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Effective Ising model for correlated systems with charge ordering
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Collective electronic fluctuations in correlated materials give rise to various important phenomena, such as
charge ordering, superconductivity, Mott insulating and magnetic phases, and plasmon and magnon modes.
Unfortunately, the description of these correlation effects requires significant effort, since they almost entirely
rely on strong local and nonlocal electron-electron interactions. Some collective phenomena, such as magnetism,
can be sufficiently described by simple Heisenberg-like models that are formulated in terms of bosonic variables.
This fact suggests that other many-body excitations can also be described by simple bosonic models in the spirit
of Heisenberg theory. Here we derive an effective bosonic action for charge degrees of freedom for the extended
Hubbard model and define a physical regime where the obtained action reduces to a classical Hamiltonian of an
effective Ising model.
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I. INTRODUCTION

Remarkably, the majority of studies of collective charge
excitations in modern condensed matter theory is still limited
to the random phase approximation (RPA) [1–3]. Although
this approach fulfills the charge conservation law and provides
a qualitatively good description of plasmonic modes, it is
based on a perturbation expansion and, strictly speaking, is
applicable only to systems with relatively small Coulomb
interaction. A correct description of plasmons in the corre-
lated regime of large electron-electron interactions requires
consideration of additional diagrammatic contributions to the
electronic self-energy and polarization operator that contain
vertex corrections. Unfortunately, the latter implies the use of
advanced numerical techniques, which in the case of realistic
calculations is extremely time-consuming. Additional dia-
grammatic corrections often violate the charge conservation
law [4,5], which affects the result for the plasmonic spectrum.
Nevertheless, recently a new theory that allows a conserv-
ing description of plasmons beyond RPA was proposed in
Ref. [6]. This approach is based on the Dual Boson (DB)
theory [7,8] and considers the polarization operator in the
two-particle ladder form written in terms of local three- and
four-point vertex functions. A further extension of this method
to the multiorbital case is challenging due to its complicated
diagrammatic structure.

Another interesting feature of collective charge excitations
in many realistic materials is a tendency of the systems
to the charge ordering (CO), which is widely discussed
in the literature starting from the discovery of the Verwey
transition in magnetite Fe3O4 [9–11]. Nowadays, there is a
number of other materials, such as the rare-earth compound
Yb4As3 [12–14], transition metal MX2 [15–17] and rare-earth
R3X4 [18–20] chalcogenides (M = V, Nb, Ta; R = Eu, Sm;
X = S, Se), Magnéli phase Ti4O7 [21–24], vanadium bronzes
NaxV2O5 and LixV2O5 (see Refs. [14,25], and references

therein), where the charge ordering has been observed. Since
this phenomenon is based on the presence of strong local
and nonlocal electron-electron interactions, the theoretical
description of this issue also requires the use of very advanced
approaches (see, e.g., Refs. [26,27]).

Recent theoretical investigations of charge correlation ef-
fects caused by the strong nonlocal Coulomb interaction
indicate that the description of collective charge excitations
in the correlated regime can be drastically simplified. Thus,
the study of the charge ordering within the dynamical clus-
ter approximation (DCA) [28], Dual Boson [29,30], and
GW+EDMFT [4,31] approaches showed similar results for
the phase boundary between the normal and CO phases at
half filling. The fact that a much simpler GW+EDMFT theory
performs in reasonable agreement with the more advanced
DB approach and with almost exact DCA method suggests
that collective charge fluctuations can be described via a
simple theory, at least in a specific physical regime. Unfor-
tunately, the use of the GW+EDMFT theory for description
of charge excitations is not fully justified, since this approach
suffers from the Fiertz ambiguity when the charge and spin
channels are considered simultaneously [32,33], and from
the “HS-UV/V ” decoupling problem [34,35]. In this regard,
the simplified (DB − GW) [29,30] approximation of the DB
theory, which does not consider vertex corrections and is free
of the above-mentioned problems, seems more preferable.
However, it provides much worse results than the DB [30]
and GW+EDMFT [31] theories. Therefore, the problem of
the efficient description of collective charge excitations in
correlated materials is still open.

In the case when accurate quantum mechanical calcula-
tions are challenging, the initial quantum problem can be re-
placed by an appropriate classical one. This thermodynamical
approach is widely used, for example, for a description of
the ordering in alloys [36–41]. There, the total energy of the
ground state is mapped onto an effective Ising Hamiltonian,
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with parameters determined from ab initio calculations within
the framework of the density functional theory [42–44]. How-
ever, to our knowledge, no attempts to extend this theory to
the description of charge fluctuations in the correlated regime
and to derive the pair interaction of the Ising model directly
from the quantum problem have been reported yet. Additional
impulse for investigation of this important problem is given by
theoretical studies of magnetism in correlated electronic sys-
tems [45–49], where an effective classical Heisenberg model
for the quantum problem was derived. Since magnetism is also
a collective electronic property, one may expect that charge
degrees of freedom can be treated in a similar way.

Motivated by the above discussions, we introduce here a
new theory that describes charge excitations of the extended
Hubbard model in terms of bosonic variables that are related
to electronic charge degrees of freedom. The correspond-
ing bosonic action of the model is derived with the use of
the advanced ladder DB approach. Consequently, the charge
susceptibility has a complicated diagrammatic structure that
takes into account frequency dependent vertex corrections.
We also observe that the dependence of local vertex functions
on fermionic frequencies is directly connected to the value
of the double occupancy of lattice sites. Moreover, we find
that in a wide range of physical parameters, when the double
occupancy is large, this dependence is negligible, and the
expression for the charge susceptibility can be drastically
simplified. Thus, the theory reduces to an improved version
of the GW+EDMFT and DB − GW approaches, where the
susceptibility takes a simple RPA+EDMFT form. The further
application of the derived simple theory to the hole-doped
extended Hubbard model shows almost perfect agreement
of the obtained result for the phase boundary between the
normal and CO phases with much more elaborate and time-
consuming ladder DB and DCA [50] methods. Finally, it
has been shown that in the case of well-developed collec-
tive charge fluctuations the initial quantum problem can be
mapped onto an effective classical Ising Hamiltonian written
in terms of pair interaction between charge densities. This
formalism can be efficiently used for the calculation of finite-
temperature thermodynamic properties of the system. For
instance, we show that the effective Ising model predicts the
transition temperature between the normal and charge ordered
phases in a good agreement with the DCA result, although our
calculations are performed in the unbroken symmetry phase.

