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Exact formulas for the Hall coefficient [A. Auerbach, Phys. Rev. Lett. 121, 066601 (2018).], modified Nernst
coefficient, and thermal Hall coefficient of metals are derived from the Kubo formula. These coefficients depend
exclusively on equilibrium susceptibilities, which are significantly easier to compute than conductivities. For
weak isotropic scattering, Boltzmann theory is recovered. For strong scattering, well-controlled methods for
thermodynamic functions are available. As an example, the Hall sign reversals of lattice bosons near the Mott
insulator phases are determined. Appendices include mathematical supplements and instructions for calculating
the coefficients.
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I. INTRODUCTION

Computation of transport coefficients of strongly corre-
lated metals is challenging even for minimal model Hamil-
tonians. dc conductivities are particularly costly, since they
involve real-time correlations of large systems in the limit of
long times.

The Hall coefficent RH —the magnetic field derivative of
the transverse dc resistivity at low fields—seems to be an in-
teresting exception. For isotropic bands, Boltzmann equation
relates RH to the inverse carrier density. For more realistic
band structures, RH is related to the Fermi surface curva-
ture [1–3]. Thus, at least for isotropic scattering [4], RH is
insensitive to the scattering timescale and depends only on
equilibrium coefficients. (Here, equilibrium coefficients are
defined as static derivatives of the free energy, which do not
involve time-dependent correlators).

RH raises intriguing questions: (i) Is the Hall coefficient
in general an equilibrium property, beyond the validity of
Boltzmann theory? (ii) Is there an explicit formula which
expresses RH in terms of static susceptibilities? (iii) Are there
other equilibrium formulas for magnetotransport coefficients
of resistive metals [5]?

These questions are particularly relevant to “bad metals,”
where scattering rates exceed the Fermi energy [6,7] and
quasiparticles are not well defined. Bad metals are known
to exhibit Hall anomalies—poorly understood magnetic field,
temperature, and doping dependencies of the Hall coefficient,
including unexpected sign reversals. Hall anomalies have been
observed in strongly disordered films [8,9], resistive phases of
unconventional superconductors [10,11], strongly correlated
metallic paramagnets [12], and more. Resolving the origin of
the Hall anomalies has been hampered by the inapplicability
of the Boltzmann equation, and the formidable numerical
challenges of dc conductivities.

In a recent paper [13], questions (i) and (ii) have been
answered by the derivation of a formula for RH , which de-
pends solely on equilibrium susceptibilities. The formula is
applicable to general interacting and disordered Hamiltoni-
ans. The coefficients are amenable to well-controlled numer-

ical algorithms including high-temperature series [14], varia-
tional wave functions [15], quantum Monte Carlo simulations
[16,17] (in imaginary time), and more. Most importantly, the
Hall coefficient does not depend on real-time dc conduc-
tivities, which inherently involve less controlled and much
costlier computations [18–21].

This paper reviews and expands the derivation of the Hall
coefficient formula [13]. It also answers question (iii) by
deriving two additional equilibrium formulas for transverse
magnetotransport coefficients. It opens up the possibility for
feasibly computing magnetotransport coefficients for strongly
correlated Hamiltonians.

Three formulas are presented in this paper:
(1) The Hall coefficient is

RH ≡ σ−2
xx

dσH

dB

∣∣∣
B=0

, (1)

where σH and σxx are the Hall and longitudinal conductivities,
respectively, and B is the perpendicular magnetic field. The
formula is

RH = R(0)
H + Rcorr

H ,

R(0)
H = −Im

( jx|[M, jy]) − ( jy|[M, jx])

h̄Vμ2
0

, (2)

where M is the total magnetization operator, jα, α = x, y are
the uniform (q=0) electric currents, and V is the system’s
volume in d dimensions. (A|B) is a static mutual susceptibility
of operators A and B,

(A|B) ≡ −∂hA∂hB log Tr e−(βH−hAA−hBB)
∣∣∣
hA,hB=0

, (3)

where H is the zero-field Hamiltonian. μ0 = ( jα| jα )/V is
the zeroth moment of the conductivity (f-sum rule). The
correction Rcorr

H is defined by Eqs. (37) in Sec. III.
(2) The modified Nernst coefficient is

W = 1

σxxκxx

dαxy

dB

∣∣∣
B=0

, (4)
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where κxx is the thermal conductivity, and αxy is the transverse
thermoelectric (TTE) coefficient [22]. The formula is

W ≡ W (0) + W corr,

W (0) ≡ 1

h̄μ
Q
0 μ0

((
jx
Q|[M, jy]

) − (
jy
Q|[M, jx]

))
, (5)

where jαQ, α = x, y are the thermal currents, and μQ =
( jαQ| jαQ)/V is the thermal sum rule [23]. The correction W corr

is defined in Eq. (51) in Sec. IV.
(3) The thermal Hall coefficient is

RTH = 1

κ2
xx

dκxy

dB

∣∣∣∣
B=0

, (6)

where κxy is the thermal Hall conductivity. The formula is

RTH = R(0)
TH + Rcorr

TH ,

R(0)
TH ≡ T

h̄V (μQ
0 )2

((
jx
Q|[M, jy

Q]
)−(

jy
Q|[M, jy

Q]
))

. (7)

The correction Rcorr
TH is defined in Eqs. (57) in Sec. V.

The correction terms Rcorr
H , W corr, and Rcorr

TH are sums over
rational functions of equilibrium susceptibilities of local oper-
ators. These operators are constructed by multiple commuta-
tors of M, H , and the uniform electrical and thermal currents.

Here we are interested in strongly correlated metals which
are not amenable to perturbative expansions or to Boltzmann’s
transport theory. The derivation of Eqs. (2), (5), and (7)
starts with the many-body Kubo formula in the Lehmann
(eigenstate) representation. Numerical evaluation of this rep-
resentation requires exponentially large memory cost. Bogoli-
ubov operator hyperspace and Krylov operators formulation
[24–26] provide a very useful framework for our derivations.

The reader may not be a priori familiar with hyperspace
terminology, which will be fully defined in the following
sections. We note that hyperspace has been extensively used
to generate memory functions for transport theory [27–29].

Bogoliubov hyperspace provides essential advantages:
(i) Avoids the prohibitive cost of exact diagonalization

required for the Lehmann representation of the Kubo formula.
(ii) Charts a direct route to continued fraction expansions

of conductivities of strongly correlated metals [7,30–33],
(iii) Enables a convenient framework for differentiating

the conductivities with respect to magnetic field.
The latter advantage is a key ingredient in the proofs given

below.
Application of our formulas to models of electrons and

bosons is instructive. The zeroth terms R(0)
H , W (0), and R(0)

TH
recover the Boltzmann equation result in the constant lifetime
approximation. Anisotropic lifetime effects appear in higher
order corrections. For lattice bosons, we locate the Hall sign
changes in the vicinity of the Mott insulator lobes. From
these examples, we learn that low-energy renormalization of
the microscopic Hamiltonian can greatly enhance the relative
magnitudes of the zeroth terms relative to the harder-to-
compute correction terms.

This paper is organized as follows. Section II introduces
the Kubo formulas for the Hall and TTE conductivities in
Bogoliubov hyperspace notations. Section III derives the Hall
coefficient formula, Eqs. (37). Section IV derives the modified

Nernst coefficient formula, Eq. (51). Section V derives the
thermal Hall coefficient formula, Eqs. (57).

Section VI discusses applications of the formulas to ef-
fective Hamiltonians, band electrons, and strongly interacting
lattice bosons.

Section VII is peripherally connected to the bulk of this
paper. From the Kubo formula, some known relations between
equilibrium observables and conductivities are derived: the
Streda formulas [34,35], Chern numbers [36–38], and Hall-
pumped polarization [39–41]. The derivation clarifies why
these relations are restricted to bulk-incompressible, nondis-
sipative systems where σxx =0.

The paper is concluded by a summary and proposals for
applications of our formulas to interesting models.

