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Multi-Weyl semimetals are new types of topological semimetals which have anisotropic nonlinear energy
dispersion and whose topological charge can be 2 or more depending on the value of the winding number J .
Here we investigate the Kondo effect of a spin-1/2 magnetic impurity in a multi-Weyl semimetal of different J by
using the variational wave function method. For different J , the binding energy is always positive in the presence
of broken inversion symmetry, and a bound state is favored to form between the impurity and the host electrons.
It is found that the formed bound state is more stable for larger J . Due to the spin-orbit coupling, the components
of spin-spin correlation functions Juv (r) (u, v = x, y, z) show strong anisotropy in the coordinate space. The spin-
spin correlation indicates distinct decay behaviors along different directions due to the anisotropic dispersion in
the energy band. In the case of J = 2 and J = 3, the rotational symmetries of the spatial spin-spin correlations
are displayed. Especially, the components Jxx and Jyy and Jxy and −Jyx can be related through a π/(2J ) rotation.
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I. INTRODUCTION

Topological semimetals are a new class of topological
matter and have attracted increased attention because their
energy bands host isolated crossing points protected by topol-
ogy [1–24]. A Weyl semimetal is a kind of topological
semimetal that supports Weyl fermions as low-energy exci-
tations [1,5,12,13]. Due to the no-go theorem, Weyl fermions
are always realized in pairs of opposite chirality and result
when the degeneracy of a doubly degenerate Dirac point is
lifted through broken inversion or time-reversal symmetry
[25–29]. The topological charge of a Weyl node can be greater
than 1 for winding numbers J � 2, and these materials are
referred to as multi-Weyl semimetals. In contrast for the
J = 1 class, the quasiparticle dispersion of the multi-Weyl
semimetals J � 2 possesses a natural anisotropy, as displayed
in Fig. 1. The double-Weyl nodes with J = 2 have been found
in HgCr2Se4 [30,31] and SrSi2 [32], and it has been predicted
that A(MoX )3 (with A=Rb, Tl; X=Te) [33] can accommodate
Weyl points with J = 3. The charge-neutral Bogoliubov–
de Gennes–Weyl quasiparticles with J = 2 have also been
suggested to exist in superconducting states of 3He-A [34],
URu2Si2 [35], UPt3 [36], SrPtAs [37], and YPtBi [38], for
instance. Most previous theoretical and experimental studies
focused on the properties of the simple Weyl systems (J = 1),
possessing pairs of (anti)monopoles with unit charge. The
classes with J � 2 remain much less explored [1,30,39–45]. It
is thus highly desired to develop theoretical efforts to disclose
the topological nature of the multi-Weyl semimetals.

The Kondo effect, which describes the low-temperature
property of a quantum magnetic impurity or an Anderson
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impurity hosted in an electronic system [46], has been a
long-standing issue for decades in condensed-matter physics.
In a superconductor system, the detection of the impurity-
induced states can be used to probe the pairing symmetry of
the hosting superconductors [47]. For topological materials, it
was found that the spin-orbit coupling between the impurity
and the conduction electrons could lead to the anisotropic
spin-spin correlation in both spin and spatial spaces [48,49].
With the rapid advance in exploring two-dimensional ma-
terials and topological materials, the impurity property has
been widely investigated recently in various Dirac electronic
systems, such as graphene [50,51], silicene [52], MoS2 [53],
the Dirac/Weyl semimetal [54,55], and tilted Dirac surface
states [56].

The wave function of the Kondo singlet state can be
described as a hybridization cloud centered at the impurity
and decaying in the distance with a characteristic range RK .
When more than one impurity interacts with the conduc-
tion electrons, an effective Ruderman-Kittel-Kasuya-Yosida
(RKKY) coupling between spatially localized magnetic mo-
ments arises, which oscillates with the distance between the
impurities R and decays algebraically [57]. If the Kondo
screening length RK is shorter than the separation R, the an-
tiferromagnetic Kondo coupling will be more important, and
the RKKY interaction will not be observed. In the opposite
case, the RKKY interaction will dominate. The RKKY-Kondo
interplay has attracted much attention starting several decades
ago and remains a hot topic of research because of its impor-
tance for new systems [58]. The RKKY interaction between
magnetic impurities in single- and multi-Weyl semimetals has
been widely studied in recent years [44,59–61].

Due to the anisotropic energy dispersion and abundant
topological charges of a Weyl node, the electronic states
near the Weyl points in multi-Weyl semimetals are expected
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FIG. 1. The energy dispersion relationship of a multi-Weyl semimetal with (a) J = 1, (b) J = 2, and (c) J = 3 at ky = 0. Both time-reversal
and inversion symmetries are broken. Two nodal points are not at the same energy level.

to show a distinctive property. Motivated by these observa-
tions, here we systematically study the Kondo screening of a
magnetic impurity in the multi-Weyl semimetals. The varia-
tional method is adopted to discuss the binding energy and the
spin-spin correlations between the impurity and the conduc-
tion electrons. The quantum impurity in Weyl semimetals with
J = 1 has been extensively investigated [55]. We generalize
these studies to the cases of J = 2 and 3. We discuss the
condition of forming a stable bound state for different J for
comparison. The rotation symmetry and anisotropy in the spa-
tial distribution of spin-spin correlations are also investigated.