II. BOSONIC ACTION FOR ELECTRONIC CHARGE

Let us start with the following action of the extended
Hubbard model written in the Matsubara frequency (ν, ω) and
momentum (k, q) space:

S = −
∑
k,ν

c∗
kν[iν + μ − εk]ckν + 1

2

∑
q,ω

[U + Vq]ρ∗
qωρqω.

(1)

Here c∗
kν (ckν) are Grassmann variables corresponding to the

creation (annihilation) of an electron. εk is the Fourier trans-
form of the hopping amplitude ti j , which is considered here
in the nearest neighbor approximation on a two-dimensional
square lattice. The energy scale is 4t = 1. U and Vq are

local and nonlocal Coulomb interactions, respectively. Charge
degrees of freedom are described here introducing the bosonic
variable ρqω = nqω − 〈nqω〉 that describes variation of the
electronic density nqω = ∑

k,ν,σ c∗
kνσ ck+q,ν+ω,σ from the

average value. Hereinafter, spin labels σ = ↑,↓ are omitted.
An effective bosonic action for charge degrees of freedom

can be derived following transformations, as presented in a re-
cent work [49]. There, the lattice action Eq. (1) is divided into
the local impurity problem of the extended dynamical mean-
field theory (EDMFT) [51–55] and the remaining nonlocal
part. To decouple the single-electronic and collective charge
degrees of freedom, one can perform dual transformations
of the nonlocal part of the lattice action that lead to a new
problem written in the dual space [29,30]. The inverse trans-
formation back to the initial “lattice” space after truncation
of the interaction of the dual action at the two-particle level
results in the following bosonic action for charge variables
(for details see Ref. [49] and Appendix A):

Sch = −1

2

∑
q,ω

ρ∗
qωX −1

qω ρqω. (2)

Here, the charge susceptibility Xqω in the conserving ladder
DB approximation is given by the following relation [49]:

X −1
qω = [

X DMFT
qω

]−1 + �ω − Vq, (3)

where �ω is the local bosonic hybridization function of the
impurity problem. X DMFT

qω = ∑
νν ′ [X DMFT

qω ]νν ′ is the charge
susceptibility in the DMFT form [56,57] written in terms
of lattice Green’s functions Gkν and two-particle irreducible
(2PI) in the charge channel four-point vertices γ 2PI

νν ′ω of the
local impurity problem (see Appendix A):[

X DMFT
qω

]−1
νν ′ = [

X 0
qω

]−1
νν ′ + γ 2PI

νν ′ω. (4)

Here, [X 0
qω]νν ′ = ∑

k Gk+q,ν+ωGkν δνν ′ is a generalized bare
lattice susceptibility, and the inversion should be understood
as a matrix operation in the fermionic frequency ν, ν ′ space.
Note that in the ladder DB approximation the lattice Green’s
function is dressed only in the local impurity self-energy
and therefore coincides with the usual EDMFT expression
[51–55]. Thus, the relation for the lattice susceptibility can
be written as Xqω = ∑

νν ′ [Xqω]νν ′ , where

[Xqω]−1
νν ′ = [

X 0
qω

]−1
νν ′ − U eff

νν ′ω − Vq, (5)

and we introduced an effective bare local Coulomb interaction

U eff
νν ′ω = −�ω − γ 2PI

νν ′ω. (6)

Note that the 2PI vertex function γ 2PI
νν ′ω is defined here in the

particle-hole channel.
A recent study of magnetism of correlated electrons [49]

shows that if the system exhibits well-developed bosonic
fluctuations, the corresponding local vertex functions mostly
depend on bosonic frequency ω, while their dependence on
fermionic frequencies ν, ν ′ is negligible. Therefore, one can
expect that in a physical regime where charge fluctuations
are dominant the local 2PI vertex function in the charge
channel can be approximated as γ 2PI

νν ′ω � γ 2PI
ω , and the charge

susceptibility Eq. (3) takes the following simple form:

X −1
qω = X 0−1

qω − (
U eff

ω + Vq
)
. (7)
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Here, X 0
qω = ∑

νν ′[X 0
qω]νν ′ = ∑

kν Gk+q,ν+ωGkν is the bare
lattice susceptibility, and the effective bare local Coulomb
interaction Eq. (6) transforms to U eff

ω = −�ω − γ 2PI
ω . As it

is also shown in Ref. [49] and Appendix B, in the considered
case of well-developed collective fluctuations the 2PI vertex
function can be approximated as

γ 2PI
ω � χ−1

ω − χ0−1
ω � −U − �ω, (8)

where χω and χ0
ω are the full and bare local susceptibilities

of the impurity problem, respectively. As a consequence, the
effective bare local Coulomb interaction reduces to the actual
value of the local Coulomb interaction U eff

ω � U . Therefore,
the expression in Eq. (7) is nothing more than the RPA
susceptibility constructed on top of the EDMFT result for
Green’s functions. This simplified approximation is referred
in the text to as the RPA+EDMFT approach.