The appendices contain instructive technical details for
computing the formulas. Appendix A constructs Krylov bases
in the Bogoliubov hyperspace. Appendix B expands the
longitudinal conductivities σxx(ω) and κxx(ω) as continued
fractions. Appendix C explains how to compute the mo-
ments, recurrents, and magnetization matrix elements as equi-
librium coefficients. Appendix D describes the variational
extrapolation of the recurrents scheme, which obtains dy-
namical response functions from a finite set of moments.
Appendix E calculates the Liouvillian Green’s function and
shows how the dc conductivities factor out of the magneto-
transport coefficients. This is the key result which proves that
the coefficients are purely equilibrium quantities.

II. KUBO FORMULA IN HYPESPACE NOTATIONS

dc conductivities of metals are defined (using an infinitesi-
mal ε prescription) by the following order of limits:

σαβ ≡ lim
ω→0

lim
q→0

lim
ε→0

lim
V→∞

σαβ (q, ω;V, ε), (8)

where the dynamical conductivities are given by the Kubo
formula

σαβ (q, ω) = h̄

V Im
∑
n,m

(ρn−ρm)〈m| jαq |n〉〈n| jβ−q|m〉
(Em−En)(Em−En − h̄ω−iε)

= h̄

V Im

(
jαq

∣∣∣( 1

L − h̄ω − iε

)∣∣∣ jβq

)
. (9)

jαq are the spatial Fourier components of currents, and α

denotes both the transported quantity (charge or heat) and the
direction of the current x or y. En and |n〉 are the eigenener-
gies and eigenstates of the grand Hamiltonian, H − μN , re-
spectively. ρn = e−βEn/Tre−β(H−μN ) are Boltzmann weights.
Henceforth, we avoid the lim symbols for the dc limit, remem-
bering the order of limits in Eq. (8).

For pedagogical simplicity, we restrict ourselves to a uni-
form magnetic field B = Bẑ. For B = 0, all response functions
(after disorder averaging) obey C4m symmetry (reflections
and rotations around ẑ). Hence σxx = σyy and σxy = −σyx ≡
σH .

The dc limit of a metal requires large system sizes, since
V−1/d � ω/v → 0 for some finite velocity scale v. Memory
requirements blow up as eV , which is prohibitively costly,
even for minimal Hamiltonians of strongly correlated met-
als, such as the Hubbard, t-J, and Kondo lattice models.
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Hyperspace formulation, in the second line of Eq. (9), avoids
the eigenstate representation.

Hyperspace notations: The set of operators {A} in
Schroedinger Hilbert space define hypestates |A) with the
inner product [26]:

(A|B) ≡
∑
nm

ρn − ρm

Em − En
〈m|A†|n〉〈n|B|m〉. (10)

(A|B) depends on temperature and is physically an equilib-
rium susceptibility given by Eq. (3). It can also be written
as an imaginary-time correlation function, see Eq. (A1). We
denote a normalized hyperstate by an angular bracket |A〉.

The Liouvillian L is a hermitian hyperoperator that acts
on hyperstate |A) by L|A) = |[H, A]). The dc hyper-resolvent
can be separated into(

1

L − iε

)
≡

(
1

L

)′
+ i

(
1

L

)′′
, (11)

where (
1

L

)′
= L

L2 + ε2
,

(
1

L

)′′
= ε

L2 + ε2
. (12)

We shall find it useful to write the inner product, Eq. (10), as
a trace in Schroedinger space:

(A|B) = −Trρ

[(
1

L

)′
A†, B

]
. (13)

By Eq. (9), the Hall conductivity is given by the off-diagonal
matrix element in hyperspace:

σH = h̄

V Im

(
jx
∣∣∣( 1

L

)′∣∣∣ jy

)
. (14)

C4m and time-reversal symmetries ensure that σH is antisym-
metric in x →

←y, and in B → −B.
Similarly, the antisymmetrized TTE coefficient is given by

αxy = h̄

TVAxyIm

(
jx
Q

∣∣∣( 1

L

)′∣∣∣ jy

)
− c

TV 〈Morb〉,

(15)

where jαQ is the thermal current in the α direction, and Axy

is the antisymmetrizer defined by Axy f (x, y) = 1
2 ( f (x, y) −

f (y, x)).
The orbital magnetization in the ẑ direction is

Morb = q

2c

N∑
i=1

xi × vi · ẑ, (16)

which must be included in Eq. (15) to satisfy Onsager’s
time-reversal relations [42]. N is the number of particles with
charge q, positions xi, and velocities vi.
Finally, the thermal Hall conductivity is given by [42]

κxy = h̄

TVAxyIm

(
jx
Q|
(

1

L

)′∣∣ jy
Q

)

− 2

TV 〈MQ〉, (17)

where

MQ = 1

4

N∑
i=1

xi × {vi, hi − μ} · ẑ (18)

is the thermal magnetization.
In Appendix B, the continued fractions of longitudinal

conductivities σxx and κxx are derived, and the algorithm to
compute their recurrents is reviewed. However, transverse
coefficients σH , αxy, and κxy are off-diagonal matrix elements
of the hyper-resolvent and, therefore, are not readily expressed
as computable continued fractions.

III. DERIVATION OF THE HALL
COEFFICIENT FORMULA

While Eq. (1) is a ratio of transverse and longitudinal Kubo
formulas [see Eq. (9)], we find that the expression simplifies
considerably by taking the derivative of σH with respect
to magnetic field [43]. We thus assume differentiability of
the transport coefficients at zero field in the paramagnetic,
dissipative phase:

σxx(B) = σxx + O(B2), σH ∝ B + O(B3). (19)

The conditions in Eqs. (19) preclude zero resistivity and
quantum Hall phases, which are amenable to the equilibrium
relations of Sec. VII.

Using Eq. (13), the Hall conductivity in Eq. (14) is written
as

σH = − h̄

V ImTrρ

[(
1

L

)′
jx,

(
1

L

)′
jy

]
. (20)

In nonperiodic Euclidean space, one can define two commut-
ing polarization operators:

Pα = q
N∑

i=1

xα
i , α = x, y. (21)

The uniform electric currents are given by the operators:

jα = i

h̄
LPα. (22)

Using Eq. (12) in Eq. (22), we obtain(
1

L

)′
jα = i

h̄

( L
L2 + ε2

)
LPα,

= i

h̄

(
Pα − P̃α

)
, (23)

where P̃α is the projection of Pα onto the ε-broadened kernel
of L,

P̃α ≡
(

ε2

L2 + ε2

)
Pα. (24)

In Fig. 1, the operators Px − P̃x and P̃x are depicted as
submatrices of Px in the Lehmann representation.

Two points should be noted about Pα: (i) For systems with
periodic boundary conditions in α direction (e.g., on a sphere,
torus, cylinder, or ring), PαandP̃α cannot be defined. For such
cases, alternate expressions for ( 1

L )
′
jα are given in Sec. VII.

(ii) For translationally invariant Hamiltonians (no spatially
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FIG. 1. The projection operator Px represented in the eigenen-
ergy basis of H . The projected polarization P̃x in the degenerate
subspaces is marked by yellow blocks, and Px − P̃x is supported in
the white areas.

varying potentials), q−1P̃α = Rα are the global guiding center
symmetries of H . Their algebra, [Rx, Ry] = −i h̄c

eB , gives rise to
an extensive Landau-level degeneracy. In dissipative metals,
which concern this paper, Rα are not symmetries and Landau-
level degeneracy is lifted by potentials and interactions.

Finally, the Hall conductivity in Euclidean space can be
written as

σH = 1

h̄V ImTrρ[Px − P̃x, Py − P̃y], (25)

where, by Eq. (8), we send ε → 0 after V → ∞ to obtain
the equilibrium conductivity. The “bare” electric polarizations
in Eqs. (21) are independent of B and mutually commute:
[Px, Py] = 0. However, the contributions of P̃α to the commu-
tator in Eq. (25) survive in the presence of a finite magnetic
field, even as the limit ε → 0 is taken, leading to σH 
= 0. This
is shown by the expressions derived below.

