found [45].
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In experiments, long-range interactions between ultracold
atoms can be realized in several ways by using dipolar quan-
tum gases [46]. Recently, the extended Hubbard model has
been realized in experiments with polar molecules [47] and
magnetic atoms [48]. Another promising approach is one, in
which Rydberg excitations [49] are used. Due to the extreme
properties of atoms excited to Rydberg state the van der Waals
interaction between them can become the dominant energy
scale in the system. Loading Rydberg atoms into deep optical
lattices has been achieved recently [4,50–53], allowing the
realization of spin-lattice models and observation of spatial
ordering due to long-range interactions. Corresponding the-
oretical investigations for Rydberg atoms in optical lattices
have been recently performed predicting crystallization in the
frozen limit [54–57]. Beyond the frozen limit, melting of
crystalline structure and formation of supersolid due to kinetic
energy has been observed [58–60]. Effects of dissipation have
also been investigated both in the frozen limit and for itinerant
atoms with a variational principle [61] and the mean-field
approximation [62,63], respectively.

However, to our knowledge there has been so far no thor-
ough investigation beyond the mean-field of the competition
between all of the relevant energy scales set by (i) local
interaction between atoms, (ii) kinetic energy due to their
itinerant nature, (iii) nonlocal interaction, and (iv) dissipation.
The last process is particularly relevant both for experimental
realizations of the extended Hubbard model with Rydberg
atoms, which are inherently dissipative, and for a better un-
derstanding of the possible ordered phases that can appear in
open quantum many-body systems.

To investigate this problem we employ the recently de-
veloped Lindblad dynamical mean-field theory (L-DMFT)
[17–19]. Although DMFT has some limitations due to its
local self-energy—without nonlocal extensions it cannot de-
scribe, e.g., d-wave superconductivity [64]—it has proven
highly successful in the study of correlated lattice problems
[65]. Several approaches have been previously proposed to
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extend the method to the nonequilibrium regime [66–68].
However, none of these allowed to introduce dissipation on
the level of the master equation. The L-DMFT method, on
the other hand, treats out-of-equilibrium lattice problems by
using an appropriately chosen type of impurity solver for the
corresponding Anderson impurity model, called the auxiliary
master equation approach (AMEA) [13,17]. In contrast to
the previous works using this method, which considered a
closed quantum system of infinite size, we study a model
of an open quantum system. We use the L-DMFT method
to investigate the effect of physical dissipation processes on
strongly correlated many-body phases.

The outline of the article is as follows. In Sec. II, we
describe in more details the problem which we investigate.
In Sec. II A, we introduce our model Hamiltonian, the ex-
tended Hubbard model. Possible experimental realization of
this model is then discussed in Sec. II B. The experimentally
relevant dissipative processes that are included in our calcu-
lations are introduced in Sec. II C. A short overview of the
L-DMFT technique and its adaptation to dissipative systems
is given in Sec. III. We present our results in Sec. IV on the
competition between density-wave ordering and decoherence.
Finally, in Sec. V, results are summarized.

II. DESCRIPTION OF THE SYSTEM

A. Model Hamiltonian

We describe the coherent part of the dynamics by the two-
dimensional (2D) spin-1/2 extended Hubbard model (EHM),
as illustrated in Fig. 1, with the following Hamiltonian:

Ĥ = − J
∑

〈i, j〉,σ
ĉ†

i,σ ĉ j,σ + ε
∑
i,σ

ĉ†
i,σ ĉi,σ

+ U
∑

i

n̂i,↓n̂i,↑ + V

2

∑
〈i, j〉,σ,σ ′

n̂i,σ n̂ j,σ ′ , (1)

where index i runs over all lattice sites, 〈i, j〉 indicates a sum
over nearest-neighbor (NN) sites independently, ĉi,σ (ĉ†

i,σ ) is
the fermionic annihilation (creation) operator for a particle on
site i with spin σ ∈ {↑,↓}, ε is the on-site energy, U is the
local interaction strength, V is the NN interaction strength, J
is the hopping amplitude between NN and n̂i,σ = ĉ†

i,σ ĉi,σ is the
occupation number operator. In the following, we set h̄ = 1
and J = 1 as the unit of energy, unless stated otherwise. At
zero temperature and with a Fermi energy εF = 0, the on-site
energy ε determines the filling of the system. For example, if
it is equal to ε = −U/2 − 4V then the system is at half-filling,
i.e., at total density

∑
i〈n̂i〉 = ∑

i(〈n̂i,↑〉 + 〈n̂i,↓〉) = N , with N
being the number of sites in the lattice.

The 2D EHM for spin-1/2 fermions has been extensively
studied in condensed-matter physics, due to its relevance for
understanding d-wave pairing and the spatial charge-ordering
in a wealth of materials. On the square lattice at half-filling,
seminal mean-field calculations [32–34] showed that there
exist only two stable equilibrium phases for the EHM with
repulsive interactions, namely the spin density wave (SDW)
and charge density wave (CDW) phases, separated by a
phase boundary at Vc = U/4. More recent beyond-mean-field
calculations were also performed with the variational cluster

FIG. 1. Schematic picture of the extended Hubbard model given
by the Hamiltonian in Eq. (1), including on-site energy, hopping pro-
cesses, local and nonlocal interactions, ε, J , V , and U respectively.
Each site of the lattice is additionally coupled to an external thermal
reservoir, which is described by parameters T , μ, and ν, see Eq. (8)
and (15) for reference. A and B label the sublattices of this bipartite
system. (Inset) At each site there is coupling between internal atomic
degrees of freedom, which are responsible for Rydberg dressing, as
described in Appendix A.

approach [37], single-site DMFT [38], cluster DMFT [39],
and GW +EDMFT [69]. These studies found metallic, Mott-
insulating, and charge-ordered phases at half-filling, but long-
range antiferromagnetic order was suppressed at the outset.

At quarter-filling
∑

i〈n̂i〉 = 0.5N , for both nonzero local
and nearest-neighbor repulsion, previous studies have shown
that a checkerboard CDW phase appears at large V [41]
and a dxy-wave superconducting phase at intermediate values
of V [42,43]. In the limit U,V � t , the ground state was
found to be insulating with checkerboard CDW ordering and
long-range antiferromagnetism [41,44], based on slave boson
calculations and exact diagonalization.

The extended Hubbard model has also been investigated
away from half- and quarter-filling. Within static mean-
field approximation various types of charge-ordered and spin
density-wave phases have been found [35,36]. In particular, it
is not unreasonable to expect incommensurate unidirectional
spin- and charge-density waves, often dubbed stripes, such as
observed for the standard Hubbard model [70]. However, even
the problem of understanding the charge-density ordering
alone is a challenging task. Therefore some recent works
focused on that aspect exclusively, suppressing any spin-
density wave order at the outset [38,40]. Using DMFT and
dynamical cluster approximation they reported observation
of commensurate (checkerboard) charge-ordered insulator,
charge-ordered metal, and Fermi liquid phases and shown
that the phase transition from Fermi liquid to quarter-filled
charge-ordered insulator is discontinuous while the transitions
from quarter-filled charge-ordered insulator to charge-ordered
metal and from charge-ordered metal to Fermi liquid are
continuous.