It is worth noting that in the regime of strong charge fluc-
tuations the local self-energy takes the same form as in GW
approach [58–60] (see Ref. [49] and Appendix B). Hence,
the simplified theory can be reduced to the GW method in
the case when the nonlocal contribution to the self-energy is
also considered. Thus, we show that it is indeed possible to
describe strong charge excitations by a simple bosonic action
Eq. (2) in terms of charge susceptibility Eq. (7) that does not
contain vertex corrections.

III. REGIME OF STRONG CHARGE FLUCTUATIONS

Now, let us define the physical regime where the presented
above technique is applicable. In Ref. [49] collective exci-
tations have been studied in the ordered (antiferromagnetic)
phase, where the proximity of the local magnetic moment m
to its maximum value served as a signature of well-developed
spin fluctuations. Here, we are interested in a similar de-
scription of a more complicated case when collective charge
excitations are present in the system already in the normal
phase. Since in the latter case all lattice sites are described
by the same local impurity problem, the corresponding sig-
nature of strong bosonic fluctuations can no longer be found
among local single-particle observables that are identical for
every lattice site. It is worth mentioning that, contrary to
the magnetic phase where the ordering of single-particle
quantites (local magnetizations) is realized, the CO phase on
a lattice corresponds to the ordering of dublons (see, e.g.,
Refs. [61,62]) that are two-particle observables. Thus, the
double-occupancy of the lattice site, which is defined as d =
〈n↑n↓〉 with the maximum value dmax = 0.25 in the normal
phase, can be proposed as a fingerprint of the existence of
strong charge fluctuations in the system.

The corresponding result for the double occupancy of the
two-dimensional extended Hubbard model Eq. (1) on the
square lattice is shown on the U -V phase diagram in Fig. 1
and obtained using the DB approach [63] without the approx-
imation of the four-point vertex function introduced above.
The phase boundary (red dashed line) between the normal
(colored) and CO (gray) phases is determined from the zeros
of the inverse charge susceptibility X −1

qω (3) at q = (π, π ) and
ω = 0 point similarly to Refs. [29,30]. As already mentioned
in the Introduction, this result for the phase boundary is in a
very good agreement with the DCA calculations performed in

FIG. 1. Double occupancy of the extended Hubbard model
shown on the U -V phase diagram. Calculations are performed in the
normal phase where the value of the double occupancy d is depicted
by color. The gray part corresponds to the charge ordered phase.
Values of the double occupancy at the phase boundary are explicitly
mentioned. The area depicted by the black dashed line corresponds
to the case of large value of the double occupancy d � 70% dmax and
shows the regime where charge excitations can be described by an
effective Ising model. Values of Coulomb interactions U and V are
given in units of half of the bandwidth (W/2 = 4t = 1). Therefore,
the effective Ising model can be used for a broad range of values
of the Coulomb interaction, which may even exceed half of the
bandwidth. The inverse temperature is β = 50.

Ref. [28]. As expected, large charge fluctuations in the normal
phase emerge in the region close to the phase transition to
the ordered state. However, one can see that the strength of
these fluctuations is not uniformly distributed along the phase
boundary, since the value of d decreases with the increase of
the local Coulomb interaction.

To clarify the connection between the value of the double
occupancy and the strength of charge fluctuations, one can
study an effective bare local Coulomb interaction U eff

νν ′ω de-
fined in Eq. (6). Figure 2 shows the ratio U eff

νν ′ω/U between
the effective and actual local Coulomb interactions as the
function of fermionic frequency ν at the ν ′ = ω = 0 point.
This result is obtained close to the phase boundary between
the normal and CO phases shown in Fig. 1 for different values
of the local Coulomb interaction U and, as a consequence,
of the double occupancy d . The exact values of U , V , and
d for these calculations are specified in Table I. Here, one
can immediately see that the effective Coulomb interaction

TABLE I. Double occupancy d , correction U ′ to the effective lo-
cal Coulomb interaction U eff , and static dielectric function ε obtained
close to the phase boundary between the normal and CO phases for
the given values of the local U and nonlocal V Coulomb interactions.

U 0.1 0.5 1.0 1.5 2.0 2.5

V 0.045 0.130 0.265 0.420 0.630 0.965
d 0.25 0.23 0.21 0.18 0.14 0.10
U ′ − 0.48 − 0.68 − 1.11 − 1.81 − 2.85 − 5.24
ε 1.26 3.78 10.09 6.00 3.35 1.91
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FIG. 2. Frequency dependence of the effective local Coulomb
interaction U eff

νν′ω obtained for different values of U at the phase
boundary between the normal and CO phases at the ν ′ = 0 and
ω = 0 point for β = 50. As the double occupancy d is decreased, the
dependence of the effective interaction U eff

νν′ω on fermionic frequency
becomes larger.

at small values of U (large values of d) is almost frequency
independent. Decreasing the double occupancy, the frequency
dependence of U eff becomes crucial, and one can no longer
approximate the local 2PI vertex function by neglecting its
dependence on fermionic frequencies. Remarkably, the effec-
tive Coulomb interaction tends to the actual value of the local
Coulomb interaction at large frequencies for every value of
U , which is in perfect agreement with the theory presented
above. A similar asymptotic behavior was reported for the
2PI vertex function of the DMFT impurity problem (�ω = 0)
in Ref. [64]. Thus, one can conclude that the presence of
the bosonic hybridization function �ω in the local impurity
problem changes local vertex functions. The presence of �ω

in Eq. (3) restores the correct frequency behavior of the
lattice susceptibility by canceling the bosonic hybridization
from the vertex function in the effective local interaction.
Therefore, the inclusion of the �ω in the theory has to be
done consistently both in the local impurity problem and
the lattice susceptibility Eq. (3); otherwise, it may lead to
incorrect frequency behavior of bosonic quantities. Results
for U eff

νν ′ω/U for other values of ν ′ and ω can be found in
Appendix A and show a similar connection of the dou-
ble occupancy to the frequency dependence of the effective
Coulomb interaction.

