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In this work, we study interacting electrons on a square lattice in the presence of strong Rashba spin-orbit
interaction. The spin-orbit term forces the time-reversal electron states to be paired in even Cooper channels. For
concreteness, we only consider the repulsive onsite Hubbard and nearest-neighbor Coulomb interactions, the so-
called extended Hubbard model. To examine the superconducting instability, we obtain the effective interaction
between electrons within the random phase approximation and treat the pairing instabilities driven by charge
and spin fluctuations and their combined effects. We mapped out the phase diagram of the model in terms
of interactions and electron fillings and found that while the dxy and dx2−y2 symmetries are the most likely
pairing symmetries driven by charge and spin fluctuations, respectively, the strong effect of both fluctuations
yields higher angular momentum Cooper instabilities. The possibility of topological superconductivity and triplet
pairing is also discussed.
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I. INTRODUCTION

Despite the ongoing tremendous efforts in the past decades
to understand unconventional superconductors, the pairing
mechanisms and symmetry of the paired states continue to
be important questions and, yet, in many cases remained
unknown. In most cases, the experimental evidences point to
the existence of nontrivial pairings not caused by phonons,
giving rise to complicated structures of the gap function [1–3].
For instance, the electronic spin density fluctuations may
develop Cooper pairs with higher angular momentum such as
d wave, as opposed to fully symmetric and isotropic s-wave
pairings [4,5], e.g., in the high-Tc superconductors, the prime
examples of unconventional superconductivity.

Beside the pairing mechanisms, the spatial crystal sym-
metry may also influence the symmetry of the gap wave
functions. In noncentrosymmetric superconductors [6–8], due
to the lack of inversion symmetry in the bulk of the underlying
crystal, pairing states with mixed parities are expected to
constitute the condensate. For example, in CePt3Si, the s + p-
wave Cooper pairs may be realized [7], though in this particu-
lar case, a more careful study of the phase of the Cooper pairs
by Samokhin et al. indicates that the order parameter in this
system is an odd function of momentum that supports a line
of zero-energy modes in the excitation spectrum [9].

The two-dimensional electron gas (2DEG) confined at the
interfaces between two insulators, which is the focus of this
work, may also become a superconductor at low tempera-
tures. One famous example of such 2DEG is the interface of
LaAlO3|SrTiO3 system [10–16], where the interfacial super-
conductivity offers an interesting playground for realizing un-
conventional superconductivity [17–24]. At the interface, the
inversion and mirror symmetries are broken and consequently
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an interfacial Rashba spin-orbit coupling emerges giving rise
to mixed singlet-triplet and multiorbital superconductivities
[8,25,26]. In the presence of spin-orbit interaction, the Cooper
pairs acquire more robustness against dephasing in the mag-
netic fields beyond the Pauli paramagnetic limit [19,27–31].
Perhaps, the main advantage of studying superconductivity in
heterostructures relies on its tunability by charge carriers or
electric field [32–35]. The spin-orbit coupling can be exter-
nally induced to tune the critical temperature of the system
[36,37]. In the proximity to a conventional superconductor
and in the presence of a Zeeman coupling or a magnetic field,
the spin-orbit coupled 2DEG may host a topological super-
conductor [38,39]. The emergence of the latter in heterostruc-
tures made of stacked 2DEGs with Rashba spin-orbit coupling
has been studied theoretically [20]. In the presence of strong
disorder, a finite-momentum paired state, the so-called Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state can be established
[40]. The in-plane magnetic field can also generate an FFLO
state [41–43]. While the out-of-plane magnetic fields may
establish a p + ip superconductor, for in-plane fields a nodal
p-wave pairing is predicted [41,44]. Further, the in-plane field
can induce a supercurrent [45]. As a function of charge carrier,
the behavior of the Tc in the interface of LaAlO3|SrTiO3 is
found to be nonmonotonic [46], and the pairing symmetry in
this system can be controlled by an applied electric field [18].

Hence, the ability to tune the parameters of 2DEGs, which
are by now within the experimental reach and controllabil-
ity, provide a fertile ground enabling us to study the inter-
play between strong correlations and spin-orbit interaction.
It is shown that the strong Hubbard interaction and spin-
orbit coupling give rise not only to superconducting insta-
bilities [47,48], but also to time-reversal symmetry-breaking
superconducting states with even angular momenta [47] and
topological superconductivity [26]. In the absence of spin-
orbit coupling, the Hubbard model treated within the random
phase approximation (RPA) on a square lattice yields a chiral
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FIG. 1. (a) Energy dispersion of the noninteracting electrons. The color and arrows show different helicity and orientation of spins
respectively. Parameters are t = 1, t ′ = 0.3, and Vso = 0.5. Density of state at the Fermi level vs filling with (b) (t, t ′,Vso ) = (1, 0.3, 0.5)
and (c) (1,0.3,0). (d) Critical interaction, where spin susceptibility diverges, as a function of filling n for U1 = 0.0. The noisy structure is due
to the finite momentum mesh.

p-wave superconducting state that breaks the time-reversal
symmetry [49]. It is attributed to the enhancement of the spin
susceptibility near q = (0, 0). A phase transition from the
p-wave state at very low filling to dx2−y2 -wave symmetry close
to half-filling is also reported. The same system including the
Rashba spin-orbit interaction has been studied in Ref. [50].
It’s shown that the ferromagnetic fluctuations are dominant
for values of chemical potentials lying between the van-Hove
singularities resulting in a possible f -wave triplet pairing.