This paper is organized as follows. In Sec. II, the model
Hamiltonian is introduced, which describes a magnetic im-
purity in a multi-Weyl semimetal. In Sec. III, the varia-
tional method is introduced to discuss the binding energies
of different winding numbers J and chemical potentials. In
Sec. IV, we investigate the spin-spin correlation between the
magnetic impurity and the conduction electrons in the multi-
Weyl semimetal with different J . Finally, a summary is given
in Sec. V.

II. ANDERSON MODEL HAMILTONIAN

We consider a spin-1/2 magnetic impurity in a three-
dimensional multi-Weyl semimetal; the total Hamiltonian can
be written as

Ĥ = Ĥ0 + Ĥd + ĤV , (1)

where Ĥ0 is the free Hamiltonian operator of the multi-
Weyl semimetal, Ĥd represents the Hamiltonian operator of
the magnetic impurity, and ĤV describes the hybridization
between them. The minimal continuum Hamiltonian matrix
for an isolated Weyl node of chirality s with both time-reversal
and inversion symmetries broken is given by [45,62]

Hks = s[v⊥k0(k̃J
−σ+ + k̃J

+σ−) + vz(kz − sQ)σz − Q0],

(2)

where s = ±1 stands for Weyl nodes of opposite chirality and
J is the winding number. The velocity v⊥ is the effective
velocity of the quasiparticles in the plane perpendicular to
the z axis, while vz is the velocity along it. Here k0 is a
system-dependent parameter with the dimension of momen-

tum. The broken time-reversal symmetry displaces the Weyl
cone in momentum space by the amount ±Q, and the broken
inversion symmetry shifts the energy of Weyl nodes by ±Q0.
We define the dimensionless parameters k̃± = k±/k0, with
k± = kx ± iky and σ± = 1

2 (σx ± iσy), where σi(i = x, y, z) is
the Pauli matrix. Correspondingly, the free Hamiltonian of the
multi-Weyl semimetal is given by

Ĥ0 =
∑

ks

ψ
†
ksHksψks − μ, (3)

where ψ
†
ks = (c†

ks↑, c†
ks↓) and μ is the chemical potential of

the system.
The local magnetic impurity Hamiltonian is

Ĥd = (εd − μ)(d†
↑d↑ + d†

↓d↓) + Und↑nd↓, (4)

where d†
↑(↓) and d↑(↓) are the creation and annihilation op-

erators of the spin-up (spin-down) state on the impurity site
and ndσ = d†

σ dσ . Here εd and U are the impurity energy level
and on-site Coulomb repulsion, respectively. The hybridiza-
tion between the magnetic impurity and the host material is
described by

ĤV =
∑
ksσ

Vk(d†
σ cksσ + H.c.), (5)

where Vk is the hybridization strength. Here we assume that
the magnetic impurity is symmetrically coupled to the four
bands in the semimetal for simplicity.

By diagonalizing the free Hamiltonian H0, the single-
particle eigenenergy εkst of the multi-Weyl semimetal is
given by

εkst = stv⊥

√√√√(
k2

x + k2
y

)J

k2J−2
0

+ v2
z

v2
⊥

(kz − sQ)2 − sQ0 − μ,

(6)

where t = ± stand for conduction (+) and valence (−) bands
in the multi-Weyl semimetal. The energy spectrum εkst in-
dicates a linear dependence on kz and is proportional to the
Jth power of kx(y) near the Fermi energy. The anisotropy of
the dispersion relationship is expected to generate observable
effects in the presence of the magnetic impurity.
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The corresponding eigenstates operators of εkst are
given by

γkst =
∑

σ

Mkstσ cksσ , (7)

where the unitary matrix elements Mkstσ are

Mkst↑ = 1√
2

eiJθk

√
1 + vz(kz − sQ)

s(εkst + μ)
,

(8)

Mkst↓ = 1√
2

√
1 − vz(kz − sQ)

s(εkst + μ)
,

with θk = arctan(ky/kx ).
We can rewrite the total Hamiltonian H in the diagonal

basis as

Ĥ =
∑
kst

εkstγ
†
kstγkst +

∑
kst

Vk(γ †
kst dkst + H.c.)

+ (εd − μ)
∑

σ

d†
σ dσ + U d†

↑d↑d†
↓d↓, (9)

where the impurity operators dkst are given by

dkst =
∑

σ

Mkstσ dσ . (10)

It is noted that the Hamiltonian of a multi-Weyl semimetal
we adopt is based on the low-excitation approximation near
the Weyl node. For a strong hybridization strength, the elec-
trons far away from the Fermi surface make a greater contri-
bution to the bound-state formation. In this case, the response
of the impurity cannot reflect the electronic property near the
Weyl points any more. Experimentally, the typical value of the
hybridization Vk is on the order of 0.1–1 eV, which is generally
weaker than the width of an energy band by one to two orders.
For instance, Vk is about 0.25 eV for Co atoms on the Au (111)
surface [63] and 0.5 eV in Ce compounds [64]. The energy
range in which each Weyl node is well defined is generally
of the order of 1–10 eV. For instance, the band structure in
the prototypical case of Na3Bi indicates well-defined Weyl
nodes with an energy range of about 2 eV [65], while the Weyl
nodes can be well defined with an energy range of more than
1 eV in NbP, TaP, and TaAs [66]. Therefore, our conclusion is
applicable for most materials.