Let us now investigate the dependence of the effective local
Coulomb interaction on the bosonic frequency ω. As shown
in Fig. 2, the use of the fermionic frequency independent
approximation γ 2PI

νν ′ω � γ 2PI
ω for the 2PI vertex in the large

double occupancy regime is now justified. Then, the effective
Coulomb interaction U eff

ω can be extracted from the simplified
expression for the charge susceptibility Eq. (7), where the
left-hand side is substituted from Eq. (3). Since the leading
contribution to the lattice susceptibility in this regime is given
by the q = (π, π ) momentum, the corresponding effective
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FIG. 3. Frequency dependence of the effective local Coulomb
interaction U eff

ω obtained for β = 50 close to the phase boundary
between the normal and charge ordered phases for different values
of the actual Coulomb interaction U . When the double occupancy
is decreased, the difference between the effective and actual local
Coulomb interactions becomes more notable.

interaction shown in Fig. 3 reads

U eff
ω = X 0−1

(π,π ),ω − [
X DMFT

(π,π ),ω

]−1 − �ω. (9)

Here, the result is obtained in the normal phase close to the
CO for the same values of Coulomb interactions as in Fig. 2. It
is worth mentioning that the above definition of the effective
local Coulomb interaction is similar to the one of the two-
particle self-consistent theory proposed by Vilk and Tremblay
[65]. However, we use a more advanced ladder DB Eq. (3) for
the lattice susceptibility, contrary to the RPA form with bare
Green’s functions considered in their work.

Remarkably, when the double occupancy is close to its
maximum value, the effective Coulomb interaction U eff does
not depend on bosonic frequency either and again coincides
with the actual Coulomb interaction. In the smaller d regime
the bosonic frequency dependence appears and cannot be
avoided for consideration anymore. Therefore, the large value
of the double occupancy is indeed an indicator of a well-
developed charge fluctuations. Taking into account results
shown in Figs. 2 and 3, the value of the double occupancy for
which the effective local interaction is frequency independent
and coincides with the bare local Coulomb interaction U can
be estimated as d � 70% dmax. As schematically shown in
Fig. 1 by the black dashed line, the corresponding region
where the use of a simple RPA+EDMFT approach is justified
can be distinguished for the relatively broad range of Coulomb
interactions. Surprisingly, the latter may even exceed half of
the bandwidth.

IV. EXTENDED HUBBARD MODEL UPON DOPING

Calculation of phase boundaries became a standard test for
the performance of the introduced theory [4,28–30,50]. To
demonstrate the power of the derived above RPA+EDMFT
approach in description of strong charge fluctuations, let us
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FIG. 4. Phase boundary between the normal (N) and charge-
ordered (CO) phases of the hole-doped extended Hubbard model in
the space of nearest-neighbor interaction V and chemical potential μ.
Calculations are performed for the Ladder DB and RPA+EDMFT
approaches in the regime of large double occupancy where the use
of the simplified approximation is justified. The DCA data is kindly
provided by authors of the Ref. [50]. The local interaction is U = 0
(left panel), U = 0.5 (middle panel), and U = 1 (right panel). The
hopping amplitude is t = 0.25. μ = 0 corresponds to the half filling.
All data are obtained for β = 12.5 (T = 0.08).

investigate the phase boundary between the normal and CO
phases of the extended Hubbard model beyond the half filling.
Recently, this issue has been addressed with the use of the
dynamical cluster approximation [50] in the hole-doped case.
DCA is a very advanced approach, which is based on a
cluster dynamical mean field theory. Thus, the result obtained
in Ref. [50] for the phase boundary can be considered as
a benchmark. In the previous section we have distinguished
the physical regime of applicability of the RPA+EDMFT
approach at the half filling. This region is depicted by the
black dashed line in Fig. 1. To study the performance of
the RPA+EDMFT approach against more advanced ladder
DB and DCA theories, we obtain the phase boundary in the
same region of physical parameters upon the hole doping.
The corresponding result is shown in Fig. 4 in the space of
nearest-neighbor interaction V and chemical potential μ for
U = 0 (left panel), U = 0.5 (middle panel), and U = 1 (right
panel). The value of the chemical potential is counted from the
half filling (μ = 0). The temperature T = 0.08 (β = 12.5) for
numerical calculations is taken the same as in Ref. [50]. The
RPA+EDMFT result (yellow pluses) for the phase boundary
is obtained using Eq. (7) for the charge susceptibility, where
the effective local interaction U eff

ω is replaced by the actual
value of the Coulomb interaction U according to above dis-
cussions. The ladder DB result (red squares) is obtained using
Eq. (3) as a single-shot calculation on top of the converged
EDMFT solution. The DCA data (black circles) is kindly
provided by the authors of Ref. [50].

Figure 4 shows that results for the phase boundary be-
tween the normal (N) and charge ordered (CO) phases al-
most perfectly coincide for all three theories for different
values of local Coulomb interaction. Remarkably, the result
of RPA+EDMFT is in a good agreement with more elaborate

methods even at large values of doping. Thus, results for
the phase boundary have been compared up to 17%, 18%,
and 20% of hole-doping for U = 0, U = 0.5, and U = 1,
respectively. This fact is even more surprising, since the
RPA+EDMFT operates only with Green’s functions of the
single-site EDMFT solution of the problem, while the Dual
Boson approach requires a calculation of local vertex func-
tions to perform the diagrammatic extension of the EDMFT.
The converged EDMFT solution for a one point in parameter
space can be obtained, for example, within 20 iterations
(20 min each) on a single node of the North-German Super-
computing Alliance (HLRN) cluster. At the same time, the
simplest single shot ladder DB calculation requires additional
iteration that is to be performed on the same cluster already
on four nodes (each node contains 24 cores), which takes at
least 60 min more for the one point.