In this work, we consider the extended Hubbard model,
including both onsite and nearest-neighbor Coulomb interac-
tions, on the square lattice in the presence of strong Rashba
spin-orbit coupling. Our goal is to envisage the role of strong
correlations, spin-rotational symmetry-breaking effects, and
the electron fillings on the formation of the Cooper pairs.
In particular, we (i) derive the effective interaction between
electrons dressed by spin and charge fluctuations within the
RPA, (ii) use the even-parity pairing states between time-
reversed states on the Fermi contours, dictated by strong spin-
orbit coupling, to investigate the superconducting instability,
(iii) obtain the superconducting phase diagram and the phase
transition between different superconducting states over a
wide range of interactions and fillings, and (iv) discuss the
origin of the triplet superconductivity in this system.

The paper is organized as follows. We start by describing
the model in Sec. II. In Sec. III, we will derive the effective
interaction between the electrons. Section IV is devoted to
the pairing instabilities and their symmetries. In Sec. V, we
present our results and finally we conclude in Sec. VI.

II. INTERACTING 2DEG MODEL

The model we consider consists of a kinetic term H0

and an interaction HI between electrons, H = H0 + HI . We
assume that the noninteracting electrons on a square lattice
are described by a single-particle Hamiltonian

H0 =
∑

k

ψ
†
k (εkσ0 + gk · σ)ψk, (1)

where ψT
k = (c↑k, c↓k ) with cσk(c†

τk ) as the anihilation (cre-
ation) of electron with spin τ and momentum k. In the Hamil-
tonian (1) εk = −2t (cos kxa + cos kya) + t ′ cos kxa cos kya −
εF is the 2D energy dispersion in the absence of spin-orbit
interaction, where t, t ′, and εF are the nearest, next-nearest
hopping amplitudes, and the Fermi energy, respectively. In
the following, we set lattice constant to be unity a = 1. The

spin-rotational and inversion symmetries are broken by
adding the spin-orbit Rashba interaction gk = Vso∇εk × ẑ
with strength Vso, where ẑ is unit vector perpendicular to the
interface. Also σ0 is identity matrix with dimension two and
σ = (σ x, σ y, σ z ) is a vector of Pauli matrices.

The Hamiltonian (1) can be diagonalized by introducing
band basis creation and annihilation operators as

a†
k,λ = 1√

2
(iλeiφ(k)c†

k,↑ + c†
k,↓), ieiφk = gxk − igyk

|gk| . (2)

It then follows that

H0 =
∑
kλ

ελka†
kλakλ, (3)

where λ = ±1 label nondegenerate bands with dispersion

ελk = εk + λ|gk|. (4)

In Fig. 1(a), we show the energy dispersion of the bands
for a given set of parameters. It is clearly seen that gk lifts
the spin degeneracy resulting in two nondegenerate bands
throughout the Brillouin zone except for a few exceptional
points, the so-called Kramers’ degeneracy at the time-reversal
invariant momenta, where gk = 0. Also, one notes that the
spin is locked to the momentum as shown by arrows. Given
a fixed generic value for Fermi energy εF , two separate Fermi
contours can be distinguished with opposite helicity λ defined
by ĝ(k).σ|kλ〉 = λ|kλ〉, where |kλ〉 is eigenvector of the
Hamiltonian and the hat denotes the unit vector.

For describing the repulsive interaction between electrons,
we use on-site Hubbard and nearest-neighbor repulsive inter-
actions

HI = U
∑

i

ni↑ni↓ + U1

2

∑
〈i j〉,ττ ′

niτ n jτ ′ , (5)

where niτ = c†
iτ ciτ is the electron occupation number op-

erator with spin τ at site i. Here, U and U1 are the
strength of Hubbard and nearest-neighbor interactions, re-
spectively. In the next section, we obtain an effective inter-
action between electrons within the RPA before turning to
the Cooper instability of the Fermi contours in the following
sections.

III. EFFECTIVE INTERACTION

In this section, we derive the effective interaction between
electrons using RPA. To begin, we rewrite the Hubbard

115122-2



COMPETING SUPERCONDUCTING PHASES … PHYSICAL REVIEW B 99, 115122 (2019)

interaction (5) in the momentum space (see Appendix A for
details of derivation)

HI = 1

N

∑
q,α,β

ρα,qVαβρβ,−q, (6)

where α, β ∈ {0, x, y, z} and

V̂ (q) =

⎛⎜⎜⎜⎝
U0(q) 0 0 0

0 −U 0 0

0 0 −U 0

0 0 0 −U

⎞⎟⎟⎟⎠, (7)

where U0(q) = U + U1(cos qx + cos qy) and N is the total
number of sites. The charge (α = 0) and the spin (α =
{x, y, z}) density operators are expressed as

ρα,q =
∑
kττ ′

c†
k+q,τ σ

α
τ,τ ′ck,τ ′ . (8)

Within the RPA, the effective interaction is given by

V̂ eff (ω, q) = 1

1 − V̂ (q)χ̂R(ω, q)
V̂ (q), (9)

where ω and q denote the frequency and momentum, re-
spectively, and χR is the retarded charge and spin density
susceptibility matrix

χ̂R(ω, q) =
∑

λλ′=±1

∫
d2k

4π2

nF (ελk ) − nF (ελ′k+q)

ω + i0+ + ελk − ελ′k+q
F̂k,k+q;λ,λ′ .