III. THE BINDING ENERGY

In the case of Vk = 0, the hybridization between the im-
purity and the conduction electrons does not exist, and the
ground state of H0 is

|�〉 =
∏
{kst}

γ
†
kst |0〉, (11)

where {kst} means the product (or sum) runs over all the states
inside the Fermi surface (where εkst < 0). If U is large enough
and εd < μ < εd + U , the impurity is singly occupied with a
local moment. The total energy of the system is given by the
sum of the energies of the host material and of the magnetic

impurity,

E0 = εd − μ +
∑
{kst}

εkst . (12)

We then utilize the trial wave-function approach to investi-
gate the property of the ground state of H in the presence of
hybridization. For a large enough but finite Coulomb interac-
tion U , εd is below the chemical potential, and the impurity
site is always singly occupied. If the hybridization interaction
is considered, the impurity state can be either unoccupied or
singly occupied. Correspondingly, the trial ground state with
hybridization can be written in the diagonal basis as

|	〉 = a0

(
1 +

∑
kst

akst d
†
kstγkst

)
|�〉, (13)

where a0 and akst are variational parameters to be de-
termined by minimizing the ground-state energy E =
〈	|H |	〉/〈	|	〉. The ground-state energy of the total Hamil-
tonian H in the trial state |	〉 can be evaluated as

E =
∑

{kst}
[
(E0 − εkst )a2

kst + 2Vkakst + εkst
]

1 + ∑
{kst} a2

kst

. (14)

The variational principle requires

∂E/∂akst = 0, (15)

from which we obtain

akst = Vk

E − E0 + εkst
. (16)

Substituting akst into Eq. (14), one can get

E −
∑
{kst}

εkst =
∑
{kst}

[ − (E − E0 + εkst )a
2
kst + 2Vkakst

]

=
∑
{kst}

V 2
k

E − E0 + εkst
. (17)

Finally, using the relationship in Eq. (12), the self-
consistent equation about the binding energy �b ≡ E0 − E is
deduced as

(εd − μ) − �b =
∑
{kst}

V 2
k

εkst − �b
. (18)

If the binding energy �b > 0, the energy of the hybridized
state is lower than that of the bare state, which means that the
hybridized state is stabler. The summation over momentum in
Eq. (18) is then replaced by the integration

∑
k → V

∫
d3k

(2π )3 ,
and we get

εd − μ − �b = V
∑

st

∫
d3k

V 2
k

εkst − �b
, (19)

where V is the volume of the system. In the following dis-
cussion, the hybridization Vk is assumed to be independent
of k and can be defined as Vk = V0�( − εkst ), with �(x)
being the unit step function and  being the energy cutoff. In
the calculation, we assume  serves as a convenient energy
unit and define the effective hybridization � = V 2

k /2. The
binding energy �b can be obtained by solving Eq. (19)
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numerically for different J . The parameter akst in the wave
function is thus obtained from Eq. (16). In addition, the self-
consistent equation for the binding energy can be expressed in
an analytical form in the cases of J = 1 and 2. For J = 1, the
self-consistent equation about the binding energy is given by

� = 4(�b + μ − εd )/3

2 − 4μ − 2�b + 2
[
(�b + μ)2 + Q2

0

]
ln �b+

�b

.

(20)

In the limit of �b 
 μ 
  and for Q0 = 0, one can obtain

�b ≈ exp

[
1 − 2π2vzv

2
⊥(εd − μ)/

(
V 2V 2

k

)
2μ2/2

]
, (21)

which agrees well with the results from the mean-field theory
for the s-d exchange model [Eq. (A12) in the Appendix].
Actually, for the general case, it has been checked that the
binding energy �b correctly reproduces the Kondo energy
kBTK as given by the s-d model [67], i.e., �b = kBTK .