Taking the derivative of Eq. (25) with respect to magnetic
field yields two terms:

dσH

dB

∣∣∣∣
B=0

= 
ρ + 
M,


ρ = − q2

h̄V ImTr
dρ

dB
[Px − P̃x, Py − P̃y]B=0,


M = − q2

h̄V ImTrρ

[
−dP̃x

dB
, Py − P̃y

]
B=0

− q2

h̄V ImTrρ

[
Px − P̃x,−dP̃y

dB

]
B=0

. (26)


ρ is evaluated using the operator identity,

dρ

dB
= βρ(Md − 〈M〉) −

[
ρ,

(
1

L

)′
M

]
, (27)

where M = − ∂H
∂B is the magnetization, and Md is its energy-

diagonal part [H, Md ] = 0. Thus,

lim
B→0


ρ = β

h̄V Imβ(M|[Px −P̃x, Py−P̃y])

+ 1

h̄V ImTrρ(Md −〈M〉)[Px −P̃x, Py−P̃y]

= 0. (28)

Both terms of 
ρ vanish at zero magnetic field by time-
reversal symmetry.

To evaluate 
M, the derivative dP̃α

dB uses the hyperoperator
identity,

d

dB

(
1

O(B)

)
= − 1

O
dO
dB

1

O , (29)

where O = ε2/(L2(B) + ε2). This yields

dP̃α

dB
= − ε

L2 + ε2
(ML + LM)

ε

L2 + ε2
Pα

= −ih̄

(
1

L

)′′
M

(
1

L

)′′
jα + L

(
1

L

)′′
M

(
1

L

)′′
Pα,

(30)

where M = − ∂L
∂B ≡ [M, •] is the hypermagnetization.

Thus, casting 
M as an inner product using Eq. (13), and
using the hermiticity of L, yields

dσH

dB

∣∣∣∣
B=0

= −2h̄

V AxyIm

(
jx
∣∣∣( 1

L

)′′
M

(
1

L

)′′∣∣∣ jy

)
+ 
′.

(31)
The second term vanishes


′ = − h̄

VAxyIm

(
L jx

∣∣∣( 1

L

)′′
M

(
1

L

)′′∣∣∣Py

)
= 0, (32)

due to the hermiticity of L and the identity proven in Ap-
pendix E, (

1

L

)′′
L jα = 0 . (33)

Now we simplify Eq. (31) by inserting resolutions of identities
between the hyperoperators. For that purpose, we introduce
the Krylov basis of orthonormal operators {|n/ jα 〉}, which are
constructed by sequentially applying L to the root state, the
current | jα ), and orthonormalizing. Details are provided in
Appendix A. We note that 〈n/ jx |m/ jy〉 = 0 due to the C4m
symmetry at zero magnetic field.
The Krylov bases provide partial resolutions of identity [see
Eq. (A7)],

∞∑
n=0

|n/ jα 〉〈|n/ jα | = 1S jα , α = x, y, (34)

where S jα is the subspace spanned by {Ln| jα )}∞n=0.
Application of Eq. (34) on the respective sides of M in
Eq. (31) yields a double sum

dσH

dB

∣∣∣∣
B=0

= −2h̄μ0Axy

∞∑
m,n=0

〈0/ jx

∣∣∣( 1

L

)′′∣∣∣m/ jx 〉

× Im〈m/ jx |M|n/ jy〉〈n/ jy

∣∣∣( 1

L

)′′∣∣∣0/ jy〉

= h̄μ0

∞∑
m,n=0

G′′
0,mG′′

n,0M ′′
m,n,

M ′′
m,n ≡ Im

(〈m/ jx |M|n/ jy〉 − 〈m/ jy |M|n/ jx 〉). (35)

The structure of Eq. (35), is depicted in Fig. 2, where the
two orthonormal Krylov bases, whose roots are jx and jy

115115-4



EQUILIBRIUM FORMULAE FOR TRANSVERSE … PHYSICAL REVIEW B 99, 115115 (2019)

FIG. 2. The orthonormal Krylov bases, Eqs. (A5), constructed
for B=0 from jx and jy by repeated application of the Liouvillian
L and orthonormalization. �n are the recurrents of σxx . M ′′

n,m =
Im〈n/ jx |M|m/ jy 〉 are the magnetization matrix elements used in
Eqs. (35).

respectively, are connected by the hypermagnetization ma-
trix elements. The imaginary hyper-resolvent matrix elements
G′′

0,n = G′′
n,0 are evaluated in Appendix E [see Eq. (E4)]:

G′′
n,0 = 〈n/ jy

∣∣∣( 1

L

)′′∣∣∣0/ jy〉 × δn,even,

G′′
2k,0(0) = −σxx

Rk

h̄μ0
,

Rk =
k∏

j=1

(
−�2 j−1

�2 j

)
, (36)

which shows that the longitudinal conductivity σ 2
xx factors out

of the double sum in Eqs. (35). Using the definition of the Hall
coefficient in Eq. (1), σ 2

xx cancels out from RH . This is a key
result of the derivation!
The final formula for the Hall coefficient is thus

RH = R(0)
H + Rcorr

H ,

R(0)
H ≡ −Im

( jx|M| jy) − ( jy|M| jx )

V h̄μ2
0

,

Rcorr
H ≡ − 1

h̄μ0

∞∑
i,k=0

(1 − δi,0δk,0)RiRkM ′′
2i,2k .

(37)

Equations (37) define Rcorr
H , which was presented earlier in

Eqs. (2). Rk , defined by Eqs. (36), depends on a finite set of
conductivity recurrents �i, i � 2k, as defined in Appendix B.
A recipe for their computation is given in Appendix C. The
hypermagnetization matrix elements M ′′

2i,2k require comput-

ing mutual susceptibilities of operators, such as |2i/ jx 〉 and

|[M, |2k/ jy〉]).

In a noncritical, paramagnetic metal, RH < ∞. Therefore,
the double sum

∑
i,k in Rcorr

H is expected to (conditionally)
converge, and its terms to decrease as i, k → ∞. The rate
of convergence depends on the particular Hamiltonian, but it
could be estimated by computing a finite sequence of terms.

As shown in Sec. VI, the relative magnitudes Rcorr
H /R(0)

H
could be greatly decreased at low temperatures by renor-
malizing the microscopic Hamiltonian onto an effective
Hamiltonian.

IV. THE MODIFIED NERNST COEFFICIENT

In this section and the next (Sec. V), the derivations follow
similar steps as in the previous section. Hence the discussion
is briefer. To define the thermal current, we need to be more
specific about the Hamiltonian H . We consider N particles
(either bosons or fermions) of charge q described by a general
continuum Hamiltonian:

H =
N∑

i=1

hi,

hi ≡ h1(pi, xi, Si; B) + 1

2

∑
j, j 
=i

Ui j . (38)

Here, the single-particle Hamiltonian h1 includes kinetic,
potential, and spin energies. Ui j is a short range, two-body
interaction.
In close analogy to the electric polarizations Pα , we define the
thermal polarizations:

Qα = 1

2

N∑
i=1

{
xα

i , hi − μ
}
, α = x, y. (39)

The heat current is simply the time derivative of the thermal
polarization:

jαQ(q=0) ≡ i

h̄
LQx � 1

2

N∑
i=1

{vα
i , hi − μ}. (40)

Henceforth we neglect, for notational simplicity, the nonlocal
contributions to jαQ of the form (vi + v j ) · ∇Ui j (xα

i − xα
j ) [44].

These can be included but they contribute minor effects for
short-range interactions Ui j .
Following the analogous derivation which led to Eq. (25), we
use Eqs. (13) and (40) to express Eq. (15) as

αxy = q

h̄TVAxyImTrρ
[
Qx − Q̃x, Py − P̃y

] − c

TV 〈Morb〉,
(41)

where

Q̃x ≡
(

ε2

L2 + ε2

)
Qx. (42)

The commutator between thermal and electric polarizations is
nonzero:

Axy[Qx, Py] = ih̄

2

∑
i

(xiv
y
i − yiv

x
i ) = i

h̄c

q
Morb, (43)
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which precisely cancels against the orbital magnetization term
in Eq. (41), leaving us with

αxy = q

h̄TV
AxyImTrρ[−Q̃x, Py − P̃y] + [Qx − Q̃x,−P̃y].

