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Spin-mediated particle transport in the disordered Hubbard model
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Motivated by the recent experiments that reported signatures of many-body localization of ultracold atoms
in optical lattices [M. Schreiber et al., Science 349, 842 (2015)], we study dynamics of highly excited states
in the strongly disordered Hubbard model in one dimension. Owing to the SU (2) spin symmetry, spin degrees
of freedom form a delocalized thermal bath with a narrow bandwidth. The spin bath mediates slow particle
transport, eventually leading to delocalization of particles. The particle hopping rate is exponentially small in
t/W (t , W being hopping and disorder scales) owing to the narrow bandwidth of the spin bath. We find the
optimal length scale for particle hopping and show that the particle transport rate depends strongly on the density
of singly occupied sites in the initial state. The delocalization rate is zero for initial states with only doubly
occupied or empty sites, suggesting that such states are truly many-body localized, and therefore the Hubbard
model may host both localized and delocalized states. Full many-body localization can be induced by breaking
spin rotational symmetry.

DOI: 10.1103/PhysRevB.99.115111

Introduction. The phenomenon of many-body localization
(MBL) has been attracting significant theoretical [1–16] and
experimental [17–25] interest over the past few years, see
Refs. [26–28] for recent reviews. MBL provides a mechanism
of ergodicity breaking in quantum many-body systems. Er-
godicity breaking has been understood as the consequence of
emergent, robust integrability [6,7,9]—the property which is
also responsible for the largely universal dynamical properties
of MBL systems, such as logarithmic growth of entanglement
entropy following a quantum quench [4,29,30], as well as
power-law relaxation of local observables [31].

Recently, signatures of MBL have been observed in experi-
ments with ultracold atoms in optical lattices [17]. The exper-
imental system of Ref. [17] can be modeled as a fermionic
Hubbard model subject to a quasirandom potential. This
model is characterized by the high SU (2) spin symmetry,
in contrast to the less symmetric models of MBL which
have been extensively studied theoretically. Recently, it has
been argued that continuous non-Abelian symmetries destroy
MBL in spin systems [14,15,32]; intuitively, this stems from
the fact that such symmetries inevitably lead to degeneracies
in the energy spectrum, which, in turn, induces resonances.
Thus, it is important to understand whether the experimental
system of Ref. [17] exhibits true localization and whether the
delocalization of spin degree of freedom may lead to (possibly
very slow) transport of particles.

Motivated by experiment of Ref. [17], in this paper we
study dynamics and highly excited eigenstates in the disor-
dered one-dimensional Hubbard model:

H0 = t
∑

〈i j〉,σ=↑,↓
c+

iσ c jσ +
∑

i

εic
+
iσ ciσ + U

∑
i

ni↑ni↓, (1)

where the first term represents hopping between nearest
neighbor sites, the second term describes disorder potential,
and the last term is the Hubbard interaction. We will assume

that on-site energies are random uncorrelated variables, εi ∈
[−W ;W ]. For simplicity, we focus on the limit of strong
disorder, W � t . Then, the single-particle problem (with U =
0) is in the strongly localized regime, with the localization
length ξ ∼ 1/ ln(W/t ). In the interacting case, recent theoret-
ical works [33–35] found that the spin degree of freedom in
the model (1) remains delocalized and exhibits subdiffusive
transport [36], in agreement with the general arguments of
Refs. [15,32].

We consider a quantum quench setup: The system is ini-
tialized at t = 0 in a product state, where different lattice sites
are singly occupied, doubly occupied, or empty, ni(t = 0) =
0, 1, 2. A version of this setup with ni = 0, 1 on even/odd
sites was studied experimentally in Ref. [17], and the decay
of such charge-density wave configuration was probed. In
addition, the effect of adding a certain density of doublons,
ni = 2, on localization was investigated. We are interested in
understanding the dynamics of particles mediated by the cou-
pling to the delocalized spins, and, in particular, whether/how
quickly the initial density modulation decays. As we will see
below, the dynamics of ‘charge’ degrees of freedom depends
strongly on the initial density of singly occupied sites.