Multiorbital version the Dual Boson theory is much more
time-consuming, since it requires numerical calculation of
vertex functions in the enlarged parameter space, and is not yet
implemented. The extension of the DCA method to the multi-
orbital case is even more complicated. An addition difficulty
here corresponds to the fact that DCA calculations cannot be
performed at reasonably low temperatures beyond the half
filling due to the sign problem. For this reason, the compari-
son between three theories has been performed at β = 12.5,
while previous DB calculations were done for much lower
temperature β = 50. Therefore, the RPA+EDMFT appears
to be a very appealing approach for the description of strong
collective excitations in the multiorbital case, since it does not
require complicated numerical efforts other than the EDMFT
solution of the problem.

V. EFFECTIVE ISING MODEL

In general, the existence of separate dynamics and a corre-
sponding classical Hamiltonian for charge degrees of freedom
is questionable. The possibility to introduce a classical prob-
lem for certain collective excitations is usually related to the
existence of an adiabatic parameter that distinguishes these
excitations from others that belong to different energy and
timescales. Thus, in the case of spin fluctuations the adiabatic
approximation is intuitive and implies that collective (spin)
degrees of freedom are slower and have lower energy than
single-particle (electronic) excitations [66]. Unfortunately, the
corresponding adiabatic approximation for charge degrees of
freedom does not exist. Therefore, it is very challenging to
find a specific physical regime where the classical problem
for charge degrees of freedom can still be introduced. As
was recently obtained for spin fluctuations [49], the possi-
bility of different energy and timescales separation lies in a
nontrivial frequency behavior of local vertex functions. If the
dependence of the local vertex on fermionic (single-particle)
frequencies is negligibly small compared to the bosonic (col-
lective) frequency dependence, then the separation of the
corresponding bosonic excitation is justified.

Thus, in the regime of the large value of the double
occupancy (d > 70% dmax), which is shown in Fig. 1 by
the dashed black line, the quantum action Eq. (2) can be
mapped onto an effective classical Hamiltonian, similarly to
the case of collective spin fluctuations with the well-defined
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local moment [49]. Note that in the case of charge degrees of
freedom, the classical problem is given by the effective Ising
Hamiltonian,

Hch = −
∑

q

Jq σq σ−q, (10)

written in terms of classical variables σ = ±1. An effective
pair interaction Jq between electronic densities can be defined
from the nonlocal part of the inverse charge susceptibility at
the zero bosonic frequency [48,49]. Additionally, quantum
variables ρ (∗)

qω that describe a deviation of the local electronic
density from the average (half-filled) value have to be replaced
in Eq. (2) as follows ρ∗

qωρqω → 2d σq σ−q. To distinguish
local and nonlocal contributions to the inverse susceptibility
Eq. (3), one can again use an approximated version of the
local 2PI vertex function in the charge channel. Since the latter
does not depend on fermionic frequencies in the regime of
well-developed charge fluctuations, the full four-point vertex
γ νν ′ω of the impurity problem can also be approximated by
the leading bosonic contribution. According to the Ref. [49]
the latter corresponds to the full local charge susceptibility χω

that connects two three-point vertex functions γνω (for details
see Appendix A):

γ νν ′ω � −γνω χω γν ′+ω,−ω = . (11)

Then, the relation Eq. (3) for the charge susceptibility
reduces to

X −1
qω = χ−1

ω + �ω − Vq − ̃(2)
qω, (12)

where the second-order polarization operator reads

̃(2)
qω =

∑
kν

γν+ω,−ωG̃k+q,ν+ωG̃kνγν,ω, (13)

and G̃kν is a nonlocal part of the lattice Green’s function.
Then, the effective pair interaction takes the following form:

Jq/d = −Vq −
∑
k,ν

γν,0G̃k+q,νG̃kνγν,0

= −Vq − . (14)

Using an exact relation between the 2PI four-point and full
three-point vertices, the latter can also be approximated as

γνω � χ−1
ω + �ω + U eff

νν ′ω � χ0−1
ω , (15)

as shown in Appendix B. Therefore, the result for the pair
interaction Eq. (14) between electronic densities at first glance
reduces to a similar expression for the exchange interaction
derived for the magnetic system in Ref. [49]. However, the
“correction,”

U ′ = χ−1
ω=0 + �ω=0, (16)

to the effective bare Coulomb interaction U eff in Eq. (15)
is larger than the local Coulomb interaction U as shown in
Table I. This is not surprising, because the relatively large
value of the inversed local charge susceptibility, which is
defined as χω = −〈n∗

ω nω〉, when two electrons occupy the
same lattice site is expected. Therefore, the term U ′ cannot

be neglected, contrary to the case of spin fluctuations at half-
filling when the inversed local magnetic susceptibility χ−1

ω=0
is negligibly small [49]. Since the effective bare Coulomb
interaction U eff in the regime of large double occupancy
coincides with the actual value of U , one can obtain a static
approximation for the three-point vertex (see Appendix B),

γν,0 � χ0−1
ω=0 � − U

ε − 1
= −Ũ , (17)

where ε = U/W0 is a static dielectric function defined via
the renormalized local interaction Wω. Therefore, the final
expression for the pair interaction of the effective classical
Ising model reads

Jq/d = −Vq −
∑
k,ν

Ũ G̃k+q,ν G̃kν Ũ . (18)

The effective Ising model can be used for modeling finite-
temperature thermodynamic properties of the system, such
as the electronic density, charge susceptibility, ground-state
energy, and configurational structure of material [36–41]. All
these observables make sense in the broken symmetry (CO)
phase. These calculations are beyond the scope of the current
paper. However, the Ising model also provides an analytical
result for the transition temperature Tc between the normal and
CO phases,