(44)
Differentiating Eq. (44) with respect to B at B = 0 yields the
following terms:

dαxy

dB

∣∣∣∣
B=0

= − h̄

TV
AxyImTrρ

[
−dQ̃x

dB
, Py

]
+

[
Px,−dQ̃y

dB

]
,

(45)

where we discard, as in Eq. (28), time-reversal symmetry
breaking terms from dρ

dB , as well as the (undifferentiated) P̃, Q̃
operators, which contribute corrections of O(ε).

dQ̃x/dB yields two terms,

dQ̃α

dB
= −ih̄

(
1

L

)′′
M

(
1

L

)′′
jαQ

− ε2

L2 + ε2

N∑
i=1

xα
i mi, (46)

where the second term contributes O(ε) to Eq. (45) and can
be discarded.
Following the analogous derivation of Eq. (31) leads to

dαxy

dB
= − 2h̄

TV

×AxyIm

(
jx
Q

∣∣∣( 1

L

)′′
M

(
1

L

)′′∣∣∣ jy

)
. (47)

The Krylov thermal resolution of identity is

∞∑
n=0

|n/ jαQ〉〈n/ jαQ | = 1S jαQ
. (48)

Inserting the thermal resolution of identity from Eq. (48) on
the left of M in Eq. (47) and the electric resolution of identity
from Eq. (34) on its right results in

dαxy

dB

∣∣
B=0 = − σxxκxx

h̄(μQ
0 μ0)

1
2

×
∑
i,k

RQ
i RkMQ

2i,2k

′′
,

MQ
2i,2k

′′ ≡ Im
(
〈2i/ jx

Q
|M|2k/ jy〉 − 〈2i/ jy

Q
|M|2k/ jx 〉

)
,

(49)

where μQ = 1
V ( jx

Q| jx
Q) is the thermal conductivity sum

rule [23].
The factors

RQ
i =

i∏
j=1

(
−�

Q
2 j−1

�
Q
2 j

)
(50)

depend on the recurrents �Q
n of the thermal conductivity κxx,

as defined in Eq. (B2).

The modified Nernst coefficient defined by Eq. (4) is given by
the formula

W = 1

σxxκxx

dαxy

dB

∣∣∣
B=0

,

= W (0) + W corr,

W (0) ≡ 1

h̄μ
Q
0 μ0

(( jx
Q|M| jy) − ( jy

QM| jx )),

W corr ≡ 1

h̄(μQ
0 μ0)

1
2

∑
i,k

RQ
i RkMQ

2i,2k

′′
(1 − δi,0δk,0).

(51)

This equation defines W corr, which was presented in Eq. (5).
W is related to the Nernst coefficient ν as follows:

ν = d

dB

(
Ex

− dT
dy

)
B=0

=
(

σ−1
xx

dαxy

dB
− RHαxx

)
B=0

,

W = ν + RHαxx

κxx
. (52)

For special particle-hole symmetric systems, RH , αxx = 0, and
the relation simplifies to W = ν/κxx.

V. THE THERMAL HALL COEFFICIENT

The thermal Hall coefficient is the derivative of the thermal
Hall resistivity with respect to magnetic field at zero field. The
thermal Hall conductivity in Eq. (17) is given in Euclidean
geometry by

κxy = 1

h̄TVAxyImTrρ
[
Qx − Q̃x, Qy − Q̃y

] − 2

TV 〈MQ〉,
(53)

where the thermal magnetization correction MQ is defined by
Eq. (18).
The antisymmetrized commutator between “bare” thermal
polarizations yields

Axy[Qx, Qy] = ih̄

2

∑
i

(
xi{vy

i , hi − μ} − yi{vx
i , hi − μ})

= i2h̄MQ, (54)

which precisely cancels against the second term in Eq. (53),
leaving us with

κxy = 1

h̄TV
AxyImTrρ[−Q̃x, Qy − Q̃y] + [Qx − Q̃x,−Q̃y].

(55)
Differentiating Q̃α with respect to B, and discarding all terms
of order ε yields

dκxy

dB
= − 2h̄

TV

×AxyIm

(
jx
Q

∣∣∣( 1

L

)′′
M

(
1

L

)′′∣∣∣ jy
Q

)
. (56)
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Now we insert two thermal resolutions of identities from
Eq. (48) and divide out κ2

xx, as defined by Eq. (6), to obtain

RTH = R(0)
TH + Rcorr

TH ,

R(0)
TH ≡ T

h̄
(
μ

Q
0

)2

((
jx
Q|M| jy

Q

) − (
jy
Q|M| jx

Q

))
,

Rcorr
TH ≡ T

h̄μ
Q
0

∑
i,k

RQ
i RQ

k MQQ
2i,2k

′′
(1 − δi,0δk,0),

MQQ
2i,2k

′′ ≡ Im
(
〈2i/ jx

Q
|M|2k/ jy

Q
〉 − 〈2i/ jy

Q
|M|2k/ jx

Q
〉
)
.

(57)

The factors RQ
n are defined in Eq. (50). This equation defines

Rcorr
TH , which was presented in Eqs. (7).

VI. APPLICATIONS TO EFFECTIVE MODELS

It is greatly advantageous at low temperatures to replace
the microscopic Hamiltonian H (A), where A is the electro-
magnetic vector potential, by an effective Hamiltonian H̄ (A)
for two reasons:

(1) Reduction of the Hilbert space size, which greatly
facilitates numerical computations.

(2) Rearrangement of the sums in Eqs. (37) and (51) by
increasing the relative size of R(0)

H relative to Rcorr
H .

Equations (31), (47), and (56) show that the two coeffi-
cients, at low temperatures, are determined solely by the low
energy part of Hilbert space. Let us examine Eq. (31) in the
Lehmann representation

dσH

dB

∣∣∣∣
B=0

= −2π2h̄

V Axy

∑
nmk

ρm−ρn

En−Em
jx
nmδ(Em−En)

× (
Mmk jy

knδ
(
Ek −En

) − jy
mkMknδ

(
Em−Ek

))
.

(58)

The energy-conserving δ functions ensure that all participat-
ing states in the sum are (up to order ε) degenerate En � Em �
Ek and restricted by Boltzmann weights to energies less than
some cutoff � > kBT . We can therefore substitute H → H̄ ,
which shares the same low-energy spectrum in a reduced
Hilbert space, i.e.,

Ēn = En, En � �. (59)

All currents and magnetization in Eq. (31) should also be
replaced by their renormalized counterparts given by

jα → j̄α = −c
∂H̄

∂Aα
,

M → M̄ = −∂H̄

∂B
. (60)

Each individual term in the summation formulas is altered
by the renormalization, since the Krylov bases, recurrents,
and hypermagnetization matrix elements all depend on the
renormalized operators. However, an exact renormalization
must leave Eq. (31) identical to that of the microscopic
Hamiltonian.

In many practical circumstances, approximate renormal-
ization is implemented. These include Schrieffer-Wolff trans-

formations [45], Brillouin-Wigner perturbation theory [46],
and contractor renormalization (CORE) [47–49].

As a demonstration of the advantages of effective Hamilto-
nians, we compute R(0)

H for a microscopic Hamiltonian,

H =
N∑

i=1

(p − q
c A)2

2m
+ V (xi ) + 1

2

∑
i 
= j

U (xi − x j ) + V dis,

(61)
where V is a periodic lattice potential, and V dis describes a
disorder potential. The microscopic currents and magnetiza-
tion obey

jα = q
∑

i

pα

m
,

M = q

2mc

∑
i

xi × pi,

[
M, jα

] = iqh̄

2mc

∑
β

εαβ jβ,

Im( jα|M| jβ ) = h̄V

2c
μ0εαβ,

μ0 = 1

h̄V Im〈
[

Px, q
∑

i

px
i

m

]
〉,

= Nq2

Vm
, (62)

where εαβ is the antisymmetric tensor.
By Eqs. (62), the zeroth Hall coefficient term is inversely

proportional to the total density:

R(0)
H = V

Nqc
. (63)

A. A single conduction band

If the chemical potential lies within a single band, separated
by a large interband gap from other bands, it is possible to
describe the low spectrum by an effective single-band model,

H̄ =
∑

ks

(εks − μ)c†
kscks +

∑
ks

V̄ dis
kk′ c†

k,sck′s, (64)

where c†
k,s creates a band electron of charge e and spin s at

lattice wave vector k. εk is the band dispersion and V̄ dis is the
intraband disorder potential.