The self-consistent equation becomes more complicated
for the case of J = 2. For μ < −Q0, the Fermi surface is
below two nodal points, and the self-consistent equation for
J = 2 is deduced as

� = �b + μ − εd

 + (�b + μ)ln �b
�b+

. (22)

For |μ| < Q0, the Fermi surface is between two nodal points,
and

�b + μ − εd

�
=  − μ − Q0 + (�b + μ)ln

�b + Q0 + μ

�b + 

+ Q0ln
�b + Q0 + μ

�b
; (23)

for μ > Q0,

�b + μ − εd

�
=  − 2μ + (�b + μ)ln

(�b + μ)2 − Q2
0

(�b + )�b

+ Q0ln
�b + Q0 + μ

�b − Q0 + μ
. (24)

Considering a simpler case in which Q0 = 0, the binding
energy in the limit �b 
  can be simplified as

�b ≈ exp

[
1 − 4πvzv⊥(εd − μ)/

(
V k0V 2

k

)
|μ|/

]
(25)

for μ < 0 and

�b ≈ μ2


exp

[
1 − 4πvzv⊥(εd − μ)/

(
V k0V 2

k

)
|μ|/

]
(26)

for μ > 0. The results for J = 2 also agree well with the re-
sults for the s-d exchange model [Eq. (A13) in the Appendix].
The Kondo temperature in the case of J = 2 is similar to the
results for a single-Weyl semimetal in the two-dimensional
case [48,68]. The reason is that in both cases the density of
states indicates a similar dependence on energy, i.e., ρ(ε) ∼
|ε|. For the case of J � 3, the self-consistent equation for the
binding energy becomes rather complex, and here we do not
present its analytical form.

FIG. 2. Binding energy �b of a magnetic impurity in a multi-
Weyl semimetal with different J as a function of the hybridization.
For the same binding energy, a larger J requires larger effective
hybridization. The inset indicates that the binding energy is expo-
nentially small with the decrease in �. The other parameters are
taken to be v⊥k0 = 10−2, vz = 0.5 × 10−2, Q = 2.5 × 10−2,
Q0 = 0.5 × 10−2, and εd − μ = 0.1 × 10−2.

The binding energy is always positive for � > 0 and ex-
ponentially small with the decrease in � unless μ = Q0 = 0.
Only in the case of μ = Q0 = 0 does a critical hybridiza-
tion strength �c to form a bound state exist. The magnetic
impurity and the conduction electrons always favor forming
a bound state in other cases. Such a result is also indicated
in other Dirac materials [48,55,56,69]. Figure 2 demonstrates
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the dependence of the binding energy �b on the effective
hybridization � for different winding numbers J and chemical
potentials μ. In the calculation, we take Q0 = 0, which im-
plies that the inversion symmetry is broken. Correspondingly,
the energies of two Weyl nodes are separated by ±Q0, and
the position in the energy band is (0, 0,±Q). We separately
consider three different positions of the Fermi surface where
it locates between, above, and below two nodal points, i.e.,
μ = 0,±2 × 10−2. For weak hybridization �, the binding
energy is exponentially small with the decrease in �. In this
case, the formed bound state can easily be destroyed by small
thermal fluctuations. The stable bound state exists only for
a large binding energy. As shown in Fig. 2, the weaker hy-
bridization � is required for the larger J to form a stable bound
state.

It is clear that a k-dependent hybridization Vk can affect
the binding energy value when solving the self-consistent
equation (18). Actually, for orbits which couple with the
continuum via Vk , which depends on the azimuthal angle, a
similar result would ensue for J = 1. For example, for dxz

and dyz we have Vk = Vk cos ϕ and Vk = Vk sin ϕ, respectively.
However, for dx2−y2 and dxy, we have Vk = Vk cos 2ϕ and
Vk = Vk sin 2ϕ, respectively. It is easy to see that only a mere
shift is induced by the angular additional factors in the integral
of Eq. (18). In this case, we can use the same effective model,
but with different combinations of continuum states coupling
to the impurity. In the case of J = 2 and 3, a k-dependent
hybridization affects the results in a more complex way due to
the stronger anisotropic dispersion relationship. Nevertheless,
it can be checked that a k-dependent hybridization Vk does not
change the results in a qualitative way.

In Fig. 2 we consider the case of broken time-reversal
symmetry Q = 0. The Kondo effect and ferromagnetism are
generally competing to influence the ground state of a single
magnetic impurity. A strong enough magnetic field corre-
sponding to a Zeeman energy above the binding energy of
the Kondo singlet (about the Kondo temperature) will break
up the singlet. In transport systems (such as quantum dot
devices), the imbalance between spin-up and spin-down states
in the host metal should cause the resonance to split into
two asymmetric peaks. Experimentally, the Kondo effect in
ferromagnetic Weyl semimetals could be detected by the use
of scanning tunneling microscopy [70–72], in which a tip
can approach and contact a single magnetic impurity on a
surface. The splitting of the Kondo peak in the conductance
characterizes the fingerprint of itinerant magnetism in the
host.

IV. SPIN-SPIN CORRELATION

In this section, we study the spin-spin correlation between
the magnetic impurity Sd = 1

2 d†σd at the impurity site and
the conduction electron spin Sc = 1

2 c†σc of the ground state
in a multi-Weyl semimetal. The spin-spin correlation func-
tion is evaluated for the positive binding energy �b > 0;
that is, Kondo screening exists. We assume that the impu-
rity is located at the origin r = 0. The spin-spin correlation
function is

Juv (r) = 〈	|Su
c (r)Sv

d (0)|	〉, (27)

where r is the displacement between the impurity and con-
duction electrons, u, v = x, y, z, and 〈· · · 〉 denotes the ground-
state average.