Tc = 2J/ ln(
√

2 + 1), (19)

where J = Jq=(π,π )/4 approximates the nearest-neighbor pair
interaction. The result for the transition temperature can be
compared to the one of Ref. [50] (Fig. 3). To this aim, we
obtain the effective exchange interaction at U = 0.5 for the
same values of the nonlocal Coulomb interaction V = 0.19
and V = 0.275 used in Ref. [50]. Transition temperatures
obtained within the DCA in these two cases are Tc = 0.103
(β � 9.69) and Tc = 0.204 (β � 4.90), respectively. Since we
perform our calculations in the normal phase, the effective
exchange interaction was obtained above the critical temper-
ature at β = 8 and β = 3, respectively. These temperatures
still allow us to get reasonably large values of the double
occupancy to justify the use of the effective Ising model.
Estimated critical temperatures in our calculations are Tc =
0.114 (J = 0.050, d = 0.230) and Tc = 0.190 (J = 0.084,
d = 0.247), respectively, which is in a good agreement with
corresponding DCA results. Note that our calculations were
performed in the unbroken symmetry phase. We believe that
the agreement for the critical temperature is much better for
calculations performed in the charge-ordered phase, where
the value of the double occupancy is larger and collective
fluctuations are much stronger.

VI. CONCLUSION

In this work the bosonic action Eq. (2) for charge degrees
of freedom of the extended Hubbard model Eq. (1) has been
derived. It was found that local four-point vertex function of
the impurity model is independent on fermionic frequencies
in the regime of well-developed charge fluctuations. Remark-
ably, the latter can be efficiently determined looking at the
deviation of the double occupancy from its maximum value.
Thus, strong charge fluctuations are revealed in the case of
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large double occupancy (d � 70% dmax), which corresponds
to a broad range of values of Coulomb interaction. As a
consequence, it was found that in this regime the dynam-
ics of charge fluctuations can be described via a simpli-
fied RPA+EDMFT charge susceptibility Eq. (7) constructed
from the EDMFT Green’s functions. Moreover the effective
local Coulomb interaction in this case coincides with the
actual value of the bare Coulomb interaction. Remarkably,
the RPA+EDMFT theory performs in a good agreement with
more advanced methods even beyond the half filling. Thus,
this simple approach correctly predicts the phase boundary
between the normal and CO phases up to 20% of hole doping
in a broad range of values of Coulomb interaction. The latter
can even reaching the half of the bandwidth (U/t = 4). Fur-
ther, it was shown that in the regime of well-developed charge
fluctuations, the initial quantum problem can be mapped
onto an effective classical Ising model written in terms of a
pair interaction between local electronic densities. This is a
nontrivial result, since collective charge excitations cannot be
separated from single electronic ones in the same was as it is
usually done for spins, because the corresponding adiabatic
approximation for charge degrees of freedom does not exist.
Importantly, the expression for the pair interaction contains
only single-particle quantities, which can be efficiently used
in realistic multiband calculations. The predicted critical tem-
perature of the effective Ising model is in a good agreement
with the one of the DCA result, which allows to believe that
this simple model can be efficiently used for calculation of
finite-temperature thermodynamic properties of the system in
the ordered phase. We further speculate that similar approx-
imations are valid for realistic multiband systems that reveal
strong charge fluctuations.
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APPENDIX A: BOSONIC ACTION FOR THE EXTENDED
HUBBARD MODEL

Here we explicitly derive a bosonic problem for charge
degrees of freedom of the extended Hubbard model. For this
reason, one can divide the lattice action Eq. (1) into the local

impurity Simp and nonlocal Srem parts following the standard
procedure of the DB theory [7,29]

Simp = −
∑
ν,σ

c∗
νσ [iν + μ − �ν]cνσ + U

∑
ω

n∗
ω↑nω↓

+ 1

2

∑
ω

�ω ρ∗
ω ρω, (A1)

Srem = −
∑
k,ν,σ

c∗
kνσ [�ν − εk]ckνσ + 1

2

∑
q,ω

[Vq − �ω]ρ∗
qω ρqω

+
∑
q,ω

j∗qω ρqω, (A2)

where we introduced fermionic �ν and bosonic �ω hybridiza-
tion functions, and sources jqω for bosonic variables. The
partition function of our problem is given by the following
relation:

Z =
∫

D[c∗, c] e−S , (A3)

where the action S is given by Eq. (1). Using the Hubbard–
Stratonovich transformation of the reminder term Srem, one
can introduce dual fermionic f ∗, f , and bosonic variables φ

as follows:

e
∑

k,ν,σ c∗
kνσ [�ν−εk]ckνσ

= D f

∫
D[ f ] e− ∑

k,ν,σ ( f ∗
kνσ [�ν−εk]−1 fkνσ +c∗

kνσ fkνσ + f ∗
kνσ ckνσ ),

(A4)

e
1
2

∑
q,ω ρ∗

qω[�ω−Vq ]ρqω

= Dφ

∫
D[φ] e−( 1

2

∑
q,ω φ∗

qω[�ω−Vq ]−1φqω+φ∗
qω ρqω ), (A5)

where terms D f = det[�ν − εk] and D−1
φ = √

det[�ω − Vq]
can be neglected when calculating expectation values. Rescal-
ing fermionic and bosonic fields on corresponding Green’s
functions of the impurity problem as f (∗)

kν
→ f (∗)

kν
g−1

ν and
φqω → φqω χ−1

ω , and shifting bosonic variables, the nonlocal
part of the action transforms to

SDB = −
∑
k,ν,σ

f ∗
kνσ g−1

νσ [εk − �ν]−1g−1
νσ fkνσ

+
∑
k,ν,σ

[
c∗

kνσ g−1
νσ fkνσ + f ∗

kνσ g−1
νσ ckνσ

]

+
∑
q,ω

φqω χ−1
ω ρqω − 1

2

∑
q,ω

(φ∗
qω − j∗qω χω )