The single-band currents and magnetization are

j̄α = e
∑

ks

vα
ksc

†
kscks,

M̄ = ieh̄

2c

∑
ks

c†
ks

(
v

y
ks

d

dkx
− vx

ks

d

dky

)
cks, (65)

where vα
k = ∂εk

∂kα . Hence

R̄(0)
H = − 1

V
Im

((
j̄x|M̄| j̄y

) − (
j̄y|M̄| j̄x

))
h̄μ2

0

= 2
e3

cμ2
0

∫
dd k

(2π )d

(
−∂ f

∂ε

)
Fk, (66)
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FIG. 3. Hall coefficient versus electron filling, at low tempera-
ture, for the weakly disordered square lattice tight-binding model, as
given by Eq. (66).

where the mean Fermi surface curvature is given by

Fk = (vx
k )2 ∂2εk

(∂ky)2
+ (vy

k )2 ∂2εk

(∂kx )2
− 2vx

kv
y
k

∂2εk

∂ky∂kx
, (67)

and the zeroth moment (f-sum rule) is

μ0 = 2e2
∫

dd k

(2π )d

(
−∂ f

∂ε

)
|vx

k|2. (68)

Equation (66) recovers the Boltzmann equation result [1,2]
in the case of wave-vector-independent scattering time. In
Fig. 3, Eq. (66) for the square lattice tight model is plotted
as a function of electron filling.

A single parabolic band structure,

εk = −sign(e)
h̄2|k|2
2m∗ , (69)

where e < 0 (e > 0) describes electrons (holes), respectively,
yields μ0 = ne2

m∗ . Its Hall coefficient is equal to the famous
Drude result,

R̄(0)
H = 1

nec
, (70)

where ne is the charge density of this single band.
The corrections R̄corr

H depend only on the weak impurity
scattering V̄ dis, since

L̄ jy = e
∑
k,k′

V̄ dis
k,k′

(
vx

k − vx
k′
)
c†

ksck′s. (71)

Thus the factor �1/�2, which enters the coefficients Rk, k �
1, is suppressed as O(

√
〈(V̄ dis)2〉/εF  1 at weak disorder,

where εF is the Fermi energy.
Recall that the R(0)

H of Eq. (63) was inversely proportional
to the total density N/V , including all core and valence
electrons. For the effective single-band model, the corrections
were found to be suppressed at weak disorder, R̄corr

H /R̄(0)
H  1.

Therefore, for the original microscopic Hamiltonian, Rcorr
H

is relatively large and could even reverse the sign of R(0)
H .

The lesson learned is that renormalization of H onto the
single-band model allows one to fully include the single-body
periodic potential into the renormalized zeroth term of the
Hall coefficient and, therefore, greatly reduce the magnitude
of the correction term.

Comment on lifetime anisotropy: The Hall coefficient for
the case of a k-dependent lifetime τk is given by the Boltz-

mann equation [1–3] as

RBoltz
H = 2

e3

c(σ Boltz
xx )2

∫
dd k

(2π )d

(
−∂ f

∂ε

)
Fkτ

2
k ,

σ Boltz
xx = 2e2

∫
dd k

(2π )d

(
−∂ f

∂ε

)
|vx

k|2τk. (72)

The anisotropy factor (τ 2
k − 〈τ 〉2)/〈τ 〉2 on the Fermi surface

is a consequence of anisotropic scattering by impurities,
phonons, and other electrons. These effects are missing in R̄(0)

H
of Eq. (66), which depends only on the band structure. Appli-
cation of the fully interacting Liouvillian when constructing
the higher order Krylov states introduces the anisotropies
of the scattering operators, of the type shown in Eq. (71).
However, at low temperatures and for weak scattering poten-
tials, Eq. (71) is simpler than computing Rcorr

H . Nevertheless,
Eqs. (37) teache us that lifetime anisotropy effects can be
described by equilibrium susceptibilities.

The modified Nermst coefficient of a single-band Hamilto-
nian in Eq. (64) is

W (0) = 2e

cμ0μ
Q
0

∫
dd k

(2π )d

(
−∂ f

∂ε

)
(εk − μ)Fk,

μ
Q
0 = 2

∫
dd k

(2π )d

(
−∂ f

∂ε

)
(εk − μ)|vx

k|2

= π2

3

k2
B

e2
T 2μ0 + O(T 3), (73)

where, for the last line, we used a low-temperature Sommer-
feld expansion [50].

Similarly, the thermal Hall coefficient is given by

R(0)
TH = 2

eT

c(μQ)2

∫
dd k

(2π )d

(
−∂ f

∂ε

)
(εk − μ)2Fk.

(74)

Application of these results to the parabolic band model from
Eq. (69) yields the simple expressions

W (0) = 1

nεF c
,

R(0)
TH = 3e

π2kB

1

nT c
. (75)

For parabolic bands, the inverse of W (RTH) measures the
number density times the Fermi energy (temperature).

B. Hardcore bosons (HCB)

Repulsively interacting bosons in a deep periodic potential
with square lattice symmetry are described by

H =
∑

i

((
pi − q

c A
)2

2m
+ V (xi )

)
+ 1

2

∑
i 
= j

U (|xi − x j |).

(76)
This model may be renormalized onto a single-band, Bose-
Hubbard model [51] (using h̄ = c = 1),

H̄ = −t
∑
〈i j〉

e−iqAi j a†
i a j + H.c. + U

∑
i

n2
i , (77)
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where a†
i creates a boson on site i, and Ai j = ∫ x j

xi
dx · A.

At strong interactions, when the average filling is between
two integers j < 〈ni〉 < j + 1, the fluid phase is “squeezed”
between two insulating phases. The effective Hamiltonian for
that regime is well described by further renormalization onto
the hardcore bosons (HCB) model [7]

H̄HCB = −t
∑
〈i j〉

e−iqAi j S+
i S−

j + H.c., (78)

where S are pseudospin half operators. S+
i creates a HCB

at site i, and Sz
i =ni − 1

2 measures its fluctuations in its oc-
cupation numbers. The Hall coefficient vanishes at 〈n〉 = 1

2
by emergent particle-hole symmetry, which can be verified
by S+ → S− and Sz → −Sz in Eq. (78). The renormalized
currents and magnetizations are

j̄α = −iqt
∑

i

(
e−iqAii+α S+

i S−
i+α − H.c.

)
,

M̄ = q

2

∑
i

xi j̄y
i+y − yi j̄x

i,i+x. (79)

Expanding Eq. (3) in powers of β at high temperatures yields

(A|B) = βTrρ∞A†B − β2

2
Trρ∞{H, A†}B + O(β3). (80)

The infinite temperature density matrix ρ∞ projects onto a
fixed particle number:∑

i

Tr
(
ρ∞Sz

i

) =
(

n − 1

2

)
V. (81)

Thus,

μ0 =βTrρ∞ j2
i,i+x. (82)

One can verify that all magnetization matrix elements M ′′
2 j,2k

vanish unless the operators in the trace encircle a magnetic
flux. Therefore, for a triangular lattice at high temperatures
[52], M ′′

0,0 ∝−β(n − 1
2 ), while for a square lattice, M ′′

0,0 ∝
−β2(n − 1

2 ). Thus we obtain for the triangular and square
lattices

R̄(0)
H ∝

{
−T

(
n − 1

2

)
triangular

−(
n − 1

2

)
square.

(83)

Correction terms that involve M̄ ′′
2 j,2k decay rapidly with j, k

due to diminishing overlaps between Krylov states. Thus, the
Hall sign changes around half-filling lines are denoted by
HCB in Fig. 4.

C. Quantum rotors (QRs)

For the same Bose-Hubbard model in Eq. (77) near the Mott
phases at integer filling n0, the fluid state can be described by
the quantum rotor (QR) field theory,

H̄QR =
∫

dd x
1

2χc
(ρ(x) − n0a−d )2 + 1

2
ρs

(
∇ϕ(x) + q

c
A
)2

× (1 + γ ρ(x)2) + V (x)ρ(x), (84)

where a is the lattice constant, χc is the local compressibility,
and ρs is the local superfluid stiffness. ρ is the deviation of the

FIG. 4. Hall signs in strong interaction regimes of the Bose-
Hubbard model Eq. (77). Mott insulators are thick black lines, ending
at critical points (black circles). Solid blue lines mark Hall sign
changes at zero temperature, computed by Huber and Lindner [38].
At high temperatures, we find the same sign changes using hardcore
bosons (HCB) and quantum rotors, in Eqs. (83) and (87) respectively.

density from the commensurate filling n0 of the neighboring
Mott phase. The QR theory can be derived from a quantum
Josephson junction array model, where χc are the grain ca-
pacitances, and ρs are intergrain Josephson couplings.