In the following, we work mainly away from half-filling,
and focus our study on the above-mentioned charge-ordered
phase and its robustness with respect to dephasing processes.
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B. Relevance to experiments with Rydberg-dressed
fermions in optical lattices

The fermionic Hubbard model with only local interactions
can be experimentally simulated by ultracold alkali atoms,
e.g., 40K potassium atoms, loaded into optical lattices [28,29].
Such an experimental setup is indeed very flexible, and allows
for the fine-tuning of physical parameters and realization
of lattices with different geometries. This allows to explore
different parts of the phase diagram of the Hubbard model,
including the observation of the Mott insulator and metallic
phases [28,29].

A nonlocal interaction of the type present in the EHM
can be achieved by coupling fermionic atoms in their ground
state to highly excited Rydberg states [49]. These Rydberg
states have a large principal quantum number n which re-
sults in exaggerated properties, such as a large radius of the
valence electron orbital [49], which scales as n2 and can
reach distances on the order of micrometers. The large spatial
extension of the Rydberg atom, in extreme cases comparable
to the typical spacing between lattice sites in an optical lattice,
results in significant nonlocal interatom interactions with the
van der Waals profile [71,72]

VvdW;i j = C6

a6|i − j|6 (2)

where a is the lattice spacing, |i − j| the distance between
lattice sites i and j, and C6 determines the strength of the
interaction. This coupling to a Rydberg state can be re-
alized through interaction of atoms with coherent light of
appropriately chosen frequency and intensity. With each atom
represented as a two-level system, the coupling is described
in the rotating wave approximation [73] by an effective Rabi
frequency �eff and detuning δeff . In order to simulate exper-
imentally the EHM for spin 1/2, one could focus on the so-
called dressing regime, where the effective detuning is much
larger than the Rabi frequency δeff � �eff [74]. In this regime,
a new eigenstate emerges, with properties arising dominantly
from the ground state of the atom with a small admixture of
properties from the excited Rydberg state. The strength and
shape of the interaction potential can then be tuned through
the amount of admixture between the two states. The effective
potential in this Rydberg-dressing regime is then [75]

Veff;i j = C̃6

a6|i − j|6 + R6
c

, (3)

with effective strength C̃6 and soft-core radius Rc. With ap-
propriate choice of experimental parameters, one can reach a
regime in which only nearest-neighbor and local interaction
processes are relevant for the dynamics. More detailed dis-
cussion of the dressed regime can be found in Appendix A.
In particular, the EHM can be realized with 40K potassium
atoms in the dressing regime, with spin obtained by using two
different hyperfine states which in turn are coupled with large
detuning to the excited Rydberg states (see Fig. 1) to realize
nonlocal interaction.

Recently, several experiments with bosonic Rydberg atoms
loaded into optical lattice have been performed [4,50–53,76].
In order to reach longer timescales in the experiments, the
regime of vanishingly small hopping between lattice sites has

been used [4,50–53]. This allowed observation of an emerg-
ing ordering in the lattice due to the long-range interaction
[50,51,53]. However, even in the frozen limit, where the
Hamiltonian of Rydberg-dressed atoms can be rewritten as an
Ising quantum spin model [53], dissipation was already seen
as a major obstacle causing, e.g., avalanche loss of particles
from the system [4]. In the following, we will go beyond
the frozen limit and investigate possible steady-state phases
of itinerant atoms, which emerge from the full competition
between kinetic processes and both short- and long-range
interactions.

C. Dissipative processes

Model

In the above discussion, we have focused on coherent
processes that are present in experiments. However, Rydberg
excited states have a relatively short lifetime due to sponta-
neous emission and black-body radiation [1,77,78]. To take
these into account one must include the coupling of the system
to its environment, and treat it as a many-body open quantum
system. In this paper, we aim in particular at studying the
effects of dephasing that occur due to the Rydberg dressing.

As is often the case in the theory of open quantum systems,
we will use the Born-Markov approximation to describe the
evolution of the system. As a result, we can use the Lindblad
master equation [20,21]

d ρ̂

dt
= −i[Ĥ , ρ̂] + ˆ̂L[ρ̂], (4)

where ρ̂ is the density matrix operator and ˆ̂L is the superoper-
ator, which describes dissipation. In the Lindblad equation, it
is defined according to

ˆ̂L[ρ̂] = 1

2

∑
μν

�μ,ν (2L̂ν ρ̂L̂†
μ − {L̂†

μL̂ν, ρ̂}), (5)

where L̂μ are jump operators, �μν are dissipation coefficients,
and μ, ν iterate over relevant quantum numbers. Regarding
the relevant jump operators to include in our description, we
assume here that the dominant dissipative effects for Rydberg
atoms are spontaneous emission processes with rate �se (see
Fig. 1). This can be mapped within the dressing regime to a
dephasing process and described by the effective dephasing
rate �dp and the following jump operator (see Appendix A):

L̂d p,i,σ = ĉ†
i,σ ĉi,σ . (6)

Note that with this type of jump operator the time evolution
given by Eq. (4) is effectively quartic in terms of creation
and annihilation operators. Therefore effects of dissipation are
incorporated into the self-energy, together with the effects of
interaction.

Such dephasing terms conserve the local particle number
and hence cannot change the local occupation. One of the
effects of this type of dissipation on the many-body state is,
however, to cause the decay of the off-diagonal elements of
the density matrix and drive the system towards the infinite-
temperature state in the absence of an external thermal bath
(cf. Appendix B and Refs. [6,7]).
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Dephasing terms of the form in Eq. (6) correspond, in the
theory of open quantum systems, to a continuous measure-
ment process of the site occupation variable (see Ref. [20],
Ch. 3.5). Such terms are also useful to describe the coupling of
the local fermion density to the environment through nonlocal
interactions [6,7].

III. NONEQUILIBRIUM DMFT: AUXILIARY MASTER
EQUATION APPROACH

The auxiliary master equation approach (AMEA) to
nonequilibrium DMFT, here referred to as L-DMFT, has been
proposed and developed to study transport properties of a
correlated electronic layer coupled to noninteracting leads
[17–19]. However, we show here that the method has potential
for applications to other types of out-of-equilibrium problems,
e.g., a lattice system with local dissipation. We describe how
to adapt the method to such a problem and apply it to the
extended Hubbard model with local dephasing. As described
in the preceding section, this model can be simulated with Ry-
dberg atoms loaded into optical lattices, where the dissipative
processes are naturally present.