(10)

The Fermi-Dirac distribution is give by nF (ε) and form
factor matrix F is [51]

Fαβ

k,k+q;λ,λ′ = tr(σβ P̂kλσ
αP̂k+qλ′ ), (11)

with the projection operator P̂ defined as P̂k,λ = |kλ〉〈kλ|.
In the static limit, ω → 0, the hermiticity of the interaction
implies that the spin and charge components of the suscep-
tibilities, and consequently effective interactions, decouple
from each other (see Appendix C for more details). In the spin
(charge) channel at a critical value of Uc (U1c), the determinant
of the denominator of (9) vanishes, det(1−V̂ (q)χ̂R(ω, q)) =
0, implying an instability of the system towards the spin-
density wave (charge-density wave) state denoted by SDW
(CDW).

IV. SUPERCONDUCTIVITY AND PAIRING SYMMETRY

A. BCS-like superconductivity and even-parity condensate

In this work, we only analyze the case of Bardeen-Cooper-
Schrieffer (BCS)–like superconductivity, which means that
the Cooper pairs have a vanishing center of mass momentum.
BCS pairing occurs between two electron states with opposite
momenta residing on the Fermi contours. Since the Fermi con-
tours are nondegenerate due to the spin-rotational symmetry
breaking nature of the Rashba coupling, it is more convenient
to rewrite the interaction in the band basis |kλ〉 [8,52].

Inverting Eq. (2), we can express the electron operators c†
kτ

in terms of band operators a†
kλ as

c†
kτ = 1√

2

∑
λ

(−tλk )τ a†
k,λ, (12)

where tλk = iλe−iφk which is odd under k → −k since
φ−k → φk + π . Note that in writing (12), in the sum we use
τ = +1 (0) for spin up (down).

In following, because we are only interested in finding
the paring symmetry, we just consider the static limit of the
effective interaction V̂ (q) = V̂ eff (0, q). We use (12) to rewrite
the effective interaction

HI = 1

N

∑
q,α

ρα,qVαβ (q)ρβ,−q, (13)

in terms of band basis operators as

HI = 1

N

∑
{λi},{τi},α,β

∑
k,q

σα
τ1,τ2

Vαβ (q)σβ
τ3,τ4

(−tλ1k+q)τ1 (−t∗
λ2k )τ2

(−t∗
λ3k′ )τ3 (−tλ4k′+q)τ4

× a†
k+q,λ1

ak,λ2 a†
k′,λ3

ak′+q,λ4 . (14)

Since we are interested in the pairing between electrons
with opposite momenta, we restrict the momentum summa-
tion in Eq. (14) to the Cooper channel. Moreover, we consider
the pairing between an electron in the state |kλ〉 and its time-
reversal partner |k̃λ〉 = �|kλ〉 = tλk|−kλ〉, where � = iσyK
with K as complex conjugate operator [52,53]. Consequently,
the corresponding electron operators are related to each other
by the following relations:

ã†
kλ

= �a†
k,λ

�−1 = tλka†
−k,λ

,

ãkλ = �ak,λ�
−1 = t∗

λka−k,λ. (15)

Hence the effective interaction in the Cooper channel
becomes [52]

HI = U

N

∑
kk′λλ′

Vλ′,λ(k′, k)a†
k′,λ′ ã

†
k′,λ′ ãk,λak,λ, (16)

where

Vλ′,λ(k′, k) =
∑

{τi},α,β

σ α
τ1,τ2

Vαβ (k′ − k)σβ
τ3,τ4

(−1)τ1+τ2

(t∗
λ′k′ )τ1+τ3−1(tλk )τ2+τ4−1

. (17)

Note that, because of decoupling of the charge and spin
susceptibilities we can decompose Eq. (17) into the charge
and spin sectors as

Vλ′,λ(k′, k) = V charge
λ′,λ (k′, k) + V spin

λ′,λ (k′, k) (18)

by restricting the summation in Eq. (17) to α, β = 0 (α, β =
1, 2, 3) for charge (spin) sectors of effective interaction.