From the phase diagram of the Bose-Hubbard model, it is
clear that γ > 0, since the superfluid stiffness and ground-
state order parameter are enhanced as the density is varied
away from n0.

The canonical density-phase commutations are [53]

[ρ(x), ϕ(x′)] = −iδ(x − x′). (85)

The QR currents and magnetization densities are

j̄(x) = −qρs∇ϕ(1 + γ ρ2),

m̄(x) = − q

2c

[
x jy(x) − y jx(x)

]
. (86)

Notice that the factors γ ρ2 are necessary to produce cur-
rent dynamics via nonvanishing commutators M jα and L jα .
There is no Hall effect at the particle-hole symmetric line
〈ρ〉 = 0.

Using Eq. (85), the sign of the Hall coefficient can be
obtained,

R(0)
H ∝ γ

qρsc
〈ρ〉 + O(〈ρ3〉), (87)

which implies a particlelike Hall effect above the commen-
surate filling, and a holelike effect below. As for the band
electrons, higher order corrections of Rcorr

H are negligible at
weak disorder.

In Fig. 4, we combine the results of HCB and QR models
to map the Hall signs of the Bose-Hubbard model in the
nonsuperfluid (metallic) phase. While the Hall conductivity
of metallic phases are not simply related to Chern numbers
on finite tori (see Sec. VII), it is interesting that our results in
Fig. 4 are consistent with the Hall signs as evaluated by Huber
and Lindner [38].
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VII. STREDA FORMULAS, CHERN NUMBERS,
AND HALL-PUMPED POLARIZATION

This section is peripheral to the bulk of the paper and is
included for completeness of our discussion of equilibrium
magnetotransport coefficients. We derive some previously
known relations for Hall and TTE conductivities, which are
applicable to nondissipative phases and high magnetic fields.

A. Translationally invariant systems

The Hall coefficient of a perfectly translationally invariant
system [42,54] subject to a uniform electric field E = Eyŷ is
readily solved by a Galilean transformation to a moving frame
of velocity,

vx = c
Ey

B
, (88)

where the electric field is transformed to zero in the moving
frame. Absence of moving potentials implies that the current
vanishes in the moving frame. Hence, back in the laboratory
frame, the current is

〈 jx〉 = qnv = σH Ey � σ hom
H = nqc

B
, (89)

where nq is the charge density and

〈 jx
Q〉 = T

S

N
nvx = T αxyEy � αhom

xy = s

B
, (90)

where s = S/V is the entropy density [22]. Equations (89) and
(90) apply at any density, magnetic field, and two-body inter-
actions, as long as there are no spatially varying potentials,
and consequently zero resistivity.

B. Streda formulas for σH and αxy

An equilibrium formula for the Hall conductivity was
proposed by Streda [34],

σ̃H = c

(
∂ρ

∂B

)
μ,T

= c

(
∂m

∂μ

)
ρ,T

, (91)

where ρ and m are the charge and magnetization density,
respectively.

For the TTE, a similar Streda formula is

α̃xy = c

(
∂s

∂B

)
μ,T

. (92)

Here we show that both Streda formulas are related to the
static long wavelength conductivities. Note that these imply
the reverse order of limits than the dc limit in Eq. (8). That is
to say

σ̃H = lim
q→0

σH (q, 0),

α̃xy = lim
q→0

αxy(q, 0). (93)

Proof. The continuity equation relates charge density ρ to
current density

ρ̇(x) = i

h̄
Lρ = −∇ · j(x). (94)

By a Fourier transformation,

1

h̄
Lρq = −q · jq, (95)

the relation between magnetization (in the z direction) and
magnetization currents jm is

∇ × M = 1

c
jm. (96)

Without loss of generality, we choose q = (qx, 0), jm =
(0, jy), and Mq = Mqẑ. Thus we can write

jx
q = − 1

h̄qx
Lρq

→
(

1

L

)′
jx
q = − 1

h̄qx
ρq, (97)

and

jy
q = icqxMq. (98)

Using Eqs. (9), (97), (98), we obtain

lim
q→0

σH (q, 0) = lim
q→0

lim
V→∞

1

V Re
(
ρq

∣∣∣Mq

)
,

= c

(
∂ρ

∂B

)
μ,T

. (99)

Similarly, using a Fourier transform of Eq. (40) for the TTE
coefficient yields

jx
Q(q) = 1

h̄qx
L(hq − μnq). (100)

Rewriting Eq. (15) using Eqs. (98) and (100) yields

lim
ω→0

αxy(q, ω) = c

TV ((hq − μnq|Mq) − 〈Mq〉). (101)

Taking the limit q → 0 of Eq. (101) and using the equilibrium
relation, (

d (E − μN − T S)

dB

)
μ,T

= 〈M〉, (102)

where S is the entropy, we obtain

α̃xy ≡ lim
q→0

lim
V→∞

αxy(q, 0) = c

(
∂s

∂B

)
μ,T

, (103)

where s = S
V is the entropy density, which completes the proof

of Eq. (93). Q.E.D.
Equation (93) allows us to investigate sufficient conditions

for permitting reversal of order-of-limits, required by Eq. (8).
If there exists an equilibrium gap Egap = limq=0 minn(En(q) −
E0) � T > 0 which survives the limit of V → ∞, surely the
order of limits can be reversed. This is permitted in quantum
Hall phases, where the only gapless regions are at the sample
edges [55]. On the other hand, metals at weak magnetic fields
are gapless in the bulk, and their Hall conductivity is not
described by the Streda formula.

C. Chern numbers on the torus

A finite gauged torus is penetrated by a uniform magnetic
field with integer total flux N��0. Here, �0 = hc/q, where
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q is the charge of the particles. Its two holes are threaded by
Aharonov-Bohm (AB) fluxes θα

2π
�0, α = x, y.

AB fluxes can be introduced by adding source terms to the
Hamiltonian:

H → H − h̄

q
( jxθx/Lx + jyθy/Ly). (104)

On the torus, we cannot define polarization operators. Nev-
ertheless, we can relate write the matrix elements of ( 1

L )
′
jα

using first-order perturbation theory in θy to eigenstate |n〉, as

〈m|
(

1

L

)′
jα|n〉 = 〈m| jx|n〉

Em − En

= Lxq

h̄

〈
m| ∂

∂θx
n
〉
�θ=0. (105)

Substituting Eq. (105) into Eq. (20), the Hall conductance of
the torus is

�H (Lx, Ly) = 2
q2

h̄

∞∑
n=0

ρnIm
〈 ∂

∂θy
ψn

∣∣∣ ∂

∂θx
ψn

〉
�θ=0

, (106)

which is the thermally averaged Chern curvature at zero AB
fluxes.

Avron and Seiler [37], using adiabatic transport theory,
related the ground-state Hall conductance to the integral of
the Chern curvature over the AB fluxes (the reciprocal torus):

�Chern
H =

∫ 2π

0

∫ 2π

0

dθxdθy

(2π )2
�H (θx, θy, T =0)

= q2

h

∫ 2π

0

∫ 2π

0

dθxdθy

π
Im

〈 ∂

∂θy
ψ0

∣∣ ∂

∂θx
ψ0

〉

= q2

h
× Integer. (107)

The double integral over a smooth Chern curvature yields a
topological integer called Chern number [36,37]. In the limit
of large tori with a finite gap, the Chern curvature at weak
magnetic field is expected to approach its average, and the
two expressions in Eqs. (106) and (107) coincide.
The important conclusion from relating the Chern number to
�H is that the Hall conductance is quantized as long as the
conditions of adiabatic transport theory hold. Equation (106)
is a static equilibrium calculation. At low temperatures, it
requires only the knowledge of the lowest eigenstates [56].