Because

〈�|γ †
kstγ

†
qzoγq′z′o′γk′s′t ′ |�〉

= δqq′δzz′δkk′δss′δtt′δoo′ − δkq′δsz′δqk′δzs′δto′δot′ , (28)

it is obtained from Eqs. (7) and (10) that

〈	|d†
σ1

c†
sσ2

(r)csσ3 (r)dσ4 |	〉

= C0 − a2
0

∑
{k3t3}

eik3·rak3st3 Mk3st3σ1 M∗
k3st3σ3

×
∑
{k2t2}

e−ik2·rak2st2 M∗
k2st2σ4

Mk2st2σ2 , (29)

where C0 is a constant. Correspondingly, we can define func-
tions below and combine them into the spin-spin correlation
function Juv (r) in the coordinate space,

Asσ1σ3 (r) = 1

2
a0

∑
{kt}

eik·rakst Mkstσ1 M∗
kstσ3

. (30)

The diagonal terms of the spin-spin correlation function along
the three axes are given by

Jzz(r) =
∑

s

(−|As↑↑|2 + |As↑↓|2 + |As↓↑|2 − |As↓↓|2),

Jxx(r) = −2
∑

s

Re{As↑↓A∗
s↓↑ + As↑↑A∗

s↓↓}, (31)

Jyy(r) = 2
∑

s

Re{As↑↓A∗
s↓↑ − As↑↑A∗

s↓↓},

and the nonzero off-diagonal parts are given by

Jxy(r) = −2
∑

s

Im{As↑↓A∗
s↓↑ + As↑↑A∗

s↓↓},

Jyx(r) = 2
∑

s

Im{As↑↑A∗
s↓↓ − As↑↓A∗

s↓↑},

Jxz(r) = 2
∑

s

Re{As↓↓A∗
s↓↑ − As↑↓A∗

s↑↑}, (32)

Jzx (r) = 2
∑

s

Re{As↑↓A∗
s↓↓ − As↑↑A∗

s↓↑},

Jyz(r) = 2
∑

s

Im{As↓↓A∗
s↓↑ − As↑2A∗

s↑↑},

Jzy(r) = 2
∑

s

Im{As↑↓A∗
s↓↓ − As↑↑A∗

s↓↑}.

In the case of J = 2, the spatial distributions of the spin-
spin correlations for different μ along the x axis and the z
axis are plotted in Figs. 3 and 4, respectively. For simplicity,
we fix V0 = 3.8 × 10−2, and other parameters are the same
as those in Fig. 2. Around the magnetic impurity, the diago-
nal components of spin-spin correlations at a short distance
are negative, embodying an antiferromagnetic correlation be-
tween the impurity and the conduction electrons. For the
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FIG. 3. Spatial spin-spin correlation functions (a) Jzz(0, 0, z),
(b) Jxx (0, 0, z) [=Jyy(0, 0, z)], and (c) Jxy(0, 0, z) [=Jyx (0, 0, z)] as
functions of z for J = 2, V0 = 3.8 × 10−2, and other parameters
as in Fig. 2. Other components of Juv (0, 0, z) are zero. The length
unit is v⊥/k0. Jxy(0, 0, z) [=Jyx (0, 0, z)] is an odd function on the z
axis.

spin-spin correlation component Jxx (Jzz) along the x (z) axis,
the antiferromagnetic behavior around the magnetic impurity
remains unchanged. The off-diagonal terms embody the ef-
fect of the spin-orbit coupling in the multi-Weyl semimetals.
Figure 3(c) shows that Jxy(r) and Jyx(r) oscillate along the
x axis and are much weaker than the diagonal components
given in Figs. 3(a) and 3(b). The other off-diagonal terms of
the spin-spin correlation are exactly zero.

To investigate the effect of the winding number on the
impurity property, the spatial distributions of the spin-spin
correlations along the x axis for different winding numbers

FIG. 4. Spatial spin-spin correlation functions (a) Jzz(x, 0, 0)
[=Jyy(x, 0, 0)], (b) Jxx (x, 0, 0), (c) Jxy(x, 0, 0) [=Jyx (x, 0, 0)] along
the x axis with J = 2. The off-diagonal components are zero. The
diagonal components of spin-spin correlations with different μ show
qualitatively similar features on the x axis.

J = 1, 2, and 3 are illustrated in Fig. 5. For comparison,
we take the chemical potential μ = −2 × 10−2 and fix the
binding energy �b = 0.038 × 10−2. The spin-spin correla-
tions for J = 1 decay faster along the x axis than the case of
J = 2 and 3. This J-dependent decay behavior of the spin-spin
correlations originates from the anisotropic energy dispersion
relationship. As shown in Fig. 1, the symmetry between the kx

and kz axes in the energy dispersion for J = 1 is broken for the
higher-winding-number case (J > 1). The broken symmetry
in the momentum space is reflected in the spin-spin correlation
in real space. Figures 3 and 4 demonstrate that, for J = 2,
all the components of spin-spin correlation decay faster along
the z axis and slower along the x axis. This anisotropy of the
decay behavior of spin-spin correlation functions can also be
observed for J = 3, while it does not appear for J = 1 [55].
The anisotropic decay is induced by the different dispersion
relationships of the energy band in the x(y) and z directions.
Therefore, it is expected that the decay property of the spin-
spin correlations can provide a fingerprint to discriminate the
topological charge of the Weyl node.