By inspection we can see that in the above interaction, due
to the relations Vλ′,λ(k′, k) = Vλ′,λ(−k′, k) = Vλ′,λ(k′,−k),
only the even channels of Vλ′,λ(k′, k), survive. The reason
is as follows. The Cooper pair annihilation operator b̂λk =
ãk,λak,λ is an even function of momentum [52], since b̂λk =
t∗
λka−k,λtλ−kã−k,λ = b̂λ−k. Consequently, we can decompose

the interaction V in terms of only the even basis functions of
the irreducible representations of the point group symmetry of
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the underlying lattice. That is [52]

V s
λ′,λ(k′, k) =

∑
a

V a
λ′,λ

da∑
i=1

φa,i(k′)φ∗
a,i(k), (19)

where a labels da-dimensional irreducible representations and
V s

λ′,λ(k′, k) = 1
2 (V eff

λ′,λ(−k′, k) + V eff
λ′,λ(k′,−k)) is symmetric

part of the interaction. Here, φa,i(k) are even basis functions.
Using the BCS mean-field theory, we decompose the inter-

action (16) as

HMF =
∑
kλ

(�λ(k)a†
k′,λ′ ã

†
k′,λ′ + H.c.), (20)

where we ignored an unimportant constant term and the gap
function �λ(k) = �λ(−k) is given by

�λ(k) = 1

N

∑
k′λ′

V s
λ,λ′ (k, k′)〈b̂λ′k′ 〉. (21)

Including the single-particle Hamiltonian H0, the full BCS
Hamiltonian becomes

HBCS =
∑
kλ

(a†
kλ ãkλ)

(
ελk �λ(k)

�∗
λ(k) −ελk

)(
akλ

ã†
kλ

)
. (22)

Using the Bogoliubov transformation, the energy dispersion
of quasiparticle reads

Eλk =
√

ε2
λk + |�λ(k)|2. (23)

The gap function (21) can be determined self consistently as
follows:

�λ(k) = − 1

N

∑
k′λ′

V s
λ,λ′ (k, k′)

�λ′ (k′) tanh
(

1
2βEλ′k′

)
2Eλ′k′

. (24)

B. Determination of the gap function

Near the critical temperature Tc, the gap equation can
be linearized. Converting the sum in Eq. (24) to an energy
integral about the Fermi contours with energy cutoff ωc and
the momentum integration along the Fermi contours, we
obtain [49]

�λ(k) = − ln

(
1.13ωc

Tc

) ∑
λ′

∫
FSλ′

dk′

vλ′
F (k′)

V s
λ,λ′ (k, k′)�λ′ (k′),

(25)

where FSλ stands for Fermi contour and vλ
F (k) = |∇ελk| is the

k-dependent Fermi velocity.
To obtain the pairing symmetry, we convert the gap equa-

tion (25) to an eigenvalue problem by inserting Eq. (19) into
(25) and projecting onto the basis function φi(k) [the ones
corresponding to da = 1, see Eq. (28)] yielding the following
equation for the eigenvalues ξ :

�i
λλ′�

i
λ′ = ξ�i

λ, (26)

where the structure of pairing gap assumes the form �λ(k) =∑
i �

i
λφi(k) and the matrix elements �i

λλ′ are

�i
λλ′ = −

∫
FSλ

dk
vλ

F (k)

∫
FSλ′

dk′

vλ′
F (k′ )

φi(k)V s
λ,λ′ (k, k′)φi(k′)∫

FSλ

dk
vλ

F (k)
φ2

i (k)
. (27)

The eigenvector corresponding to the maximum eigenvalue ξ

determines the pairing symmetry, where critical temperature
is related to ξ as Tc ∝ exp(−1/ξ ). This relation justifies
that maximum positive eigenvalue ξ , has a higher critical
temperature and therefore by lowering the temperature the
superconducting instability occurs in the corresponding sym-
metry channel. The point group symmetry of the square lattice
allows the following lowest-order even basis functions:

s = 1, dx2−y2 = (cos kx − cos ky),

dxy = sin kx sin ky,

g = (cos kx − cos ky) sin kx sin ky,

g∗ = (cos kx − cos ky)2 − 4(sin kx sin ky)2 (28)

that we use to find the maximum eigenvalue ξ and the corre-
sponding pairing symmetry.

V. RESULTS

In this section, we present our results for the susceptibili-
ties and pairing instability of the lattice model.

A. Density of states and susceptibilities

For the square lattice, we use the parameters t = 1, t ′ =
0.3t , and Vso = 0.5t . With this choice for the Rashba spin-
orbit coupling, the Fermi contours are largely separated in
momentum space in most fillings. We plot the density of
states (DOS) for this set of parameters in Fig. 1(b). Near the
half-filling there are two van Hove singularities due to the
spin-split bands, while at Vso = 0 there is only one singularity
for each spin species (up and down) as shown in Fig. 1(c).

Now we turn to the bare susceptibilities. As described in
Sec. III, the spin and charge channel in the static limit (ω →
0+) are decoupled allowing one to study the instability in each
channel separately. That is, we can write Eq. (10) as χR =
χ c ⊕ χ s, where χ c = χ00 is the charge susceptibility and
χ s = [χR]i j (i, j = 1, 2, 3) is the spin susceptibility tensor.
For numerical calculation of susceptibilities we mesh grid the
Brillouin zone into 100 × 100 k-points. At each wave vector
k we evaluate χ c and three eigenvalues of the matrix χ s.
We found χ c < 0 in the entire Brillouin zone for all fillings
as shown in the first row of Fig. 2. Also, in the spin channel
the eigenvalues are always negative, and we show the most
negative eigenvalue of χ s in second row of Fig. 2.

Given the momentum dependence of the bare interaction in
the charge channel in Eq. (7), i.e., U0(q) = U + U1(cos qx +
cos qy), the value of 1 − U0(q)χ c(q), appearing in the denom-
inator of effective interaction in the charge channel, vanishes
at some critical values of positive U1c and hence a charge
density wave (CDW) develops. Note that the critical values
U1c (not shown here) generally depends on U .