×χ−1
ω [Vq − �ω]−1χ−1

ω (φqω − χω jqω ). (A6)

Integrating out initial degrees of freedom with respect to the
impurity action Eq. (A1), one gets [7]∫

D[c] e− ∑
i S

(i)
imp−

∑
k,ν,σ [c∗

kνσ g−1
νσ fkνσ + f ∗

kνσ g−1
νσ ckνσ ]−∑

q,ω φ∗
qω χ−1

ω ρqω

= Zimp × e− ∑
k,ν,σ f ∗

kνσ g−1
νσ fkνσ − 1

2

∑
q,ω φ∗

qω χ−1
ω φqω−W̃ [ f ,φ], (A7)

where Zimp is a partition function of the impurity problem.
Here, the interaction W̃ [ f , φ] is presented as an infinite series
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of full vertex functions of the local impurity problem Eq. (A1)
[7,8]. The lowest order interaction terms are

W̃ [ f , φ] =
∑

k,k′,q

∑
ν,ν ′,ω

∑
σ (′ )

(
φ∗

qωγνω f ∗
kνσ fk+q,ν+ω,σ

− 1

4
γ νν ′ω f ∗

kνσ fk+q,ν+ω,σ ′ f ∗
k′+q,ν ′+ω,σ ′′ fk′ν ′σ ′′′

)
,

(A8)

where the full three- and four-point vertex functions are
defined as

γνω =〈cνσ c∗
ν+ω,σ ρω〉imp χ−1

ω g−1
νσ g−1

ν+ω,σ ,

γ νν ′ω =〈cνσ c∗
ν+ω,σ ′cν ′+ω,σ ′′c∗

ν ′σ ′′′ 〉c impg−1
νσ g−1

ν+ω,σ ′ g−1
ν ′+ω,σ ′′g−1

ν ′σ ′′′ .

(A9)

Note that the four-point vertex γ νν ′ω is defined here in the
particle-hole channel.

Therefore, the initial lattice problem transforms to the
following dual action

S̃ = −
∑
k,ν,σ

f ∗
kνσ g−1

νσ [εk − �ν]−1g−1
νσ fkνσ +

∑
k,ν

f ∗
kνσ g−1

νσ fkνσ

+ 1

2

∑
q,ω

φ∗
qω χ−1

ω φqω + W̃ [ f , φ] − 1

2

∑
q,ω

(φ∗
qω − j∗qω χω )

×χ−1
ω [Vq − �ω]−1χ−1

ω (φqω − χω jqω ). (A10)

To come back to the original bosonic variables, one can
perform the third Hubbard-Stratonovich transformation as

e
1
2

∑
q,ω (φ∗

qω− j∗qω χω )χ−1
ω [Vq −�ω]−1χ−1

ω (φqω−χω jqω )

=Dρ̄

∫
D[ρ̄] e− ∑

q,ω ( 1
2 T ρ̄qω[Vq−�ω]ρ̄qω−φqωχ−1

ω ρ̄−q,−ω+ jqωρ̄−q,−ω ).

(A11)

Comparing this expression to Eq. (A2), one can see that
sources j∗qω introduced for the initial degrees of freedom ρqω

are also the sources for new bosonic fields ρ̄qω. Therefore,
fields ρ̄qω indeed represent initial degrees of freedom and
have the same physical meaning as original composite bosonic
variables ρqω = ∑

kνσ c∗
kνσ ck+q,ν+ω,σ − 〈nqω〉 of the lattice

problem Eq. (1). Nevertheless, ρ̄qω can now be treated as
elementary bosonic fields that have a well-defined propa-
gator, since they are introduced as a decoupling fields of
dual degrees of freedom φqω and, therefore, independent on
fermionic variables c∗

kνσ (ckνσ ). Taking sources to zero and
replacing ρ̄qω by ρqω, dual bosonic fields can be integrated
out as [49]∫

D[φ] e− 1
2

∑
q,ω φ∗

qω χ−1
ω φqω−φ∗

qω χ−1
ω ρqω−W̃ [ f ,φ]

= Zφ × e
1
2

∑
q,ω ρ∗

qω χ−1
ω ρqω−W [ f ,ρ], (A12)

where Zφ is a partition function of the Gaussian part of the
bosonic action. Here, we restrict ourselves to the lowest order
interaction terms of W̃ [ f , φ] shown in Eq. (A8). Then, the
integration of dual bosonic fields in Eq. (A12) simplifies and
W [ f , ρ] keeps an efficient dual form of W̃ [ f , φ] Eq. (A8) with

replacement of bosonic variables φ → ρ

W [ f , ρ] =
∑

k,k′,q

∑
ν,ν ′,ω

∑
σ (′ )

(ρ∗
qωγνω f ∗

kνσ fk+q,ν+ω,σ

− [γ νν ′ω + γνω χωγν ′+ω,−ω] f ∗
kνσ fk+q,ν+ω,σ

× f ∗
k′+q,ν ′+ω,σ ′ fk′ν ′σ ′ ). (A13)

As can be seen in Ref. [49], the four-point vertex becomes ir-
reducible with respect to the full local bosonic propagator χω,
while the three-point vertex γνω remains invariant. Therefore,
the problem transforms to the following action of an effective
s-d model:

Ss-d = −
∑
k,ν,σ

f ∗
kνσ G̃−1

0 fkνσ − 1

2

∑
q,ω

ρ∗
qωX −1

E ρqω + W [ f , ρ],

(A14)

where

XE = [
χ−1

ω + �ω − Vq

]−1
(A15)

is the EDMFT susceptibility and G̃0 is a nonlocal part of the
EDMFT Green’s function. When the main contribution to the
four-point vertex is given by the reducible contribution with
respect to the full local bosonic propagator, i.e.,