The L-DMFT method allows to find the steady state of a
system far-from-equilibrium in a self-consistent way and then
to calculate static and dynamic local quantities. Due to the
self-consistent approach, it is better to have a unique steady
state. If we were to consider a closed system described by
the Hamiltonian of Eq. (1), we would face the problem of
nonunique steady states. Indeed, for a closed system, there
are as many steady states as there are eigenstates of the
Hamiltonian. As we are interested in an open quantum system,
where the lattice is subject to dephasing, this issue should
not occur. However, while the dissipation indeed renders the
steady state unique, it also generically heats the system and
drives it towards an uninteresting, infinite-temperature steady
state [6] (Appendix B).

In order to have a nontrivial steady state, we assume that
each site of the extended Hubbard model is coupled to a
separate heat and particle reservoir that is always in thermal
equilibrium, as depicted in Fig. 1. The local reservoirs act
as a heat drain and allow us to study the limit of vanishing
dissipation strength by lifting the degeneracy of the steady
states. We will use an exactly solvable model for the bath
known as Davies’ model of heat conduction [79] or Büttiker’s
heat-bath model [80,81]. This heat-bath model was recently
employed to study the effect of dissipation on interacting
many-body systems, using a variant of nonequilibrium DMFT
[66–68,82,83] and quantum Monte Carlo path integrals [84].
To put the additional thermal baths into context, we note that
they are commonly used in context of the Floquet-DMFT to
achieve inhomogeneous equations with a unique, nontrivial
solution of the equations for the steady state [67,83]. Without
heat baths a periodically driven system approaches an infinite
temperature state in the long timescale, but in the interme-
diate timescale, it can be found in a quasistationary, Floquet
prethermalized state [85]. Overall, heat bath can be treated
there as a theoretical “trick” for numerical methods, which
allows to study the intermediate timescale state as a steady
state. We also note that recently an experiment was performed,

in which an optical lattice was coupled to a thermal reservoir
of atoms captured in a magneto-optical trap [86].

The local thermal baths are assumed to be one-dimensional
semi-infinite chains of noninteracting fermions with hopping
Jb between neighboring sites and a retarded Green function
given by

gR
b (ω) = ω

2J2
b

− i

√
4J2

b − ω2

2J2
b

. (7)

As the bath is assumed to be always in thermal equilibrium, its
Keldysh Green function is given by the fluctuation-dissipation
theorem

gK
b (ω) = 2i[1 − 2 fb(ω)]Im

{
gR

b (ω)
}
, (8)

where fb(ω) is the Fermi-Dirac distribution. We set the Fermi
energy (chemical potential) εF = 0 and the temperature T =
0. The value of hopping in the thermal baths is set to Jb = 7.5
which gives a half-bandwidth (2Jb) on the order of magnitude
of the maximal considered value of U . This allows for ther-
malization in a broad energy spectrum even in the presence
of the Hubbard band splitting due to the local interaction. The
coupling of the local thermal baths to the system is realized
via exchange of particles with hopping amplitude ν. The
particular form of this coupling will be introduced in the next
section.

A. DMFT self-consistency

In DMFT a single approximation, is made that the self-
energy is a purely local quantity [65], such that


i j,σ (ω) = δi j
i,σ (ω), (9)

where i and j are lattice indices. As a consequence one is able
to map a full lattice problem onto a set of local effective quan-
tum impurity models, which significantly reduces the size
of the many-body problem while fully preserving the nature
of local quantum correlations. These impurity problems are
coupled in the self-consistent approach via a Dyson equation
given further in text.

Due to the local character of DMFT, we must however
treat the nonlocal nearest-neighbor interaction term in Eq. (1)
within a Hartree mean-field approximation, where the interac-
tion operator is mapped onto

V

2

∑
〈i, j〉,σ

n̂i,σ n̂ j,σ → V
∑

〈i, j〉,σ
n̂i,σ 〈n̂ j,σ 〉 (10)

with 〈n̂ j,σ 〉 determined self-consistently.
The model which we consider is translationally invariant,

which allows to find a symmetry between lattice sites and
reduce full lattice to a small number of inequivalent impurity
problems. Since the symmetry of the ground state on the
lattice is spontaneously reduced upon entering ordered phases
such as the CDW phase, we assume throughout this work that
the system has two translationally invariant sublattices, A and
B, which results in two different impurity problems to solve.
The sublattices are defined such that each site from sublattice
A is neighboring only with sites belonging to sublattice B
and vice versa, see Fig. 1. We neglect any spin ordering in
the system assuming states to be paramagnetic. The above
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assumptions, which were also made in Refs. [38,40], pre-
vent us from observing more complex charge-ordered phases
(checkerboard CDW seems to be the most relevant for the
extended Hubbard model with only nearest-neighbor interac-
tions, no magnetic ordering and studied in grand canonical
ensemble [87]) and SDW phases. We also suppress anomalous
elements of the Green functions, therefore, we cannot describe
superconducting phases.

The derivation of the DMFT equations in the nonequilib-
rium Keldysh formalism is well established in the literature
[17,18,67]. We refer the reader in particular to Ref. [18], while
here we present the differences with respect to this reference,
which arise from the two-sublattice structure and geometry of
the system that we consider here.

We use a notation for the Green function in which

G =
(

GAA GAB

GBA GBB

)
, (11)

where the A and B indices mark each sublattice. On top of
that, to introduce retarded (R), advanced (A) and Keldysh (K)
components of the Green functions, we use the notation

G =
(

GR GK

0 GA

)
. (12)

Due to the translational invariance of the sublattices A and B
one can perform a Fourier transform with a reduced Brillouin
zone (BZ ′). In analogy to Ref. [18] we express the Green
functions in momentum space. The Green functions of the
noninteracting model decoupled from the thermal bath is
given by

gR
0 (�k, ω) =

(
ω + i0+ − ε −Ec(�k)

−Ec(�k) ω + i0+ − ε

)−1

, (13)

where Ec(�k) = −2J (cos(kx ) + cos(ky)), and with wave vec-
tors �k from the reduced Brillouin zone. Correspondingly, as
the local baths are decoupled from one another, their Green
functions after Fourier transform have the form

gR/K/A
b (�k, ω) = gR/K/A

b (ω)

=
(

gR/K/A
b (ω) 0

0 gR/K/A
b (ω)

)
.