In the spin channel, the effective interaction diverges when
1 + Uχ s

min(q) = 0, where χ s
min(q) is the most negative eigen-

value of the matrix χ s = [χR]i j , at a critical value Uc signaling
a spin-density wave (SDW) instability. In Fig. 1(d), we show
the value of the critical Hubbard interaction in different fill-
ings for U1 = 0. It is clearly seen that the critical Uc is small
near the half-filling, where the DOS is large.

For values of U (U1) in the vicinity of the SDW (CDW)
critical points, as we will describe in the next subsection, the
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FIG. 2. The most negative eigenvalue of susceptibility matrix in the charge (top) and spin (bottom) channels at different fillings n for
(t, t ′,Vso ) = (1, 0.3, 0.5).

fluctuations of spin (charge) channel play a decisive role in de-
termining the pairing symmetry. However, for generic values
far away from the critical points, both spin and charge fluctua-
tions conspire to form the pairing symmetry which is different
from the symmetry expected from individual channels.

B. Pairing symmetry

We follow the procedure outlined in Sec. IV B to determine
the pairing symmetry. We begin by considering the (u =
U/Uc, u1 = U1/U1c) phase diagram for the filling factors
presented in Fig. 3. We take the effective interaction into
account, first in separate charge-only (top panels) and spin-
only (middle panels) channels. Then in order to investigate
the competition between the fluctuations in the two channels,
we contrast those separate channels with the situation where
both spin and charge channels are taken into account (bottom
panels). Generically, close to Uc, the dominant role is played

by the spin fluctuations. Further increasing of U beyond
Uc derives the system to the spin density wave phase and
the ground state will become ordered. Near U1c, however,
the dominant role is played by the charge fluctuations and
increasing U1 beyond U1c derives the system to the charge
density wave phase. Therefore we focus on the square region
where u, u1 < 1 and look for the superconducting instability
in the disordered metallic phase.

The relevant pairings in the (u, u1) plane at different filling
factors are also indicated in Fig. 3. Different colors stand
for the pairing symmetries indicated below the panels. In the
white region, no positive eigenvalue has been found for the
angular momenta � = 0, 2, 4 (note that �±(k) is an even
function of k). As we can see from the first row of Fig. 3,
when we consider the charge fluctuations only, the phase
diagram is dominated by dxy pairing at and around half-filling.
By heavily doping away from half-filling, at n = 0.6 and 1.4,
a g-wave pairing for small u1 and large enough Hubbard u

FIG. 3. The phase diagram in the plane of (u1 = U1/U1c, u = U/Uc) for (t, t ′,Vso ) = (1, 0.3, 0.5). Colors indicate the pairing symmetry
for different fillings (right to the left) and for charge-only (first row) spin-only (second row) and charge-spin (third row) channels. In the white
region, there is no positive eigenvalue for s, dxy, dx2−y2 , and g channels. The black thick (dashed) line at u1 = 1 (u = 1) denotes the onset of
charge (spin) density wave phase.
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appears. By further doping away from half-filling, no solu-
tion up to angular momentum � = 4 is found (white area).
This may correspond to possible higher angular momentum
pairing.

There is a small blue region for small u and large u1 � 1
corresponding to s-wave profile of �±(k). The blue (s-wave)
and white regions are artifacts of overemphasizing the charge
fluctuations. To see this, let us focus on the second row of
Fig. 3, which takes only spin fluctuations into account. As
can be seen at and around half-filling, the dominant pairing is
dx2−y2 (purple region). Doping further away from half-filling
with either holes or electrons stabilizes the dxy pairing (red
region) for values of u far below the SDW instability. By
approaching the SDW instability, a higher angular momen-
tum, g-family pairing kicks in. For n = 0.6, still the domi-
nant pairing is dx2−y2 which eventually gives way to g-wave
pairing by approaching the SDW instability u � 1. For lower
electron (hole) density n = 0.4 (1.6), the phase diagram is
divided between the dxy and g∗ pairing. The division is almost
independent of u1 as in the spin-only channel, u1 does not
play any role. Note that in the charge-only channel, both u
and u1 affect the phase diagram. That is why, in the first row,
the phase boundaries are not horizontal (i.e., u-independent).

Now, let us focus on the third row of Fig. 3, where we let
both spin and charge fluctuations renormalize the interaction
at RPA level. At and around half-filling, when u1 is not large,
the purple region conquers a particularly large u region. That
is why, in this region, the red area (due to charge fluctuations)
is completely washed out. This can be understood in terms
of enhancement of spin fluctuations as one approaches the
SDW critical point. Quite generally, in the Hubbard model, at
half-filling and large enough u, the charge degrees of freedom
tend to be frozen and the dominant low-energy fluctuations are
those of spin degrees of freedom. At half-filling, the charge
fluctuations find a chance to stabilize a small red region, the
dxy phase, corresponding to u1 � 1 and a small Hubbard u.
Slight deviation from half-filling expands the red region.