Qualitative considerations. We first provide an intuitive
description of the particle transport mechanism. In the strong
disorder limit, t 	 W , typical hops of electrons between
neighboring sites are off-resonant and therefore suppressed.
However, the particles on the singly occupied sites have spin
degrees of freedom. Virtual hops between singly occupied
sites generate an SU (2) symmetric exchange interaction be-
tween their spins. The typical exchange constant J (ρs), esti-
mated below, is suppressed in parameter (t/W ) and depends
strongly on the density of singlons (singly occupied sites),
J (ρs) 	 W . Owing to the SU (2) symmetry, according to
Refs. [14,15,32,37,38] the spin degrees of freedom delocalize
and are expected to form a thermal bath. Further, particle
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hopping processes couple to the spin bath: For example,
there is a process of a particle hopping with a spin flip,
accompanied by flipping the spin on one of the neighboring
singly occupied sites. The spin bath has a continuous spectrum
and can provide an energy mismatch to enable such a hopping
process, leading to the delocalization of particles. We note that
such delocalization mechanism was discussed recently [39]
in the context of transport in a disordered, spin-incoherent
Luttinger liquid.

The particle-number degree of freedom delocalizes, how-
ever, particle hopping processes are parametrically slow (the
precise estimate is derived below). To understand the origin
of the slow particle hopping rates, let us consider a simple
initial state: All sites are singly occupied, with spins pointing
in random directions. Let us also introduce one hole and ask
how quickly the hole would move. The simplest process is
that of the hole hopping to one of the nearest neighbor sites.
In this case, the typical energy mismatch is �E ∼ W , while
the exchange constant for the spin system is J0 ∼ t2U

W 2 	 �E
(assuming limit of weak interactions, U 	 W ). It has been
shown [40] that the narrow bandwidth of a thermal bath leads
to parametrically long relaxation time scales, for processes
with energy transfer much larger than the bath bandwidth.
More precisely, the rate of the charge hopping process de-
scribed above is given by:

� ∝ e−|�E |/J0 ∼ e−W 3/t2U . (2)

This illustrates why charge transport is slow in the limit of
strong disorder. Similar to the variable-range hopping, one
should consider processes where a particle hops between sites
situated some distance away and finds the optimized (largest)
hopping rate. Below we perform such an optimization, finding
the radius of optimal hops. We find the corresponding hopping
rate, which is faster than the above equation (2), derived for a
nearest-neighbor hops predicts, but still parametrically slow.

SU (2) symmetry and spin dynamics. We start our analysis
by estimating the exchange interaction between spins. As we
expect the particle dynamics to be much slower than those of
spins, we can first completely neglect the motion of particles
and focus on the spin dynamics on singly occupied sites.
We denote the singly-occupied sites by ri and the doubly
occupied sites by Ri, see Fig. 1, and their densities by ρs and
ρd , respectively. The dynamical degrees of freedom are then
the spins of the unpaired particles, Sα

ri
= c+

riσ
sα
σσ ′criσ ′ . Virtual

particle hops give rise to an effective Hamiltonian for the
spin degrees of freedom; the form of this Hamiltonian is fully
determined by the SU (2) symmetry

Hspin =
∑
〈ri,r j 〉

Jri,r j Sri Sr j + . . . . (3)

Here, . . . denote the multispin interaction terms that are
parametrically small at large disorder.

The coupling Jri,r j between two spins at distance ri − r j

arises in the 2(ri − r j )th order of the perturbation theory in
the hopping amplitude t . For two spins occupying adjacent
sites, we obtain

Jri,ri+1 = − 4t2U

(εi − εi+1)2 − U 2
. (4)

FIG. 1. A schematic of the disordered Hubbard model. The solid
line represents disorder potential, and the circles are lattice sites.
Arrows represent spins of particles situated on some sites. The charge
degrees of freedom are nearly localized for a parametrically long
time. The state can be characterized by the positions of singlons (ri)
and doublons (Ri). Spin degrees of freedom are delocalized by the
exchange interaction.

The expressions for the couplings Jri,r j become especially
simple in the limit of weak interaction, U 	 W . Indeed,
the Hamiltonian (1) can be rewritten in terms of fermionic
operators ai corresponding to the exact single-particle eigen-
states ψi

H =
∑

i

ε̃ia
+
iσ aiσ + U

∑
i, j,k,l

Mi jkl a
+
i↑a j↑a+

k↓al↓, (5)