(14)

We note that the Keldysh part gK
0 (�k, ω) is state dependent

and not uniquely defined because it corresponds to a system
decoupled from any thermal bath. Nevertheless, we will only
need to use the inverse of this Green function, for which the
Keldysh part [g−1

0 (�k, ω)]K is infinitesimally small [17].1

Based on the above Green functions, we can determine the
Green functions of a two-dimensional noninteracting system
coupled to the thermal bath. We get

G−1
0 (�k, ω) = g−1

0
(�k, ω) − ν2g

b
(ω). (15)

This equation determines the form of the coupling between
the lattice sites and the thermal reservoir with ν2 defining

1If we neglect the Keldysh part in the decoupled system it is
essential that the full system can thermalize either through interaction
or through coupling to thermal bath.

the coupling strength. The Green function of the interacting
model coupled to thermal baths is then given by the Dyson
equation [17,18,65]

G−1(�k, ω) = G−1
0 (�k, ω) − �(ω). (16)

Here, G−1(�k, ω) is the Green function of the full system
in momentum space. The self-energy �(ω) here describes
effects of local and nonlocal interaction (the latter on the
mean-field level) as well as the effects of dephasing. As it is
assumed to be local, it is also momentum independent in the
reduced Brillouin zone, but it might be different for sublattices
A and B

�R/K/A(ω) =
(



R/K/A
A (ω) 0

0 

R/K/A
B (ω)

)
. (17)

To close the self-consistency equations, we extract the local
part of the lattice Green function, i.e., for the sublattice A (B),
we have

GA(B)(ω) =
∫

BZ ′

d�k

(2π )2
GA(B)(�k, ω). (18)

Note that while here we perform the operation for sublattice A
and B separately, we still have a matrix equation with retarded,
advanced and Keldysh parts. We use the above result in the
local Dyson equation, which reads

�A(B)(ω) = G−1
0,A(B)(ω) − 
A(B)(ω) − G−1

A(B)(ω), (19)

with �A(B) being the hybridization function which describes
the effect of coupling the noninteracting impurity to both the
thermal bath and the interacting lattice that surrounds it, and
with

GR
0,A(ω) = GR

0,B(ω) = (ω + i0+ − ε)−1. (20)

representing the local Green function of the single, noninter-
acting lattice site decoupled from both the thermal bath and
the surrounding lattice. The Keldysh part of the inverse Green
function is again negligible.

The remaining problem is to solve the two emerging impu-
rity problems for sublattice A and B, given the hybridization
functions �A(B). Once one can do this, one can solve the full
problem self-consistently.

B. Impurity solver: auxiliary master equation approach

Solving the impurity problems is usually the bottleneck
of the DMFT method. Here we deal with two independent
problems, one for each of the sublattices. In the following, the
sublattice index α ∈ {A, B} denotes which impurity problem
we consider. What significantly adds to the complexity of the
task is the fact that the system is not in thermal equilibrium (at
least in the general case) but rather in a steady state of some
nontrivial dissipative dynamics.

A method well-suited to solve such an impurity problem is
the auxiliary master equation approach (AMEA) [13,17,18].
In our implementation of nonequilibrium DMFT, we adapt it
to a problem with physical local dissipation. Below we briefly
list the main points of this method, focusing on what is most
relevant to our problem.

The foundation of this method is laid by the exact diag-
onalization approach to the impurity problem [65], in which
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FIG. 2. Auxiliary system for an impurity embedded in lattice.
Index i = 0 corresponds to the impurity and indices i > 0 correspond
to auxiliary bath sites. Parameters Ei j represent the on-site energies
and the hopping amplitudes in the impurity problem, see Eq. (21).
Parameters �

(1/2)
i j describe dissipative coupling between auxiliary

bath sites and auxiliary reservoir, see Eq. (22), while �dp describes
physical dissipation.

it is mapped onto an effective finite size problem. A single
impurity is coupled to a finite number Nb of noninteracting
bath sites, which imitate the surrounding of the impurity as
closely as possible. These bath sites are completely auxiliary
and should not be confused with the thermal bath introduced
at the beginning of this section. The effective impurity Hamil-
tonian reads

Hα,aux =
Nb∑

i, j=0;σ

Eα,i j d̂
†
i,σ d̂ j,σ + Ud̂†

0,↓d̂†
0,↑d̂0,↑d̂0,↓, (21)

where d̂i,σ is the annihilation operator on site i with spin σ ,
the i and j indices run over all possible sites in auxiliary
impurity problem with i = 0 referring to the impurity. Eα,i j

are arbitrary parameters subject to the constraint that they
should form a Hermitian matrix and with the value of Eα,00

fixed by the original lattice problem.2 We also choose to work
with a star geometry of the bath, without loss of generality, cf.
Fig. 2. However, this Hamiltonian is by itself not sufficient to
describe the time evolution of an open quantum system.

To circumvent this issue, in the AMEA approach the bath
sites are coupled to a Markovian auxiliary reservoir, see Fig. 2.
This allows to describe the time evolution with the Lindblad
master equation Eq. (4) in which the Hamiltonian is given
by Eq. (21). The dissipative part of the master equation is
determined by two terms. The first term is the local, physical
dissipation given in Eq. (5) which acts only on the impurity
state with index 0. The second term is determined by

ˆ̂Lα,aux[ρ̂] =
Nb∑

σ ;i, j=1

2

[
�

(1)
α,i j

(
d̂i,σ ρ̂d̂†

j,σ − 1

2
{ρ̂, d̂†

j,σ d̂i,σ }
)

+�
(2)
α,i j

(
d̂†

j,σ ρ̂d̂i,σ − 1

2
{ρ̂, d̂i,σ d̂†

j,σ }
)]

(22)

and describes the coupling of the bath sites to the Markovian
reservoir. Here, �(1)

α,i j and �
(2)
α,i j are arbitrary parameters subject

2It includes effects of nonlocal interaction treated on the mean-field
level.

to the constraint that they should form a Hermitian, positive-
definite matrix.

This type of nonequilibrium impurity model has been
extensively studied in the literature [12–14,16]. Using exact
diagonalization of the Liouvillian in the superfermionic repre-
sentation (which doubles the Hilbert space limiting achievable
Nb), one can solve this impurity problem [17,88]. Note also
that if we switch off the local interaction and dissipation
on the impurity, the model becomes quadratic and therefore
analytically solvable. Consequently, one can calculate the
effective hybridization function �aux with little computational
effort [17].

The free parameters Eα,i j and �
(1/2)
α,i j of the impurity model

form a set of variables {xα} = ⋃
i j{Eα,i j, �

(1)
α,i j, �

(2)
α,i j}. This set

can be further reduced, cf. Ref [17], using symmetries of �

matrix and an appropriate geometry of the impurity model,
e.g., the star geometry from Fig. 2. The values of the variables
are chosen in such a way that the cost function

χα ({xα}) =
∫ ∞

−∞
dω

[
χR

α (ω, {xα})+χK
α (ω, {xα})+χ f

α (ω, {xα})
]

(23)

is minimized. Different contributions to χ are defined as

χR
α (ω, {xα}) = Im

[
�R

α (ω) − �R
α,aux(ω, {xα})

]2
,

χK
α (ω, {xα}) = Im

[
�K

α (ω) − �K
α,aux(ω, {xα})

]2
, (24)

χ f
α (ω, {xα}) = | fα (ω) − fα,aux(ω, {xα})|2∣∣Im[

�R
ᾱ (ω)

]∣∣.
The bar in ᾱ denotes the complement of α in the set {A, B},
�α (ω) is the physical hybridization function for sublattice
α obtained from the Dyson equation (19), �α,aux(ω, {xα}) is
the auxiliary hybridization function for sublattice α in the
impurity model [17,18], fα (ω) is the distribution function
calculated using the fluctuation-dissipation relation and reads

fα (ω) = 1

2
− 1

4

Im
[
�K

α (ω)
]

Im
[
�R

α (ω)
] . (25)

An analogous formula is used for fα,aux(ω).
The terms χR

α and χK
α are responsible for obtaining the

best fit of the retarded and Keldysh parts of the hybridization
function, respectively. However, in the case of a small number
of bath sites, the accuracy of the fit for these terms might come
at the cost of a less accurate reproduction of the distribution
function. This is compensated by our inclusion of the last
term, χ f

α . Obtaining an accurate fit of the distribution function
is necessary only in the region of significant spectral weight,
hence the factor |Im[�ᾱ (ω)]|.