γ νν ′ω � −γνω χω γν ′+ω,−ω = , (A16)

the interaction part of the action Eq. (A14) takes the most
simple form that contains only the three-point vertex function,

W ′[ f , ρ] �
∑
k,q

∑
ν,ω,σ

ρ∗
qωγνω f ∗

kνσ fk+q,ν+ω,σ . (A17)

According to derivations presented in Ref. [49], one can
integrate out dual fermionic degrees of freedom using the
ladder approximation and obtain an effective problem written
in terms of bosonic degrees of freedom only

S = −1

2

∑
q,ω

ρ∗
qωX −1

qω ρqω, (A18)

where the expression for the lattice susceptibility reads
[
X ladd

qω

]−1 = [
X DMFT

qω

]−1 + �ω − Vq. (A19)

Here,

X̂ DMFT
qω = Tr

{
X̂ 0

qω

[
I + γ̂

2PI
ω X̂ 0

qω

]−1}
(A20)

is the DMFT-like [56,57] susceptibility written in terms of
lattice Green’s functions, and 2PI vertex functions of impurity
model defined as

γ̂
2PI
ω = γ̂ ω

[
I − χ̂0

ω γ̂ ω

]−1
. (A21)

Here, multiplication and inversion should be understood as
a standard matrix operations in the space of fermionic fre-
quencies ν, ν ′. I is the identity matrix in the same space,
and the trace is taken over the external fermionic indices.
For simplicity, we omit fermionic indices wherever they are
not crucial for understanding. Matrix elements of the bare
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FIG. 5. Frequency dependence of the effective local Coulomb interaction U eff
νν′ω obtained for different values of the actual Coulomb

interaction U = 0.1, 0.5, 1.0, 1.5 (from left to right) in the normal phase close to the charge ordering for different values of fermionic ν ′

and bosonic ω frequencies for β = 50. The dependence of the effective interaction on fermionic frequency becomes larger at larger Coulomb
interaction.

lattice X̂ 0
qω and local impurity χ̂0

ω charge susceptibilities are
defined as

X 0
qω; νν ′ =

∑
k,σ

Gk+q,ν+ω,σ Gkνσ δνν ′ , (A22)

χ0
ω; νν ′ =

∑
σ

gν+ω,σ gνσ δνν ′ . (A23)

Matrix elements γ νν ′ω of the four-point vertex function γ̂ ω are
defined in Eq. (A9).

Therefore, the charge susceptibility Eq. (A19) in the ladder
approximation can be rewritten as

X ladd
qω = Tr

{
X̂ 0

qω

[
I − (

I Vq + Û eff
ω

)
X̂ 0

qω

]−1}
, (A24)

where we introduced an effective bare local interaction,

U eff
νν ′ω = −�ω − γ 2PI

νν ′ω, (A25)

shown in Fig. 5 for different values of fermionic ν ′ and
bosonic ω frequencies.

Another simplified expression for the charge susceptibility
can be obtained after expanding the simplified form of inter-
action W [ f , ρ] given by Eq. (A17) up to the second order with
respect to bosonic fields ρ in the expression for the partition
function of the action Eq. (A14). This results in[

X (2)
qω

]−1 = −Vq + �ω + χ−1
ω − ̃(2)

qω, (A26)

where

̃(2)
qω =

∑
k,ν,σ

γν+ω,−ω G̃k+q,ν+ωσ G̃kνσ γν,ω (A27)

is the second-order polarization operator and G̃kν is a nonlocal
part of the lattice (EDMFT) Green’s function. As discussed in
the main text, this expression can be transformed to a pair
interaction of the classical Ising model.

APPENDIX B: VERTEX APPROXIMATION

According to discussions presented in the main text, the
expression for the 2PI four-point vertex function can be ap-
proximated as γ 2PI

νν ′ω � γ 2PI
ω when its dependence on fermionic

frequencies is negligible. Then, using the exact relation for the
local impurity susceptibility

χω = Tr
{
χ̂0

ω − χ̂0
ω γ̂ ω χ̂0

ω

} = Tr
{
χ̂0

ω

[
I + γ̂

2PI
ω χ̂0

ω

]−1}
(B1)

and assuming that the 2PI vertex does not depend on fermionic
frequencies, one gets

γ 2PI
νν ′ω � γ 2PI

ω = χ−1
ω − χ0−1

ω . (B2)

As shown in Ref. [49], in the case of well-developed col-
lective fluctuations the four-point function is described by
the bosonic frequency and three-point vertex function that
enters the exact Hedin equation [58] for the self-energy and
polarization operator of the impurity problem is close to
unity. As a consequence, the local self-energy and polarization
operator take the same form as in GW approach [58–60].
Thus, the polarization operator of the impurity problem can
be approximated as ω � χ0

ω neglecting the vertex function.
Using the exact relation for the local charge susceptibility of
the impurity problem, one gets the following relation:

χ−1
ω = −1

ω − (U + �ω ) � χ0−1
ω − (U + �ω ). (B3)

Therefore, in the regime of strong charge fluctuations the 2PI
vertex function can be approximated as γ 2PI

νν ′ω � −U − �ω.

The three-point vertex can also be approximated using the
exact relation between three- and four-point vertex functions,
and the simplified form of the 2PI vertex [49],

γνω � γω = χ−1
ω − γ 2PI

ω = χ−1
ω + �ω + U eff

ω , (B4)

where U eff
ω = −�ω − γ 2PI

ω . Taking into account that in the
regime of well-developed charge fluctuations the effective
interaction coincides with the actual value of the bare local
Coulomb interaction U eff

ω � U , one can further write

γω � χ−1
ω + �ω + U = −1

ω = UWω

Wω − U
= U

1 − εω

, (B5)

where we introduced the renormalized local Coulomb inter-
action Wω = U/(1 − ωU ) that is connected to the bare
Coulomb interaction via the dielectric function εω = U/Wω.
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