where the matrix elements Mi jkl ≡ ∑
ĩ ψ

∗
i (ĩ)ψ j (ĩ)ψ∗

k (ĩ)ψl (ĩ)
decay exponentially [with the localization length ξ ∼
1/ ln(W/t )) 	 1] as functions of all the four distances |i − j|,
| j − l|, etc. The matrix elements Mi jkl with two pairs of
coinciding indices, Mi j ji, are of special interest to us, because
they determine the exchange couplings between spins i, j in
Eq. (3). Indeed, the eigenstates of the noninteracting part of
the Hamiltonian (5) are characterized by occupation numbers
of the exact single-particle orbitals, ni ≡ ni,↑ + ni↓ = 0, 1, 2.
While changing the occupations ni is penalized by the dis-
order, the eigenstates of the noninteracting Hamiltonian are
degenerate with respect to the orientation of spins on the
singly occupied sites. In is thus natural to start the perturbative
treatment of the interaction term in Eq. (5) by projecting
the Hamiltonian onto the subspace of states with a fixed set
of ni. Only the matrix elements with equal indexes or two
pairs of coinciding indexes (Miiii, Mii j j , or Mi j ji) will survive
such a projection. While the matrix elements of the first two
types result in trivial Hartree corrections to the single-particle
eigenenergies, the matrix element Mi j ji gives rise to the spin-
exchange process between fermions in states i and j, provided
that both are singly occupied, ni = n j = 1. The projected
Hamiltonian takes then the form of Eq. (3) with

Jri,r j ∼ UMi j ji = U
∑

ĩ

|ψi(ĩ)|2|ψ j (ĩ)|2 (6)

Jtyp ∼ Ue−2/ξρs . (7)

In the last estimate we have taken into account the exponential
decay of the single-particle wave functions.

Equations (3) and (7) describe the dynamics of unpaired
particle spins, the most mobile degrees of freedom in the
system, in terms of a random Heisenberg model. It was
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recently argued [15,32] that, due to SU (2) symmetry leading
to proliferation of long-range resonances, this model remains
delocalized even in the case of relatively strong exchange-
coupling disorder (which arises naturally in our case at ρs 	
1, due to the broad distribution of the localized wave function
amplitudes). Therefore, the particle spins in our system are ex-
pected to form a bath with continuous spectrum characterized
by a spectral function

f riri′
spin (ω) =

∫
dt〈S+

ri
(t )S−

ri′
(0)〉e−iωt . (8)

The properties of the spin bath are controlled by the typical
exchange coupling Jtyp. As we consider a random initial state
with high energy density the averaging in Eq. (8) is effectively
over infinite temperature ensemble. We expect f

rir j

spin(ω) to
decay fast with distance ri − r′

i and focus on its fully local
limit fspin(ω) ≡ f riri

spin(ω). The frequency dependence of the
spectral function fspin(ω) in disordered spin systems can be
rather complicated [41]. However, as the atom hops between
localized states typically involve energy mismatch ω � Jtyp

only its high-frequency asymptotic behavior given by [40,42]

fspin(ω) ∼ 1

Jtyp
e−C|ω|/Jtyp , ω � Jtyp (9)

is relevant for our purposes. In this equation, C is a nonuni-
versal constant of order one, which we will take to be one
for simplicity. The exponential decay of the spectral function
at large frequency ω � Jtyp is a generic phenomenon which
arises due to the fact that in order to absorb/emit energy
ω � Jtyp, a large number of spins N ∼ |ω|/Jtyp has to be
rearranged.

Spin bath and particle dynamics. The interaction term in
Eq. (5) contains matrix elements Mi jki describing particle hops
from site j to site k assisted by spin flip at site ri,

Hsc =
∑
i, j,k

Ji jk (S+
ri

a+
k↓a j↑ + H.c.), (10)

where Ji jk ∼ U exp [− max(| j − k|, |ri − k|, |ri − j|)/ξ ]. [In
addition, the interaction term in Eq. (5) contains matrix ele-
ments responsible for the spin exchange and matrix elements
of the type Miiik that renormalize the single-particle hopping
amplitudes for doubly-occupied sites].

Typically strongly off-resonant, the processes described by
Eq. (10) are very slow. Thus, we can treat the fermionic and
spin operators in Eq. (10) as describing independent degrees
of freedom (a kind of spin-charge separation) and consider
the dynamics of a single particle in the environment of the
spin bath. Spin bath leads then to particle number dynamics
via a mechanism reminiscent of the variable range hopping
(VRH) in semiconductors. Specifically, the particle transition
rate from site j to site k (see Fig. 2) is given by the Fermi
golden rule as

� j→k ∼
∑

ri

J 2
i jk fspin(εi − εk ), (11)

where we have taken into account the short-range nature
of correlations in the spin bath. A particle hop by distance
R involves energy mismatch |εi − εk| ∼ W/R(1 − ρd ) [with
R(1 − ρd ) being the number of available final states within

FIG. 2. Illustration of a particle hop assisted by an excitation of
a spin bath: A particle can hop between sites 1,2, and the mismatch
energy is provided by the spin bath. There is an optimal hopping
distance R∗, which depends on the density of the singlons and
doublons, see Eqs. (18,13).

distance R] that can be compensated by an excitation of the
spin bath. Using the bath spectral function (9) and anticipating
that typical ω � Jtyp we find the rate of such a process:

�(R) ∼ U 2Rρs

Jtyp
e−2R/ξ e−W/R(1−ρd )Jtyp , (12)

where the prefactor originates from the summation over the
coordinate of the spin involved in the process [43]. The second
exponential factor here comes from the exponential decay of
the spin correlation function, Eq. (9), and reflects the “poor”
quality of the spin bath at large frequencies.