C. Limitations

It is clear that the approximation made in the course of
the AMEA gets better with increasing number of bath sites
Nb. However, due to the exponential scaling of the size of
the problem with the number of bath sites and doubling
of the Hilbert space one cannot reach large values of Nb

when using an exact diagonalization based solver. Within
our implementation we are able to set this parameter up to
Nb = 5. In other works, a number of bath sites up to Nb = 6
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has been reported [13,18,19]. However, higher number of
baths sites in the L-DMFT has not been reached yet. An
alternative to the exact diagonalization based solver in the
AMEA impurity problem is to use the matrix product states
approach [13–15]. With this method values of up to Nb = 20
have been reached [15]. However, currently combining this
method and the DMFT self-consistency is not practical, as the
computational effort to solve a single impurity problem is too
large to be used in a self-consistent approach.

With a limited number of bath sites some physical quan-
tities might not be recovered accurately. For example, upon
investigation of the occupation of different energy states,
the Fermi distribution in thermal equilibrium might not be
reproduced precisely. This leads to deviations between the
results obtained with a standard, equilibrium DMFT solver,
which can reach higher accuracy, and the L-DMFT solver
used here.

One of the features that are difficult to capture using a
small number of bath sites is the magnetic response of the
system. For example, with Nb = 5, we could not reproduce
the antiferromagnetic phase of the standard Hubbard model
at zero temperature. Nevertheless, using the AMEA within
stochastic wave function approach [89] we checked that the
discrepancy between the results of the equilibrium and AMEA
impurity solvers is decreasing with increasing number of bath
sites. Also for other types of impurity magnetic response the
value of Nb > 10, which might be reached with the matrix
product states method, was enough to get accurate results [15].

Another relevant effect occurs if one of the impurity energy
levels lies outside of the band specified by the heat bath. In
such case, a localized state appears, whose evolution is not
captured within the Markov approximation of the auxiliary
reservoir [90]. This issue is here amended by the choice of the
local thermal baths with a broad energy spectrum.

IV. RESULTS

A. Equilibrium

We begin with the investigation of a system in thermal
equilibrium, i.e., without dephasing process. As in this regime
one can employ alternative methods to study the model de-
scribed by Eq. (1), this serves both as a reference for the
calculation with dephasing and as a benchmark of the L-
DMFT method. We will compare it to the equilibrium DMFT
and Hartree-Fock methods. Note that we allow only for two
phases: charge density wave and normal phase with homo-
geneous particle density and neglect any magnetic ordering
possibly emerging in the system, such that 〈n̂i,↑〉 = 〈n̂i,↓〉.

In our equilibrium DMFT and Hartree-Fock calculations,
we set the chemical potential to μ = 0, temperature to T = 0
and switch off the coupling to external thermal baths. For the
L-DMFT calculations the chemical potential and the temper-
ature are set to the same values indirectly, through coupling to
the thermal reservoir, see Eqs. (8) and (15). We set the strength
of this coupling to ν2 = 0.5. To obtain both CDW and normal
phases we set the NN-interaction strength to V = 2. We
perform calculations with local-interaction strength ranging
from U = 1 to U = 16. On-site energy is set to ε = −U

2 . This
would correspond to half-filling in the absence of nonlocal

FIG. 3. Comparison of local occupations 〈n̂A(B)〉 obtained within
equilibrium Hartree-Fock (HF, orange diamonds), equilibrium
DMFT (red circles), and L-DMFT (blue squares). Index A (B) corre-
sponds to quantities in sublattice A (B). System parameters are set to
J = 1, ε = −U

2 , V = 2, and �dp = 0. Local thermal bath parameters
in L-DMFT are: coupling strength ν2 = 0.5, temperature T = 0 and
chemical potential μ = 0. DMFT and HF results are obtained for
T = 0 and μ = 0, without coupling to local thermal baths.

interaction. However, with V = 2, the filling is lower and thus
results are away from half-filling.

In Fig. 3, we present the comparison of local occupa-
tions for a single spin species, 〈n̂A(B)〉 = 〈n̂A(B),↓ + n̂A(B),↑〉,
obtained within equilibrium DMFT and Hartree-Fock mean-
field. The equilibrium DMFT results were obtained with
the exact diagonalization impurity solver [91]. We observe
that for intermediate values of the interaction strength a
checkerboard CDW phase emerges, resulting in spontaneous
symmetry breaking with nonzero value of the checkerboard
order parameter �n = |〈n̂A − n̂B〉|.

The phase transition at high U (and as a result high |ε|)
occurs due to the competition between the on-site energy
ε and NN interaction V . Approximately, the energy cost of
adding a particle at (almost empty) sublattice B is given by
4V = 8J (due to four singly occupied neighbors) and the
energy gain is given by ε = −U/2. Therefore, in the atomic
limit, one can expect a phase transition around U = 16J . The
hopping processes lead to hybridization of the two sublattices.
This results in decreasing value of the checkerboard order
parameter �n as we approach the phase transition point,
and a shift of the critical interaction strength Uc to lower
values of around Uc = 14.5 ± 0.5. At low values of U , the
phase transition occurs around Uc = 2.5 ± 0.5 with a jump
in the total filling. As all four energy scales, namely, U ,
J , V , and ε, are comparable and we have not been able
to find a simple explanation for the nature of this phase
transition.

To benchmark the L-DMFT technique we performed a
series of tests for an arbitrarily chosen value of on-site inter-
action U = 8. Firstly we investigated how the accuracy of the
method depends on the number of bath sites Nb used in the
impurity solver. We checked how the spectral function and
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FIG. 4. Comparison of the physical (blue thick line) and auxil-
iary (red thin line) hybridization functions in the converged solution
with U = 8 (other parameters are the same as in Fig. 3) for sublattice
B: �K

B (ω) and �K
B;aux(ω). (Inset) Comparison of the distribution

functions f B(ω) extracted from the hybridization function according
to Eq. (25).

the filling of sublattices changes for 1 � Nb � 5 (results not
shown in here). While we observe significant deviations for
Nb � 2, the values Nb = 3, 4, and 5 give comparable results.