When the strengths of u1 and u are comparable, the fluc-
tuations in both charge (red region) and spin (purple region)
will have comparable strength, in such a way that they both
loose and give way to g-wave pairing, indicated by the yellow
region. This is because the basis function corresponding to the
second largest eigenvalue of Eq. (27) is generically dominated
by g-wave (yellow) pairing. That is how the yellow region can
take over once the spin (purple) and charge (red) fluctuations
can not favor a d-wave pairing. By doping away from half-
filling with either electrons or holes, the red region arising
from charge fluctuations expands. The expansion of the charge
fluctuations dominated region starts from smaller u when the
system is close to half-filling, and eventually occupies larger
u region when u1 is strong enough.

When the doping crosses quarter-filling, a lot of phase-
space for the charge fluctuations will be created. That is why,
in both second and third row, we obtain qualitatively similar
phase diagram where the major competition is taking place
between the charge fluctuation dominated phase (red) and
g-wave pairing (yellow).

To focus on the dependence of the pairing symmetry on
electron density, in Fig. 4 (Fig. 5), we plot the u-n phase
diagram for fixed nearest-neighbor values of the interaction

FIG. 4. The (u, n) phase diagram of pairing symmetry for u1 = 0
are plotted for charge (first row), spin (second row), and charge-spin
(third row) channels. The parameters of single-particle Hamiltonian
is set as (t, t ′,Vso ) = (1, 0.3, 0.5)

u1 = 0 (0.6). Let us begin with the u1 = 0 case shown in
Fig. 4. In this figure, we present the pairing symmetry re-
sulting from the fluctuations in charge only, spin only and
charge-spin together in the first, second and third rows,

FIG. 5. The (u, n) phase diagram of pairing symmetry for u1 =
0.6 are plotted for charge (first row), spin (second row), and charge-
spin (third row) channels. The parameters of single-particle Hamil-
tonian is set as (t, t ′,Vso ) = (1, 0.3, 0.5)
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respectively. As can be seen by comparison of the second
and third rows, for u1 = 0, the purple area surrounding region
around half-filling is quite similar in both cases. This means
that the spin channel plays the dominant role in determining
the pairing symmetry. By moving to low carrier density (on
either the electron or hole side), the dx2−y2 pairing looses,
and the main competition will be between dxy and a g-wave
family pairing. This family consists in the standard g-wave
(yellow) and and g∗-wave pairing (orange). In these regimes,
when u is large enough, again the second and third rows in
Fig. 4 are similar, which is natural, as the spin fluctuations
are the strongest for u � 1. Upon lowering u, the third row
phase diagram starts to deviate from that of second row, and
the g-wave and g∗-wave pairings will win. Again, as discussed
before, when one plots a similar phase diagram with the sec-
ond largest eigenvalue, the major part of the phase diagram,
and in particular the low-carrier density regime, turns out to
be g-family (yellow/orange) dominated. Hence the g-family
pairing sets in, in the case of comparable strength between the
purple and red regions. In such situation, both the purple and
red loose, and the yellow/orange region takes over. This can
be clearly seen by comparison of the first and second rows in
Fig. 4.

Similarly, in Fig. 5, we have plotted the phase diagram
in the (u, n) plane for the fixed value u1 = 0.6. Again in the
first (second) row we have only considered the charge (spin)
fluctuations, while in the third row we have considered spin
and charge fluctuations together. The difference between this
figure and Fig. 4 is the value of u1. As can be seen from
Eq. (7), the nearest-neighbor interaction u1 affects only the
charge component of the effective interaction. That is why
the second rows in both Figs. 4 and 5 are identical. However,
the first row in these two figures are drastically different.
As a result of overemphasizing the charge fluctuations (by
choosing to focus only on the charge channel), major parts
of the (u, n) phase diagram are dominated by dxy (red region)
pairing. A small region of s-wave (blue) pairing also appears.
Such a blue region is entirely absent from the second and third
rows. This is actually an artifact of limiting the total energy
minimization to few lowest angular momentum basis func-
tions. Indeed, allowing for higher angular momentum basis
such as g∗, they will become dominant over the s-wave pair-
ing. Therefore the s-wave pairing is an artifact of the limited
number of basis functions, and can be removed by including
more and more basis functions. After all, in the second and
third rows of Fig. 5, there is no s-wave pairing, which simply
means that the spin fluctuations do not favor s-wave pairing.

It is instructive to compare the third rows of Figs. 4 and 5.
As can be seen, for large u � 1 for both u1 = 0 and u1 = 0.6,
spin fluctuations play the dominant role, and the resulting
dx2−y2 pairing (purple) region conquers the region around
half-filling. By reducing u, the situation in the u1 = 0 case
of Fig. 4 does not change much, while in Fig. 5 a g-wave
(yellow) pairing kicks in. Then by further reducing u, the
dxy-wave pairing dominates. In the slightly hole-doped case,
the purple region continues to win. Needless to say, the
drastic difference between the second and third rows in Fig. 5
signifies the importance of the charge fluctuations. When they
are included, they drastically change the picture arising from
spin-only fluctuations.