The rate (12) should be optimized with respect to the
hopping distance R leading to

R∗ ∼
√

W ξ

2(1 − ρd )Jtyp
, �(ρs) ∼ U 2R∗ρs

Jtyp
e−4R∗/ξ . (13)

According to Eqs. (13) and (7) R∗ � 1/ρs and the charge
transport involves hops much longer than the average inter-
particle distance.

Equation (13) shows that the delocalization of spin degrees
of freedom in the Hubbard model leads to a finite but exponen-
tially slow particle number relaxation via variable-range hop-
ping. We stress that, in contrast to the conventional variable-
range hopping in semiconductors mediated by phonons and
controlled by the temperature, our transport channel is medi-
ated by spin excitations, occurs at infinite temperature, and is
controlled by disorder. It follows from Eq. (7) for Jtyp that
the relaxation rate depends strongly on the density of free
spins in the system and is maximal for ρs � 1 (we assume
for simplicity that ρd = 0)

�(ρs = 1) ∼ UW 2

t2
exp

[
−

√
8W 3

Ut2
ln

W

t

]
. (14)

The particle hopping will lead to thermalization and decay
of the initial CDW patterns. The corresponding relaxation
rate is however, extremely small. For example, assuming U ∼
W and W = 4t (rather close to the expected point of MBL
transition for spinless fermions, see e.g. Ref. [44]), one gets
from Eq. (14) the rate � ∼ 10−5t . Moreover, we emphasize
the very strong (doubly exponential) dependence of the par-
ticle hopping rate on the density of singly occupied sites ρs,
which follows from Eq. (12). Therefore, initial states with a
low density of singlons will appear fully localized for any
reasonable time of observation. Thus, to make experimental
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observation of the spin mediated delocalization feasible one
needs to study systems with high density of singlons and work
close to the MBL transition in the spinless system [45].

The same strong dependence of � on ρs will manifest itself
in a strongly nonexponential and asymmetric relaxation of the
density of singlons to its equilibrium value ρ

eq
s . In the infinite

temperature ensemble the particles are distributed indepen-
dently over the lattice sites and the equilibrium singlon density
is dictated by the overall density ρ

ρeq
s = ρ − ρ2

2
. (15)

We can model the relation of ρs by a simple rate equation.
Let us consider a particle making a hop. The initial site of the
hop can be either singlon or doublon site. The final site is one
of (1 − ρd ) sites that are not fully occupied. It is an empty
one with probability (1 − ρd − ρs)/(1 − ρd ) and a singlon
site with probability ρs/(1 − ρd ). Considering now the change
of the density of singlons due to the hopping and taking into
account the particle number conservation, ρs + 2ρd = ρ, we
find

dρs

dt
= 4�(ρs)

(
ρ

eq
s − ρs

)
2 − ρ + ρs

. (16)

It follows from Eq. (16) that an exponentially small devia-
tion of ρs from equilibrium density (we assume for simplicity
the low-density limit, ρ 	 1, implying ρ

eq
s ≈ ρ)

|δρs| ≡ ∣∣ρs − ρeq
s

∣∣ 	 δρc ≡
√

Uξ 3ρ4

W
e− 1

ξρ (17)

follows straight exponential-in-time relation with the time
scale set by �(ρ). The same time scale effectively controls the
relaxation of larger positive deviations of ρs which consists
now of a rapid decrease of δρs to δρc followed by exponential
relaxation. On the other hand, for larger negative deviations
δρs < −δρc the initial state is the bottle neck in the relation
process and the characteristic time is set by the the initial
density of doublons. The evolution of singlon density for
various initial conditions is illustrated in Fig. 3.