Next we focused on the performance of the method with
Nb = 4. In Fig. 4, we present the comparison of the hybridiza-
tion functions at U = 8 for sublattice B obtained from the
Dyson equation (19) and after mapping onto the impurity
AMEA model. We observe that while some finer details are
lost in the mapping procedure, the main features are prop-
erly reproduced. Upon closer investigation of the distribution
functions fB,aux(ω) describing the environment of a site from
sublattice B (displayed in Fig. 4), we notice that (i) the
auxiliary hybridization function does not reproduce perfectly
the Fermi-Dirac distribution function and (ii) there are small
discrepancies between the physical and auxiliary distribution
functions in the region where the spectral weight Im[�R(ω)]
is large. Discrepancies in the remaining regions do not lead
to significant issues—as the spectral weight is small in these
regions it does not contribute strongly to the dynamics or the
total occupation of the system.

The discrepancies in the reproduced distribution function
might lead to different values of occupation and double oc-
cupancy between the equilibrium and nonequilibrium solvers.
This issue is indeed observed when comparing the DMFT and
L-DMFT results (cf. Fig. 3). Nevertheless, it is minimized by
an appropriate choice of the cost function, which minimizes
the error in the relevant regions through χ

f
α .

The discrepancies in the hybridization functions in the
AMEA have yet another consequence. As not all features
are perfectly reproduced, there might be local minima of
the cost function (23), in which features which are captured
more accurately appear in different parts of the spectrum. As
a result, one might expect more than one self-consistently
converged solution of the full L-DMFT approach. We checked
that this leads to at most small quantitative differences in the

converged solution. Qualitative features of the results remain
unchanged.

Having established that the method gives a good qual-
itative description of the system we compared the results
of equilibrium DMFT with those of L-DMFT for a wide
range of values of U , Fig. 3. The nonsmoothness of the
L-DMFT results originates from the emergence of multiple
self-consistent solutions discussed above and from discrepan-
cies in the effective distribution function f (ω). We observe
that the methods yield similar results, but one can observe
some quantitative differences. In all cases, the system does
not exhibit a CDW phase for weak local interaction. As U
is increased the system undergoes a phase transition, which
occurs at a critical value around Uc ≈ 2.5 ± 0.5 with a sharp
change of the order parameter �n. Investigating the type of
this phase transition goes beyond the scope of this paper.
As the value of U is further increased the order parameter
decreases until it vanishes completely at around Uc ≈ 14.5 ±
0.5. Overall, the comparison of DMFT and L-DMFT shows
that the latter agrees qualitatively with an equilibrium method
which is well established in the literature and which captures
effects of strong local correlations. Quantitative differences
can serve as a measure of the accuracy for our method.

To check the effect of the nonlocal Fock-exchange terms
due to the nearest-neighbor interaction, which are absent in
DMFT, we additionally perform a static mean-field study
of the ground state long-range order of the Hamiltonian in
Eq. (1), by following the self-consistent mean-field method
that includes both Hartree- and Fock-decoupling of local and
nonlocal interaction terms [92]. This self-consistent mean-
field method was used previously for two-dimensional dipo-
lar fermions [93,94]. Although anomalous mean-field terms
that allow for a description of pairing with arbitrary spatial
symmetry can in principle be included in the self-consistent
method, we set them to zero in this work. As can be seen in
Fig. 3, both L-DMFT and DMFT give qualitatively similar re-
sults to the self-consistent mean-field method. This shows that
the nonlocal Fock-exchange terms due to the nearest-neighbor
interaction do not modify qualitatively the density-wave or-
dering in this system (see also Ref. [69] for a quantitative
study). The discrepancies at larger values of U are expected
to be an effect of mean-field treatment of local interactions
rather than neglecting exchange terms in DMFT or L-DMFT.

B. Nonequilibrium results

We now turn to the nonequilibrium case. In Fig. 5, we
compare the occupations of sublattices A and B for different
interaction strengths with and without the dephasing �dp =
0.05. We observe that the dephasing has the effect of reducing
the differences between the occupation of sublattice A (〈n̂A〉)
and sublattice B (〈n̂B〉). We also observe a change of the
critical value of the local interaction, at which the system
undergoes a phase transition between the homogeneous and
CDW phases. The range of values of U for which the CDW
phase is present thus becomes smaller due to dephasing.

In order to further estimate the destructive effect of dephas-
ing we investigate the U -�dp phase diagram of our system,
Fig. 6. It is evident that with increasing strength of dephasing
the range in U for which one obtains a CDW phase shrinks,
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FIG. 5. Comparison of the occupations of sublattice A (filled
symbols) and B (empty symbols) for no dephasing �dp = 0.0
(blue squares) and intermediate dephasing strength �dp = 0.05 (red
triangles).

until it vanishes completely at around �dp ≈ 0.085 ± 0.005.
Note that this value is at least one order of magnitude smaller
than the other energy scales of the system, ε, U , V , and J . We
also note that the U dependence of the critical value of �dp

is approximately symmetric with respect to the maximum at
around U = 8.

Next, we investigate how the coupling strength to the local
thermal baths ν2 affects the results. In the inset of Fig. 6, we
present the dependence of the critical dephasing strength �c

dp

on this quantity for U = 8. We observe that for ν2 � 0.5,
the two quantities are proportional to each other �c

dp ∼ ν2,

FIG. 6. Estimated phase diagram of the charge ordering as a
function of on-site interaction U and dephasing �dp. Other param-
eters are set to ν2 = 0.5, V = 2, and ε = −U/2. Shaded region
represents accuracy with which we determine the phase transition
line between CDW and homogeneous phases. (Inset) Critical value
of �dp at constant U = 8J as a function of ν2.

whereas at large ν2, the critical value of �c
dp seems to be

shifted away from proportionality to lower values.
One possible mechanism to explain the proportionality for

small ν2 is the presence of heat exchange between the lattice
and the baths, as we expect the heat current in lattice systems
to be proportional to ν2 [95]. In this regime, the critical value
of the dephasing would then be determined by the rate at
which the heat generated by the dephasing is taken out of the
system.

At high ν2, we expect this behavior to change because
of the increasing hybridization between the system and the
local thermal baths. In this regime, the baths have a stronger
effect on the system. Although the rate of cooling is faster,
at the same time they do not favor CDW ordering since they
are identical for both sublattices. However, whether this is the
only mechanism affecting the behavior at high ν2 cannot be
concluded.

In the cold-atom experiments, the cooling rate is not easy
to control (though not impossible [86]). In the absence of
controllable coupling to a thermal bath, however, one could
still observe experimentally the CDW phase if the timescale
at which the system is heated by dissipation is much longer
than the timescale at which the CDW ordering emerges.

To check whether we work with experimentally realistic
physical parameters, we consider now a possible experimental
realization with fermionic 40K atoms loaded into an optical
lattice [28,29]. As discussed in Sec. II such a system can be
well described by the Hubbard model and in order to introduce
nonlocal interactions one can couple the two spin states to
highly excited Rydberg states in the weak dressing regime,
see also Appendix A. For sufficiently large detuning compared
to the Rabi frequency δ � �, one obtains effectively dressed
ground states with Eq. (3) describing effective interaction
potential of two atoms [75]. Here the effective coefficient is
given by C̃6 = (�/2δ)4C6, with C6 determining the strength
of the van der Waals interactions between two Rydberg states.
The soft-core radius is given by Rc = (C6/2|δ|)1/6. Finally,
the dephasing strength is determined via the spontaneous
emission rate �se of the excited state via �dp = (�/2δ)2�se,
see Appendix A.