Huber and Lindner (HL) [38] proved an important theorem
about ground state Chern numbers of charged particles in
periodic potentials.

HL Theorem. Consider N particles (fermions or bosons) of
charge q on the surface of a torus, in a periodic potential of
Nsites unit cells, and a perpendicular uniform magnetic field of
commensurate flux Nφ�0, where Nsites/Nφ is integer,

�Chern
H = q2

h

(
ν + m

Nsites

Nφ

)
, (108)

where ν = N
Nφ

is the filling factor, and m is any integer.

Proof. Define a flux quantum cell of size (L�0
x , L�0

y ), such
that L�0

x × L�0
y = Nsites/Nφ . Because of the relation between

translations of the null lines of the vector potential in H

FIG. 5. The gauged cylinder. A finite cylinder penetrated by a
radial magnetic field and Aharonov-Bohm flux �. Ly is the cir-

cumference, and lB =
√

h̄c
qB is the magnetic length. Ay is the vector

potential, whose null line at xnull moves as a function of θy, whilst
pumping the charge polarization.

[56] and changes in the AB fluxes, the Chern curvatures
(which are gauge invariant) are periodic in the AB fluxes
with the corresponding periodicity �θx = 2π/L�0

x , �θy =
2π/L�0

y , respectively. Any change in the Chern number can
occur by a level crossing, which can introduce an integer
change in the total Chern number m = ±1,±2 . . ..
We first consider a free Hamiltonian with zero potential
energy. Galilean symmetry requires

�Free
H = nqc

B
= q2

h
ν. (109)

By the argument above, turning on the periodic potential
adiabatically can only change the Chern number by an integer
m multiplied by the number of periodic flux quanta unit cells
N/Nφ , which results in Eq. (108). Q.E.D.

A change with m = −1 reverses the Hall sign, which is
expected above half filling for HCB [56]. For noninteracting
tight-binding electrons on a bipartite lattice [57], m = −2
across the half-filling boundary.

D. Hall-pumped polarization on the cylinder

Hall conductance on a finite cylinder is related to the Hall-
pumped polarization [39,40]. We assume periodicity of H in
the y direction and open boundary conditions on the x axis
(see Fig. 5). For charge q particles, x polarization is

Px = q
∑

i

xi. (110)

A small AB flux θyh̄c/q is introduced through the cylinder’s
hole by adding to the Hamiltonian

H → H − h̄

qLy
jyθy. (111)

Inserting Eqs. (20) and (23) into Eq. (105), the cylinder’s Hall
conductance is given by

�
pump
H = q

h̄Lx

∞∑
n=0

ρn

×
(〈

ψn|Px| d

dθy
ψn

〉
+

〈
d

dθy
ψn|Px|ψn

〉)
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= q

h̄Lx

∞∑
n=0

ρn
dPx(n, θy)

dθy

∣∣∣
θy=0

,

= q

h̄Lx

d

dθy
〈Px〉

∣∣∣
θy=0

. (112)

This result can be interpreted as adiabatic pumping of the
polarization, as depicted in Fig. 5. By reflection symmetry, we
can define 〈Px〉 = 0 for θy = 0. The “null line” at x = xnull

[56] is defined by vanishing Wilson loop
∮

dyAy(xnull ) = 0.
Adiabatically increasing θy → �θy moves the null line an
incremental distance

�xnull = �θy
Lx

2πNφ

(113)

along the x axis. If there are nonlevel crossings, the variation
of Hamiltonian and its eigenstates adiabatically pumps the
polarization. If the pumping takes time τ , the x current is given
by Ix = 1

Lx
�〈Px〉/τ , and the y voltage is V y = h̄�θy

qτ
, which

yields Eq. (112) for �
pump
H = Ix/Vy.

Px(θy) is a thermodynamic average which can be computed
at any fixed θy by equilibrium approaches. For example, using
a variational matrix product state as provided by, e.g., density
matrix renormalization group [15].

Caveat: The relevance of Chern curvatures and numbers
and Hall-pumped polarization to the limit V → ∞ depends on
an absence of level crossings for infinitesimal changes of AB
fluxes �θ . These can give rise to dissipative relaxation of the
polarization. The incompressible quantum Hall phases satisfy
this condition. Their polarization can only relax by charge
tunneling between far-away edge excitations whose rate is
suppressed exponentially in the distance between edges, for
both integer and fractional quantum Hall phases [58]. How-
ever, adaibatic transport fails for bulk-gapless disordered met-
als, where nonadiabatic (Zener tunneling) at arbitrary weak
electric field gives rise to a dissipative conductivity σxx > 0.

VIII. SUMMARY AND DISCUSSION

The main purpose of this paper was to derive formulas
for the Hall, modified Nernst, and thermal Hall coefficients,
which avoid computing dc conductivities. Quite remarkably,
these coefficients for dissipative metals of σxx > 0 depend
on the free energy and its static derivatives. As such, they
are now amenable to a variety of well-developed numerical
methods, which could be applied to interesting models of
strongly interacting electrons and bosons, such as the Hubbard
and t-J models [46,59] for cuprates and metals near Mott
insulators, the Kondo latice model for heavy fermions [60],
Weyl semimetals [61], cold atoms on optical lattices with an
artificial magnetic field [41], and more.

The zeroth terms R(0)
H , W (0), and R(0)

TH are relatively simple
and can be evaluated analytically in certain models and limits
(e.g., weak interactions, or lattice models at high temperature).
The correction terms require susceptibilities of more compli-
cated operators. Since the sums are expected to converge for
noncritical metals, the higher order terms should decrease in
magnitude, but the rate depends on the model and temperature
regime. In practice, the first few terms could provide an
estimate of the convergence rate and the truncation error.

As our examples show in Sec. VI, large potential varia-
tions and two body interactions may be renormalized at low
energies into simpler effective Hamiltonians. The single band
model for weakly interacting electrons and HCBs and QRs for
strongly interacting bosons are such examples. By renormal-
ization, qualitative features of magnetotransport coefficients,
such as sign changes, temperature, and doping dependencies,
may be extracted already from the zeroth order coefficients.

Strong disorder: RH in disordered metals near the local-
ization transition have been extensively studied. For noninter-
acting electrons in two dimensions, microscopic calculations
[62,63] have shown that RH remains constant, while the lon-
gitudinal and Hall conductivities vanish at low temperature.
In three dimensions, scaling arguments near the mobility
gap [64], have also shown that σ 2

xx ∼ σH vanish, while RH

is remains constant at the metal to insulator transition. The
Hall resistivity of the Puddle network model (a network of
quantum Hall puddles of a fixed filling factor, connected
by arbitrary resistors) was shown to be independent of the
longitudinal resistivity [65]. These results could be interpreted
as the insensitivity of RH to relaxation rates and wave-function
localization. In two dimensions, effects of interactions have
been found to give rise to logarithmic divergence of RH at low
temperatures [63]. It would be interesting to investigate within
our formula which equilibrium susceptibilities are responsible
for the diverging Hall coefficient at low temperatures.
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APPENDIX A: KRYLOV STATES

Bogoliubov hyperspace is the Hilbert space of operators
(hyperstates) |A), |B). The inner product given by Eq. (10)
depends on the Hamiltonian H and inverse temperature β and
can be written in several forms:

(A|B) =
∑
nm

ρn − ρm

Em − En
〈m|A†|n〉〈n|B|m〉

= −∂hA∂hB log Tr e−(βH−hAA−hBB)
∣∣∣
hA,hB=0

=
∫ β

0
dτ 〈A(τ )B〉. (A1)

The first line can be used to confirm that (A|B) = (B|A)∗ and
(A|A) � 0. The second line shows that (A|B) is an equilibrium
susceptibility obtained by adding static source terms −hAA −
hBB to H before differentiation. The third line relates the
inner product to an imaginary time correlation function. Here,
〈O〉 ≡ TrρO, and A(τ ) ≡ eHτ Ae−Hτ . Where possible, (A|B)
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could be computed by imaginary time quantum Monte Carlo
algorithms [16,17].