The spin-spin correlations in the x-y plane for the cases of
J = 2 and J = 3 are demonstrated in Figs. 6 to 9. We first dis-
cuss the case of J = 2. Figures 6 and 7 indicate the spin-spin
correlations for J = 2, where the components not presented
here are zero in the x-y plane. As we can see, the components
Jxx(x, y, 0), Jyy(x, y, 0), Jxy(x, y, 0), and Jyx(x, y, 0) are
anisotropic in this plane, while Jzz is rotation invariant and
Jzz(r, 0, 0) = Jyy(r, 0, 0) = Jxx(0, r, 0). As θk changes, the off-
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FIG. 5. Comparison between spin-spin correlation functions of
J = 1, 2, 3 with �b = 0.038 × 10−2 and μ = −2 × 10−2 on the
x axis. For smaller J , the spin-spin correlations around the impurity
decay faster.

off-diagonal components Jxy and Jyx oscillate between positive
and negative values. In Fig. 7, we modulate the strength scale

FIG. 6. Spatial spin-spin correlation functions with J = 2 plotted
on the x-y plane. (a) Jzz(x, y, 0), (b) Jxx (x, y, 0), (c) Jyy(x, y, 0), and
(d) Jxy(x, y, 0) = Jyx (x, y, 0). The parameters are set to μ = −2 ×
10−2 and V0 = 3.8 × 10−2.

FIG. 7. To show the symmetrical characteristic of (a) Jxx (x, y, 0)
and (b) Jyy(x, y, 0) more clearly, the strength scale is modulated.
Apparently, Jxx (x, y, 0) and Jyy(x, y, 0) are related by a π/4 rotation.

of the spin-spin correlations Jxx and Jyy to illustrate their
rotation symmetry more clearly. It is shown that Jxx(x, y, 0)
and Jyy(x, y, 0) and Jxy(x, y, 0) and −Jyx (x, y, 0) are related to
each other by a π/4 rotation. These four components are all
C4 symmetric.

The spatial spin-spin correlation functions of J = 3 are
displayed in Figs. 8 and 9. Similar to the case of J = 2,
the diagonal components of spin-spin correlations are also
antiferromagnetic at short distance. For J = 3, Jxx(x, y, 0) and
Jyy(x, y, 0) and Jxy(x, y, 0) and −Jyx (x, y, 0) are related to each
other by a π/6 rotation, and these four components are all C6

symmetric. Different from the case of J = 2, the components
Jxz = −Jzx and Jyz = −Jzy of the spin-spin correlations are
nonzero for J = 3, and they all have C3 symmetry. Therefore,

FIG. 8. Spatial spin-spin correlation functions with J = 3 plotted
on the x-y plane. (a) Jzz(x, y, 0), (b) Jxx (x, y, 0), (c) Jyy(x, y, 0), and
(d) Jxy(x, y, 0) = Jyx (x, y, 0). The parameters are set to μ = −2 ×
10−2, V0 = 3.5 × 10−2.
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FIG. 9. To show the symmetrical characteristic of (a) Jxx (x, y, 0)
and (b) Jyy(x, y, 0) more clearly, the strength scale is modulated.
Apparently, Jxx (x, y, 0) and Jyy(x, y, 0) are related by a π/6 rotation.

we can see the topological charge J from the symmetry
property of the spatial spin-spin correlations.

The CJ symmetry of the spatial distribution of spin-spin
correlation functions in the x-y plane results from the form of
the Hamiltonian. The Hamiltonian matrix Hks satisfies

Hks =
(

vz(kz − sQ) − Q0
v⊥

kJ−1
0

e−iJθk kJ
⊥

v⊥
kJ−1

0
eiJθk kJ

⊥ −vz(kz − sQ) − Q0

)

=
(

vz(kz − sQ) − Q0
v⊥

kJ−1
0

e−i(Jθk+2π )kJ
⊥

v⊥
kJ−1

0
ei(Jθk+2π )kJ

⊥ −vz(kz − sQ) − Q0

)

=
(

vz(kz − sQ) − Q0
v⊥

kJ−1
0

e−iJ (θk+2π/J )kJ
⊥

v⊥
kJ−1

0
eiJ (θk+2π/J )kJ

⊥ −vz(kz − sQ) − Q0

)

=
(

vz(kz − sQ) − Q0
v⊥

kJ−1
0

e−iJθRJ k kJ
⊥

v⊥
kJ−1

0
eiJθRJ k kJ

⊥ −vz(kz − sQ) − Q0

)

= HRJ ks, (33)

and its eigenvalues meet the relationship εkst = εRJ kst , where
RJ is the rotation matrix for the 2π/J rotation in the x-y plane
in the vector space and k⊥ = k2

x + k2
y . Correspondingly, the

unitary matrix Mkstσ in Eq. (7) has the property

Mkstσ = MRJ kstσ . (34)