Let us now consider a particular choice of the Rydberg
state for the 40K atoms, namely, the |26S〉 state. For this choice
we obtain C6 ≈ 27 h̄ MHz μm6 [71], and �se ≈ 60 h̄ kHz
[96]. A typical value of the hopping amplitude in optical
lattice is on the order of J ≈ 0.5 h̄ kHz and the lattice spacing
is on the order of a ≈ 0.5 μm.

We aim at realizing a model in which only nearest-
neighbor interaction is relevant. Therefore we set the parame-
ters to Rc = 0.5 μm and C̃6 = 31 h̄ Hz μm6. In this case, we
would obtain a nearest-neighbor interaction strength V ≈ 2J ,
the same as in our calculations, and a next-nearest-neighbor
interaction, which is at least one order of magnitude weaker.
To obtain the required value of Rc, one needs to set the
detuning on the order of δ ≈ 860 h̄ MHz. With this value of
the detuning and in order to get the appropriate value of C̃6, we
need to set the Rabi frequency to � = 56 h̄ MHz (suggesting
the need for further development of current experimental
capabilities). Finally, we use the values of � and δ to estimate
the effective dephasing strength, which is approximately given
by �dp ≈ 64 h̄ Hz = 0.128J—on the order of magnitude of
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the maximal �dp considered here. The timescale at which de-
phasing heats the system is approximately given by h̄/�dp ≈
16 ms.

We note that there are several ways in which one can
decrease the dephasing strength in experiment, e.g., (i) with
higher values of the Rabi frequency one can target higher
excited states, which have a longer lifetime, and (ii) one
can use a lattice with a larger lattice constant, which also
allows to use higher excited states without increasing the
Rabi frequency. Note, however, that in our analysis we have
neglected effects of black body radiation, which are present
in a typical experiment and can lead to both stronger de-
phasing and avalanche loss of particles from the system
[1,4].

V. CONCLUSIONS

In this work, we have studied the effect of dissipation on
charge-ordered density-wave phases in a strongly correlated
many-body quantum system with local and nonlocal inter-
action, as encompassed by the fermionic extended Hubbard
model, with dissipation effects treated at the level of the
quantum master equation. This model was solved using a
recent variant of nonequilibrium dynamical mean-field theory,
the Lindblad-DMFT, that allows to include local dissipation
effects nonperturbatively.

By studying the behavior of the checkerboard CDW order
parameter, we have demonstrated that a CDW phase, similar
to the one present in the zero-temperature equilibrium model,
survives the introduction of a dephasing process up to a
critical strength, where the density ordering is destroyed and
the system becomes homogeneous. We studied the steady-
state phase diagram of the model as a function of the local
interaction U and dissipation strength �dp and found that a
broad region of density-ordered steady states exists at rela-
tively weak and moderate dephasing strengths. We observed
that the critical value of local interaction U , where the phase
transition between the homogeneous and CDW phases occurs,
depends on the dephasing strength, with the CDW phase
shrinking as the dephasing strength is increased. Importantly,
we observed that to a certain extent the effect of dephasing on
the CDW order seems to be dominantly due to heating, as we
have observed that the critical value of �c

dp is proportional to
the coupling strength ν2 to the bath.

We expect that using cold atomic fermionic gases
dressed with a Rydberg state—thus acquiring long-range
interactions—and loaded into optical lattices could present an
experimental realization of the extended Hubbard model. We
showed that the parameters considered in our work are experi-
mentally realistic. The remaining issue is to estimate the effect
of other types of dissipation, and estimate the timescale at
which CDW order emerges in such a system and make sure
that it is much shorter then the timescale at which the system
is heated by dephasing.
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APPENDIX A: DRESSED REGIME

In order to simulate a spin-1/2 fermionic Hubbard model,
one can use two hyperfine states of 40K potassium atoms
[28,29]. To introduce the long-range interaction, we need
to couple these states to high lying Rydberg excited states.
Because we want the nonlocal interaction to be isotropic we
either need to use |nS〉 Rydberg states with a three level exci-
tation scheme [1,2] or |nP〉 Rydberg states with a two level
excitation scheme [4], but then one needs to appropriately
arrange the orientation of Rydberg states with respect to the
2D lattice. In both cases, it is enough to work with a single
effective Rabi frequency �eff and detuning δeff .

Because we need to couple two hyperfine states to excited
Rydberg states one can choose either to couple both hyperfine
states to the same Rydberg state, or to couple each hyperfine
state to a different Rydberg state, as depicted in Fig. 1. The
first approach gives the same inter- and intraspecies nonlocal
interaction, but introduces small coherent and incoherent spin
flip processes. The second approach does not introduce spin-
flip terms, but results in small differences in the nonlocal
interaction strength of different species. In the following, we
assume that these differences are negligible.

The full model for the corresponding experimental setup,
in the rotating wave approximation, has the following Hamil-
tonian [97]:

Ĥ1 =
∑

σ∈{↑,↓}

∑
〈i, j〉

( − J f̂ †
i,σ f̂ j,σ − J̃ f̂ †

i,Rσ
f̂ j,Rσ

)

+ �eff

2

∑
i,σ∈{↑,↓}

(
f̂ †
i,σ f̂i,Rσ

+ H.c.
) − δeff

∑
i,σ

n̂i,Rσ

+U
∑

i

n̂i,↑n̂i,↓ +
∑

i, j,σ,σ ′

VRR(ri, r j )

2
n̂i,Rσ

n̂ j,Rσ ′

+
∑

i, j,σ,σ ′
VgR(ri, r j )n̂i,σ n̂ j,Rσ ′ . (A1)

Here, apart from terms appearing in the Eq. (1), we have the
hopping amplitude J̃ of the excited states, the effective Rabi
frequency �eff and detuning δeff , and nonlocal interaction
strengths VRR(ri, r j ), VgR(ri, r j ). f̂i,σ annihilates a ground state
atom in a hyperfine state σ on site i. We use the notation σ ∈
{↑,↓} for the two hyperfine states as they are later interpreted
as two spin states of the Hubbard model. f̂i,Rσ

annihilates on
site i an atom in an excited Rydberg state Rσ , to which the
hyperfine state σ is coupled, see Fig. 1.

As the system is subject to dissipative processes, it is
not enough to determine the Hamiltonian, but we also need
to determine the Lindblad operators. Here we will consider
only spontaneous emission. The Lindblad operator for the
spontaneous emission is

L̂se
i,σ = f̂ †

i,σ f̂i,Rσ
(A2)
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with the strength of dissipation given by the constant �se

independent of spin and position. When coupling to the |nS〉
state via a three-level scheme [1,2], this form of the Lindblad
operator is approximate, assuming that the decay of the atom
to any intermediate state is immediately followed by decay to
the ground state.