Strong interaction. Much of the analysis presented above
can be extended to the case of strong interaction U � W (but
still in the strong localization limit t 	 W ). Straightforward
power counting shows that in this regime typical exchange
coupling obeys [cf. Eq. (4)]

Jtyp ∼ W 2

U
e−2/ξρs . (18)

Further, the matrix element for the spin bath assisted hopping
Ji jk is of the form

Ji jk ∼ W 2

U
exp[−| j − k|/ξ ]. (19)

Important difference between weak and strong interaction
limits comes when counting the number of final states avail-
able for a particle hop. One needs now to distinguish between
single particle hops [typical energy mismatch W/R(1 − ρd −
ρs)] for a hopping by distance R], “doublon hops” [a process
where a particle hops from a site occupied by doublon to form
another doublon leaving behind an unpaired electron, typical

FIG. 3. Relaxation of the density of singlons to equilibrium
value as described by Eq. (16). Vertical axis shows the ratio
δρs/δρc with the characteristic density scale given by Eq. (17) for
various values of the initial deviation δρs. The parameters used
to generate the plot are: W = 1, ξ = 0.5, U = 0.1, ρ = 0.5. The
time is measured in units of equilibrium relaxation time, 1/�(ρeq

s ).
Different curves correspond to different initial conditions, δρs(t =
0)/δρc = −0.9, −0.5, −0.2, 0.2, 0.9 (from bottom to top, see leg-
ends). While the relaxation of positive δρs occurs on the time scale
1/�(ρeq

s ), large negative δρs persist until much longer times set by
�[ρs(t = 0)].

energy mismatch W/Rρs], and doublon decay into unpaired
spins [energy mismatch U � W ].

Among these processes, only the last one leads to the
equilibration between singlon and doublon densities. It is also
the slowest one of the three, because it has to involve nearest-
neighbor hopping: Increasing the hopping distance does not
allow one to reduce the energy mismatch. The doublon decay
is thus characterized by the rate [cf. Eqs. (18) and (9)]:

�sd ∝ exp

[
−U 2e2/ξρs

W 2

]
. (20)

In contrast, the singlon and “doublon” hopping processes
are of the variable-range type. In full analogy with Eq. (13),
we find the corresponding rates

�s(d ) ∝ exp

[
−4

√
Uξ

2W αs(d )
e1/ξρs

]
, (21)

where αs = 1 − ρd − ρs and αd = ρs. For moderate lattice
filling ρ ∼ 1 the rates �s and �d are comparable (in log scale).
On the other hand, in the low-density limit �d 	 �s and
doublons are practically frozen.

It is interesting to apply the above results to the initial state
where doublons are positioned on odd sites, while even sites
are empty (charge-density-wave state). Such an initial state
does not have single occupancies and therefore the spin bath
cannot form. The analysis presented above suggests then that
such a state has diverging relaxation times [see Eqs. (13),
(20), and (21)]. We stress that for repulsive interaction U this
means the existence of a nonthermalizing sector in the Hilbert
space (with exponentially many states) in the middle of the
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many-body energy band. Detailed analysis of dynamics in
the vicinity of this sector is an interesting direction for future
work.

Symmetry breaking and MBL. The delocalization of spin
and, ultimately, of the particle number degrees of freedom in
our system, rely on the SU (2) symmetry of the Hamiltonian
(3). When SU (2) symmetry is broken (e.g., by random mag-
netic field), the strongly-disordered spins remain localized and
so do the particles. As pointed out in Ref. [33], it is not enough
to break the SU (2) symmetry by application of a uniform
magnetic field as it would only couple to the z projection
of the total spin of the system, which is an exact integral of
motion; thus, the many-body eigenstates will not be modified.
However, we expect a uniform gradient of magnetic field
(that is easy to realize in experiment) to suffice for triggering
MBL. Note that already a very weak gradient causing Zeeman
splitting of the order of Jtyp between nearest-neighbor spins is
sufficient. A detailed study of the field-induced transition to
MBL states is an interesting direction for future research.

Conclusions. We have studied equilibration and particle
transport in the strongly disordered Fermi-Hubbard model.

We have shown that SU (2) symmetry of the Hamiltonian
precludes localization and eventually leads to exponentially
slow particle transport, Eqs. (13), (21), and (20). The transport
mechanism is reminiscent of the variable-range hopping, but
it is mediated by spin degrees of freedom. Breaking SU (2)
symmetry by a weak magnetic field gradient can induce
transition to an MBL state. Our predictions can be tested
in a quench experiment with ultracold atoms. Due to the
strong dependence of the particle-number relaxation rate on
the density of singlons, the preferable initial state would be
the one with a high density of singlons, because this would
give rise to the fastest particle dynamics. One possibility
would be to prepare an initial state where the majority of
sites are singly occupied (and spins are initially random), and
there is a small density of holes, dynamics of which will be
monitored.
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