Noting Vk = VRJ k, the variational parameters akst meet

akst = aRJ kst , (35)

so the functions Asσ1σ3 (r) in Eq. (30) satisfy

Asσ1σ3 (r) = 1

2

∑
{kt}

e−ik·rakst Mkstσ1 M∗
kstσ3

= 1

2

∑
(RJ {k)t}

e−i(RJ k)·(RJ r)aRJ kst MRJ kstσ1 M∗
RJ kstσ3

= Asσ1σ3 (RJr), (36)

and the spin-spin correlations are CJ symmetric,

Juv (r) = Juv (RJr). (37)

Performing the π/(2J ) rotation (denoted as R4J ), it can be
deduced from Eqs. (8) and (30)

As↑↓(R4Jr) = 1

4

∑
{kt}

eik·R4J rakst e
iJθk

(
1 − v2

z (kz − sQ)2

(Ekst + μ)2

)2

= 1

4

∑
{k′t}

eik′ ·rak′st e
iJθR4J k′

(
1 − v2

z (kz − sQ)2

(Ek′st + μ)2

)2

= 1

4

∑
{k′t}

eik′ ·rak′st e
iJθk′ +iπ/2

(
1 − v2

z (kz − sQ)2

(Ek′st + μ)2

)2

= iAs↑↓(r), (38)

where k′ = R−4Jk. Similarly, one can find that

As↑↑(R4Jr) = As↑↑(r), As↓↓(R4Jr) = As↓↓(r),

As↓↑(R4Jr) = −iAs↓↑(r). (39)

Substituting these relationships into Eqs. (31) and (32), it can
be proved that

Jxx(r) = Jxx(R2Jr), Jyy(r) = Jyy(R2Jr),

Jxy(r) = Jxy(R2Jr), Jyx(r) = Jyx(R2Jr),

Jxz(r) = −Jxz(R2Jr), Jyz(r) = −Jyz(R2Jr). (40)

Furthermore, the components of the spin-spin correlation
meet the relationship

Jxx(r) = Jyy(R4Jr), Jxy(r) = −Jyx(R4Jr),

Jxz(r) = Jyz(R4Jr), Jzx(r) = Jzy(R4Jr). (41)

In the x-y plane (z = 0), As↑↑ and As↓↓ are real, As↑↓(r) =
(−1)JAs↓↑(r)∗, and it can be deduced that

Jxy(r) = Jyx(r), Jxz(r) = (−1)JJzx (r),

Jyz(r) = (−1)JJzy(r). (42)

When a magnetic impurity is placed in a multi-Weyl
semimetal, the Kondo temperature can be measured to reflect
the band properties of the Weyl semimetal. On the other
hand, the spin-spin correlation can be used to detect the
topological charge of the multi-Weyl semimetals. Experimen-
tally, the spatial anisotropic correlations could be detected
in spin-resolved scanning tunneling spectroscope experiments
[70–72].

V. CONCLUSION

In conclusion, we investigated spin-1/2 Anderson impurity
in a multi-Weyl semimetal. The trial wave-function method
was utilized to study the Kondo screening of the impurity at
the large Coulomb interaction limit. With the increase in J ,
a weaker hybridization between the impurity and conduction
electrons is required to form a stable bound state. The mag-
netic impurity and conduction electrons always favor forming
a bound state for arbitrary hybridization. The breaking of both
time-reversal and inversion symmetries induces an energy
difference between two nodal points, and there is no critical
value of hybridization �c in this case.

Due to the spin-orbit coupling, the components of spin-spin
correlation functions show strong anisotropy in the coordinate
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space. The spin-spin correlation indicates distinct decay rates
along different directions. The spin-spin correlations for J =
1 decay faster along the x axis than in the cases of J = 2 and 3.
This J-dependent decay behavior of the spin-spin correlations
originates from the anisotropic dispersion relationship in the
energy band. The topological charge J is reflected in the sym-
metry of the spin-spin correlations. Most notably, in the cases
of J = 2 and J = 3, there is obvious C2J symmetry in the
spatial spin-spin correlations. Especially, the correlation terms
Jxx(x, y, 0) and Jyy(x, y, 0) and Jxy(x, y, 0) and −Jyx(x, y, 0)
are related to each other by a π/(2J ) rotation. The rotation
symmetry in the spatial spin-spin correlations is expected
to be used to probe the winding number in a multi-Weyl
semimetal.
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APPENDIX: KONDO TEMPERATURE IN MULTI-WEYL
SEMIMETALS

In the presence of diluted magnetic impurities the system
is described by the Hamiltonian H = H0 + HJ , and

HJ = Jsd

∑
k,k′

(c†
k↑ck′↑ − c†

k↓ck′↓)Sz

+ Jsd

∑
k,k′

(c†
k↑ck′↓S− + c†

k↓ck′↑S+), (A1)

where S is the magnetic moment of the impurities and Jsd

is the strength of the (antiferromagnetic) coupling between
the impurities and the carriers. Here we consider the case of
a magnetic impurity with |S| = 1/2, and then S can be ex-
pressed in terms of auxiliary creation (annihilation) fermionic
operators f †