C. Degeneracy of the solutions and possible
topological superconductivity

So far we have determined the relevant pairing function for
different fillings and interaction parameters u and u1. How-
ever we have not yet considered the degeneracy of the solu-
tions. The relation between the degeneracy of the eigenvalues
of Eq. (27) and topological superconductivity is as follows:
suppose the two largest positive eigenvalues of Eq. (27) are
ξ0 and ξ1. Their relative difference can be quantified by δξ =
(ξ0 − ξ1)/ξ0. δξ → 0 indicates nearly degenerate solutions. In
Ref. [54], it is shown that the degenerate pairings belonging
to a two-dimensional irreducible representation can sponta-
neously break time-reversal symmetry and a pairing with
nontrivial winding number develops in the system. Even if the
pairing symmetries do not belong to higher-dimensional rep-
resentations, but have the same angular momentum, upon low-
ering the temperature a phase transition to a complex pairing
state occurs, e.g., in UPt3 [55]. For nearly degenerate channels
dxy and dx2−y2 , a complex d ± id combination is favored as it
avoids the nodes [53]. The latter state has been realized in
an epitaxial Bi/Ni bilayer system [53]. Such a combination
gives rise to nontrivial topology in the form of a nonzero
winding number [8]. Thus, generically, when two solutions
with the same angular momentum are degenerate, a time-
reversal symmetry-breaking chiral superconducting order can
be established. We anticipate the degeneracies to happen at
the phase boundaries between superconducting orders with
different symmetries. Of particular interest is the degenerate
boundaries between dxy (red) and dx2−y2 (purple) near half-
filing in Fig. 5. Therefore we expect a superconducting state
with nonzero winding number � = ±2 [53]. We emphasize
that such a superconducting instability may change the phase
diagram near the boundaries, but the exact determination of
the phase diagram is beyond the scope of this paper, and we
leave it for future study.

D. Gap structure in original spin basis

In general, in the presence of Rashba spin-orbit coupling
and inversion symmetry breaking, the pairing wave function
is a mixture of spin singlet and triplet components [25].
Therefore, the total spin is not a good quantum number to
label the pairing wave functions, nor is parity. However, for a
multi-component superconductor arising from different Fermi
contours, the superconducting wave function can have purely
singlet or triplet character as described below. We rewrite the
pairing Hamiltonian (20) in terms of original spin degrees of
freedom as [56]

HMF =
∑
kττ ′

(�ττ ′ (k)c†
k,τ c†

−k,τ ′ + H.c.), (29)

where

�ττ ′ (k) =
∑

λ

�λ(k)(−1)
τ+1

2 (tλk )
τ+τ ′

2 . (30)

The above equation can be written explicitly in terms of
singlet and triplet components as

�ττ ′ (k) = ψk(iσy)ττ ′ + dk · (iσyσ )ττ ′, (31)
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FIG. 6. The (u, n) phase diagram for the ratio of triplet and
singlet component of gap function ζ are plotted for u1 = 0 (top) and
0.6 (bottom).The parameters of single-particle Hamiltonian is set as
(t, t ′,Vso ) = (1, 0.3, 0.5)

where

ψk = −�+(k) + �−(k)

2
(32)

is the singlet amplitude and

dk = �+(k) − �−(k)

2
ĝk (33)

is the triplet one. Note that ψk = ψ−k is an even func-
tion and dk = −d−k is an odd one, since �λ(k) = �λ(−k)
and ĝk = −ĝ−k. Therefore, if the pairing symmetry on both
Fermi contours are the same, i.e., �λ(k) = �λφ(k), at special
phases where �+ = −�− (�+ = �−) the singlet (triplet)
component vanishes and consequently the pairing become
purely triplet (singlet). In order to compare the triplet and
singlet components of the gap functions, we define ζ =
|(�+ + �−)/(�+ − �−)|. Obviously ζ → 0 indicates the
dominance of the triplet pairing while the opposite limit ζ →
∞ corresponds to the singlet pairing.

In Fig. 6, the top and bottom panels, respectively, show
the values of ζ for u1 = 0 and u1 = 0.6. As we can see in
the case of u1 = 0 the phase diagram is dominated by ζ > 1,
and therefore the pairing is more inclined towards the singlet
character. Note that due to Rashba spin-orbit coupling, it can
not be a pure singlet, which only happens when ζ → ∞.
There is also a small light blue (ζ < 1, triplet dominated)
region in Fig. 6 which corresponds to the g-family region of
Fig. 4. Note however that the g-wave pairing also appears
in light yellow regions, which means that far away from
half-filling their singlet character can become slightly stronger
than the triplet.

Now let us discuss the u1 = 0.6 panel of Fig. 6. The large
u � 1 part of this panel is generally similar to the u1 = 0
panel. However, it turns out that the singlet (triplet) com-
ponent become sharper as indicated by the colors intensity.
Comparison with the third row of Fig. 5 shows that the
singlet dominated region in the u1 = 0.6 panel of Fig. 6 corre-
sponds to dxy pairing. Around n ≈ 0.95 there is strong triplet

component (darker blue) which corresponds to the dx2−y2

region. This region extends over a larger area by increas-
ing u but with lower color intensity. Therefore the nearest-
neighbor interaction can stabilize the triplet pairing near the
half-filling.