For the moment, we consider a single atom without dephas-
ing. Due to the Rabi driving its ground and excited states are
no longer eigenstates of the full Hamiltonian. For example, the
lowest energy eigenstate has the form |σ̃ 〉 = α|σ 〉 + β|Rσ 〉.
Assuming that we are in the regime where δeff � �eff , we
have that α ≈ 1 and β ≈ �eff/(2δeff )  1 [4]. The admixture
of the excited state to the new eigenstate is small. The state
|σ̃ 〉 is called the dressed ground state. Similarly, the dressed
high energy eigenstate |R̃σ 〉 will be predominantly a Rydberg
state, with a small admixture of the ground state. It is safe to
assume that due to its high energy, the |R̃σ 〉 is empty, and only
the dressed ground state is occupied.

Next we consider two atoms without dephasing. Due to the
small admixture of Rydberg excitation to the dressed ground
state, and due to the very strong nonlocal interaction between
two Rydberg states, the dressed ground state will effectively
be subject to nonlocal interaction. The strength of this inter-
action will be approximately proportional to Veff ≈ β4VRR [4].
This interaction shifts the atom even further from resonance
and as a results the value of β will depend on the distance
separating two atoms, therefore the effective interaction will
also have a renormalized shape, with a soft core cutoff for
small atom-atom separations. In this way, we get to the Eq. (3)
for the effective potential [75].

Note that through appropriate choice of �eff and δeff we
can control the strength and shape of the interaction potential.
Thanks to this flexibility we can set the parameters such that
only nearest-neighbor interaction is relevant in our model.
Using the notation in which ĉi,σ and ĉi,Rσ

annihilate the
dressed ground and excited states, respectively, corresponding
to spin σ on site i, we obtain the Hamiltonian (1).

Finally, we consider the effect of dissipation in the dressed
regime. The operators corresponding to the dressed states
can be written as f̂i,σ = α∗ĉi,σ − β ĉi,Rσ

and f̂i,Rσ
= β∗ĉi,σ +

αĉi,Rσ
with |α|2 + |β|2 = 1. In this representation, the Lind-

blad operator (A2) becomes

L̂se
i,σ = (

α∗ĉ†
i,σ − β ĉ†

i,Rσ

)(
β∗ĉi,σ + αĉi,Rσ

)
. (A3)

Under conditions in which α ≈ 1 and β  1 the term with
prefactor β2 will vanish. As we also mentioned the dressed
excited state is empty, as it is a high-energy eigenstate.

Therefore terms with ĉi,Rσ
can also be neglected. One finally

obtains

L̂se
i,σ ≈ β∗ĉ†

i,σ ĉi,σ . (A4)

We obtain effectively a new type of dissipation, namely de-
phasing, with Lindblad operator given by (6) and dissipation
strength given by �dp = |β|2�se. In this picture, the dressed
excited states corresponding to ĉi,Rσ

drop out completely.

APPENDIX B: DISSIPATIVE HEATING

To show that the dephasing considered in Sec. II indeed
heats the system, we consider a case in which our model (1)
is decoupled from thermal baths and the dissipation strength
is finite. We notice that the Liouvillian (5) with Lindblad
operator (6) conserves the number of particles in the system
for both spin species. Therefore we will consider states with
fixed number of particles at half-filling. In other cases, the
Fock space of the system can be split into subspaces with
different occupations and analyzed separately.

The maximally mixed state of a system corresponds to an
infinite temperature. We will show that such a state is indeed
a steady state of the system. The uniqueness of the steady
state [8,98,99] has been studied for certain specific classes of
Liouvillians, but we have not found a proof applicable in our
case. Nevertheless, we will assume that within the subspace
of fixed particle number the steady state is unique. With this
one can conclude that dephasing heats up the system.

The maximally mixed state within the Fock space of di-
mension M is proportional to the identity operator

ρ̂MM = 1

M
1̂. (B1)

The condition for it to be a steady state reads

d ρ̂MM

dt
= −i[Ĥ, ρ̂MM ] + ˆ̂L[ρ̂MM ] = 0. (B2)

As any operator commutes with the identity operator, the first
term on the right-hand side vanishes. Now we consider the
dissipative part given by (5) with the Lindblad jump operator
(6) and �μ,ν = δμ,ν�dp, where μ iterates over lattice i and spin
σ indices. Notice that as the jump operator is Hermitian, we
get

2L̂d p,i,σ 1̂L̂†
d p,i,σ − {L̂†

d p,i,σ L̂d p,i,σ , 1̂} = 0. (B3)

As a result, the time derivative of ρ̂MM vanishes, which means
that it is indeed a steady state.
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[59] A. Geißler, I. Vasić, and W. Hofstetter, Condensation versus
long-range interaction: Competing quantum phases in bosonic
optical lattice systems at near-resonant Rydberg dressing, Phys.
Rev. A 95, 063608 (2017).

[60] Y. Li, A. Geißler, W. Hofstetter, and W. Li, Supersolidity of
lattice bosons immersed in strongly correlated Rydberg dressed
atoms, Phys. Rev. A 97, 023619 (2018).

[61] H. Weimer, Variational Principle for Steady States of Dissi-
pative Quantum Many-Body Systems, Phys. Rev. Lett. 114,
040402 (2015).

[62] S. Ray, S. Sinha, and K. Sengupta, Phases, collective modes,
and nonequilibrium dynamics of dissipative Rydberg atoms,
Phys. Rev. A 93, 033627 (2016).

[63] M. Barbier, A. Geißler, and W. Hofstetter, Decay-dephasing-
induced steady states in bosonic Rydberg-excited quantum
gases in an optical lattice, Phys. Rev. A 99, 033602 (2019).

[64] A. I. Lichtenstein and M. I. Katsnelson, Antiferromagnetism
and d-wave superconductivity in cuprates: A cluster dynamical
mean-field theory, Phys. Rev. B 62, R9283 (2000).

[65] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[66] C. Aron, C. Weber, and G. Kotliar, Impurity model for non-
equilibrium steady states, Phys. Rev. B 87, 125113 (2013).

[67] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P.
Werner, Nonequilibrium dynamical mean-field theory and its
applications, Rev. Mod. Phys. 86, 779 (2014).

[68] J. Li, C. Aron, G. Kotliar, and J. E. Han, Electric-Field-Driven
Resistive Switching in the Dissipative Hubbard Model, Phys.
Rev. Lett. 114, 226403 (2015).

[69] T. Ayral, S. Biermann, P. Werner, and L. Boehnke, Influ-
ence of Fock exchange in combined many-body perturbation
and dynamical mean field theory, Phys. Rev. B 95, 245130
(2017).

[70] M. Fleck, A. I. Lichtenstein, E. Pavarini, and A. M. Oleś,
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