σ ( fσ ) satisfying the constraint n f = ∑
σ f †

σ fσ =
1. In terms of the f operators, the coupling term HJ can be
expressed as

HJ = Jsd

∑
k,k′;σ,σ ′

c†
kσ

ck′σ ′ f †
σ fσ ′ . (A2)

In the following discussion, the large-N expansion would
be performed to make a mean-field treatment of the Kondo
problem [58], which was first introduced by Read and Newns
[73]. In this method, a Stratonovich-Hubbard transformation
is used to eliminate the four-fermion term in favor of a path
integral over an auxiliary Bose field � = ∑

k,σ 〈c†
kσ

fσ 〉. An
integral over a variable is used to enforce the constraint n f = 1
by the introduction of a Lagrange multiplier λ. The fermionic
fields then occur only in a quadratic exponent and can be
integrated out in closed form, leaving a path integral over
� and an integral over λ to be evaluated. A 1/N expansion
can then be obtained from a saddle-point expansion for these
integrals. Approximating � and λ as static mean fields, the

effective action is obtained as [68]

Seff = 1

kBT

⎡
⎣ 2

π

∫
dε

arctan
[

π
2

�2ρ(ε)
ε−μ−λ

]
e(ε−μ)/kBT + 1

+ �2

Jsd
− λ

⎤
⎦, (A3)

where the integral is bound between − and ,  is the
cutoff, and ρ(ε) is the density of states of the Weyl semimet-
als. By minimizing Seff , we can obtain the self-consistent
equations for �2 and λ,∫

dε
4ρ(ε)(ε − μ − λ)/[e(ε−μ)/kBT + 1]

4(ε − μ − λ)2 + π2�4ρ2(ε)
= − 1

Jsd
,

(A4)∫
dε

4�2ρ(ε)/[e(ε−μ)/kBT + 1]

4(ε − μ − λ)2 + π2�4ρ2(ε)
= 1.

The Kondo temperature TK can be identified as the highest
temperature for which the self-consistent equations have a
nontrivial solution.

Here we consider multi-Weyl semimetals with time-
reversal symmetry, i.e., Q = 0. The retarded Green’s function
for the free Weyl semimetal has the form

GR
0 (ε, k) = 1

ε + μ − Hks + iδ
, (A5)

where Hks = s[v⊥k0(k̃J
−σ+ + k̃J

+σ−) + vzkzσz − Q0]. The
spectral function is then deduced as

A(ε, k) = − 1

π
Tr

{
Im

[
GR

0 (ε, k)
]}

= 2|ε + μ + Q0|δ
[
(ε + μ + Q0)2 − ε2

k

]
+ 2|ε + μ − Q0|δ

[
(ε + μ − Q0)2 − ε2

k

]
, (A6)

where εk = v⊥

√
k2J
⊥

k2J−2
0

+ v2
z

v2
⊥

k2
z and k2

⊥ = k2
x + k2

y . The fermion

density of states is given by

ρ(ε) = V
∫

d3k
(2π )3

A(ε, k), (A7)

where V is the volume of the system. For the single-Weyl
semimetal (J = 1), one can obtain [54,68]

ρs(ε) = V

π2vzv
2
⊥

[
(ε + μ)2 + Q2

0

]
; (A8)

for the double-Weyl semimetal (J = 2),

ρd (ε) = V k0

8πvzv⊥
[|ε + μ + Q0| + |ε + μ − Q0|], (A9)

and for the triple-Weyl semimetal (J = 3),

ρt (ε) = V �( 1
3 )k4/3

0

12π3/2�( 5
6 )vzv

2/3
⊥

[|ε + μ + Q0|2/3

+ |ε + μ − Q0|2/3]. (A10)

In the limit of kBT 
 μ 
  and assuming Q0 = 0 for
simplicity, the Kondo temperature TK for J = 1 can be
simplified as

TK = exp

[
1 − 2/[Jsdρs()]

2μ2/2

]
. (A11)
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The Anderson Hamiltonian leads us to the degenerate ex-
change model by performing the Schrieffer-Wolf transforma-
tion. The coupling parameters Jsd are related to those of the
Anderson Hamiltonian, and Jsd = V 2

k /(εd − μ) in the limit
U → ∞. The Kondo temperature TK can also be expressed
as [68]

TK = exp

[
1 − 2π2vzv

2
⊥(εd − μ)/

(
V 2

k V 2
)

2μ2/2

]
, (A12)

which is consistent with Eq. (21). For J = 2, the Kondo
temperature TK can be simplified as

TK = κ (μ)exp

[
1 − 1/[Jsdρd ()]

|μ|/
]
, (A13)

where κ (μ) = μ2


for μ > 0 and κ (μ) =  for μ < 0. The

Kondo temperature of J = 2 is similar to the results of a
single-Weyl semimetal in the two-dimensional case Refs. [48]
and [68]. In both cases the density of states ρ(ε) indicates the
linear dependence on energy.
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