Recently, Greco and Schneyder [50] have found the triplet
solution for u1 = 0 and chemical potentials that lie between
two van Hove singularities. However, as seen from the upper
panel of Fig. 6 corresponding to u1 = 0, we find singlet-
dominated pairing near the filling, which takes place in the
dx2−y2 channel. There can be two possible reasons for this
discrepancy. First, we worked out the pairing symmetry in
the band basis, which is appropriate in the presence of strong
spin-orbit coupling. The second and perhaps more important
reason is that, in computing the effective interaction, rather
than limiting ourselves to transverse or longitudinal portions
of the susceptibility matrix, we have considered the full ten-
sorial structure of the susceptibility in the spin-charge basis.
Comparing our results with Ref. [48], we see that the phase
diagram presented in Fig. 3 for filling n = 0.8 is qualitatively
similar to the results presented in this reference.

VI. CONCLUSIONS

In conclusion, we have studied the effect of the large
Rashba spin-orbit interaction on the interaction driven su-
perconducting instability on the square lattice with on-site
(Hubbard U ) and nearest-neighbor (U1) interactions. We de-
veloped a complete RPA effective interaction by taking into
account the full tensorial structure of the susceptibility in
the spin-charge channels, rather than picking the singlet or
triplet channels only. We focused on a range of interactions
where the system is metallic with no magnetic and/or charge
orderings. We mapped out superconducting phase diagrams
in the parameter space spanned by interactions and fillings.
In the absence of the nearest-eighbor Coulomb interaction U1,
generically the dominant pairing is in the dx2−y2 channel, and
the pairing interaction mainly arises from spin-fluctuations.
The nearest-neighbor interaction, however, increases charge
fluctuations and favors the dxy symmetry at small u. In the
regime where both interactions are comparable, spin and
charge fluctuations are strong and higher angular momentum
pairing states are favored. We also pointed out, by eval-
uating the degenerate solutions near the phase boundaries,
that the system can possibly break time-reversal symmetry
spontaneously and a topological superconductor can take
over. Finally, we showed that the nearest-neighbor inter-
action can stabilize a triplet pairing symmetry near half-
filling, where the amplitude of the singlet component almost
vanishes.
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APPENDIX A: INTERACTION MATRIX

We can rewrite interaction matrix (5) in terms of density
operators (8),

ni↑ni↓ = −1

8

3∑
α=0

(−1)δα,0

⎛⎝(
c†

i↑
c†

i↓

)T

σα

(
ci↑
ci↓

)⎞⎠2

+ 1

4

∑
τ

niτ ,

(A1)

where δα,0 = 1 if α = 0, otherwise vanishes. By Fourier trans-
formation and replacing U/8 → U with adding the last term
of Eq. (A1) to the chemical potential we can rewrite Eq. (5) as
follows:

HI = 1

N

∑
q

[U + U1(cos qx + cos qy)]ρ0,qρ0,−q

− U

N

3∑
q,i=1

ρi,qρi,−q. (A2)

Consequently, we can rewrite HI in the compact form pre-
sented in Eq. (6).

APPENDIX B: DERIVATION OF THE EFFECTIVE
INTERACTION

The effective interaction can be decomposed into charge
and spin channels. The matrix elements Vα,β of the interaction
are written in the basis of charge (α = 0) and spin (α =
1, 2, 3). Therefore ρ0 will be the charge density, while ρi

with i = 1, 2, 3 corresponds to three components of the spin
density. The RPA effective interaction reads as follows:

−V̂ eff (ω = 0, q)

= −V̂ (q) + V̂ (q)[−χ̂ (ω = 0, q)]V̂ (q) + · · · , (B1)

which can be written in a compact form as

V̂ eff (ω = 0, q) = [1 + V̂ (q)χ̂ (ω = 0, q)])−1V̂ (q). (B2)

APPENDIX C: VANISHING OF THE SPIN-CHARGE CROSS
TERM IN THE STATIC SUSCEPTIBILITY MATRIX

By using the definition of the form factor (11) it follows
that [51,57]

Fβ,α∗
k,k+q;λ,λ′ = Fα,β

k,k+q;λ,λ′ , (C1)

Fα,β

k,k+q;λ,λ′ = sα,βFα,β

−k−q,−k;λ′,λ, (C2)

where sα,β = −1 if either α = {0}, β = {1, 2, 3} or α =
{1, 2, 3}, β = {0}. Otherwise it equals to one. By changing
integration variable k → −k − q and using Eq. (C2) we can
rewrite Eq. (10) as

[χR(ω, q)]α,β = sα,β

∫
d2k

4π2

∑
λλ′=±1

nF (ελk ) − nF (ελ′k+q)

−ω − i0+ + ελk − ελ′k+q

× [Fk,k+q;λ,λ′ ]α,β . (C3)
However, for χ† by help of Eq. (C2) we can write

[χR(ω, q)]β,α∗ =
∫

d2k

4π2

∑
λλ′=±1

nF (ελk ) − nF (ελ′k+q)

ω − i0+ + ελk − ελ′k+q

× [Fk,k+q;λ,λ′ ]α,β . (C4)

The hermiticity of the effective interaction requires χ†(ω =
0, q) = χ (ω = 0, q). Therefore Eqs. (C3) and (C4) force the
cross terms of the χ̂R(ω = 0, q) between charge and spin
sectors to vanish.
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