The Liouvillian is a hermitain hyperoperator:

L|A) = |[H, A]). (A2)

The hyperresolvent requires an “iε” prescription, which de-
fines the hermitian and antihermitian parts as(

1

L − ω − iε

)
≡

(
1

L − ω

)′
+ i

(
1

L − ω

)′′

≡
( L − ω

(L − ω)2 + ε2

)
+ i

(
ε

(L − ω)2 + ε2

)
. (A3)

According to Eq. (8), we must keep ε > 0 as we take V → ∞.
We construct an orthonormal Krylov basis of operators,

which will allow a matrix representation of the Liouvillian
and its inverse. We start with the normalized root state

|0/A〉 ≡ |A)√
(A|A)

, (A4)

where A is the root operator (i.e., the uniform electrical or
thermal current, in this paper).

Assuming A is not in the kernel of L, we construct the
Krylov basis as follows:

|1/A) = L|0/A〉,
|n/A) ≡ (1 − Pn−2)L(1 − Pn−3)L · · · (1 − P0)L2|0/A〉,
|n/A〉 = Nn|n/A),

Nn = 1√
(n/A|n/A)

, (A5)

where Pn = |n/A〉〈n/A|.
It is easy to verify that the Krylov basis is orthonormal,

〈n/A|m/A〉 = δmn, (A6)

and can be used to span the subspace SA = {Ln|A)}∞n=0 by the
resolution of identity in the subspace SA:

∞∑
n=0

|n/A〉〈n/A| = 1SA . (A7)

Henceforth, we drop the label /A in the hyperstates, unless
needed.

The matrix representation of the Liouvillian in this Krylov
basis is

〈n|L|m〉 ≡ Lnm =

⎛
⎜⎜⎝

0 �1 0 . . .

�1 0 �2 . . .

0 �2 0
...

...
. . .

⎞
⎟⎟⎠

nm

, (A8)

where �n, n = 1, 2, . . . are the recurrents, which are calcu-
lated in Appendix C.

If both A and B are either hermitian or antihermitian, (A|B)
is purely real. If we choose A to be hermitian, L2 jA (L2 j+1A) is
hermitian (antihermitian) for j = 0, 1, . . .. Hence, |2 j〉 (|2 j +
1〉) are hermitian (antihermitian), and �n = 〈n + 1|L|n〉 are
purely real.

The Liouvillian Green’s function 〈n|( 1
L−z )|m〉 is the inverse

of a tridiagonal matrix:

Gn,m(z) = −〈n|
(

1

z − L

)
|m〉

=

⎛
⎜⎜⎝

−z �1 0 . . .

�1 −z �2 . . .

0 �2 −z
...

...
. . .

⎞
⎟⎟⎠

−1

n,m

. (A9)

APPENDIX B: CONTINUED FRACTION
OF LONGITUDINAL CONDUCTIVITIES

The (0,0) value of Eq. (A9) is an infinite continued fraction:

G0,0(z) = − 1

z − �2
1

z− �2
2

z− �2
3

...

. (B1)

The dynamical longitudinal dynamical conductivities are
given by

σαα (ω) ≡ h̄μα
0 G′′(ω)0,0

= −h̄ωIm
1

h̄ω + iε − |�1|2
h̄ω+iε− |�2 |2

h̄ω+iε−
...

, (B2)

where

μ0 = 1

V ( jx| jx ) =
∫ ∞

−∞

dω

2π
σxx(ω),

μ
Q
0 = 1

V ( jx
Q| jx

Q) =
∫ ∞

−∞

dω

2π
κxx(ω), (B3)

are the zeroth moments (sum rules) of the conductivity and
the thermal conductivity, respectively.

For continuum particles of charge q, mass m, and density
n,

μ0 = 1

h̄V
Trρ[Px, jx] = nq2

m
, (B4)

which is known as the f-sum rule. The thermal conductivity
sum rule is given by Eq. (13) as

μ
Q
0 = 1

h̄V
Trρ

[
Qx, jx

Q

]
. (B5)

This sum rule was introduced as �xx/T and evaluated by
Shastry [23] for certain models.

The dc order of limit Eq. (8) of Eq. (B2) is

σxx = Im
−h̄μ0

iε − |�1|2
iε− |�2 |2

iε−
...

,

κxx = 1

T
Im

−h̄μ
Q
0

iε − |�Q
1 |2

iε− |�Q
2 |2

iε−
...

. (B6)
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APPENDIX C: COMPUTING RECURRENTS FROM MOMENTS

Here we show how the recurrents �n,�
Q
n , n = 1, 2, . . . can be computed recursively from their respective moments, which

are equilibrium averages of operators. The conductivity is an even function of frequency, and it has only even moments μ2k . For
k > 0, the moments are given by equilibrium averages:

μ2k = 1

V 〈 j|L2k| j) = (L2k[�])0,0 = 1

V Trρ[ j,L2k−1 j]. (C1)

L is the tridiagonal matrix given in Eq. (A8). By taking the (0,0) matrix elements of even powers L[�], an algebraic recursive
relation is obtained between the moments and recurrents,

μ2

μ0
= �2

1,
μ4

μ0
= �2

1

(
�2

1 + �2
2

)
,

μ6

μ0
= �2

1

(
�4

1 + 2�2
1�

2
2 + �4

2 + �2
2�

3
3

)
,

... = ..., (C2)

which can readily be inverted to obtain the lowest k = 1, 2, . . . kmax recurrents from the lowest kmax + 1 moments:

�2
1 = μ2

μ0,
�2

2 = μ4

μ0�
2
1

− �2
1, �2

3 = μ6

μ0�
2
1�

2
2

− �4
1

�2
2

− 2�2
1 − �2

2,
... = .... (C3)

Note: A useful relation exists between the recurrents �i, i � n and the normalization constants Nn in Eqs. (A5):

Nn =
n∏

i=1

1

|�i| . (C4)

APPENDIX D: VARIATIONAL EXTRAPOLATION OF RECURRENTS

Any calculation of a finite set of recurrents �n, n � nmax is not sufficient for determining Eq. (B1). An infinite extrapolation
of {�n′ }∞nmax+1 is required.

Several extrapolation schemes have been proposed. The variational extrapolation of recurrents (VER) [7,32,33] has been
found to be reliable in certain cases. VER chooses a physically motivated variational function σ ver (ω; {αi, i = 1, . . .}) with
sufficiently many variational parameters. αver

i are determined by a least-squares fit between the recurrents of σ ver and the
computed set. The conductivity is then approximated by

σαα (ω) ≈ −Im
h̄μ0

h̄ω + iε − �2
1

h̄ω+iε− �2
2

...
h̄ω+iε− |�nmax−1 |2

h̄ω+iε−|�nmax |2T ver (ω)

, (D1)

where T ver (ω) is a complex termination function, which is “borrowed” from the fitted variational function σ ver (ω). The reliability
of the VER procedure is in principle testable by finding convergence as nmax is incrementally increased.

APPENDIX E: OFF-DIAGONAL GREEN’S FUNCTIONS

To prove Eqs. (37), we need to determine Gn,m(iε) = G′
n,m + iG′′

n,m in Eq. (A9). Due to the tridiagonal properties of L and the
conditions (G′ + iG′′)L = L(G′ + iG′′) = I , the following properties follow:

Gn,m = Gm,n, G2i,2 j+1 = G′
2i,2 j+1 = real, G2i,2 j = iG′′

2i,2 j = imaginary, G2i+1,2 j+1 = 0. (E1)

In particular, we see that for any |n〉

ImG1,n = 〈1|
(

1

L

)′′
|n〉 = 0. (E2)

Hence, one can write (
1

L

)′′
L jx = 0, (E3)

which proves Eq. (33).
The nonzero imaginary Green’s function can be written as

G′′
2k,0 = G′′

0,2k = RkG′′
0,0, Rk ≡

k∏
j=1

(
−�2 j−1

�2 j

)
. (E4)
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By Eq. (B2),

σxx(0) = −h̄μ0G′′
0,0, (E5)

where μ0 = ( jx| jx )/V . Thus, by Eqs. (E1), all the odd entries drop out of the sums in Eqs. (37), and σ 2
xx factors out of the sums.

Therefore, the dissipative longitudinal conductivity is completely eliminated from the Hall coefficient formula, which is left to
depend solely on thermodynamical susceptibilities.
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