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Nuclear spin-lattice relaxation time in TaP and the Knight shift of Weyl semimetals
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We first analyze the recent experimental data on the nuclear spin-lattice relaxation rate of the Weyl semimetal
TaP. We argue that its nonmonotonic temperature dependence is explained by the temperature-dependent
chemical potential of Weyl fermions. We also develop the theory of the Knight shift in Weyl semimetals, which
contains two counteracting terms. The diamagnetic term follows − ln[W/ max(|μ|, kBT )] with W, μ, and T
being the high-energy cutoff, chemical potential, and temperature, respectively, and is always negative. The
paramagnetic term scales with μ and changes sign depending on the doping level. Altogether, the Knight shift is
predicted to vanish or even change sign upon changing the doping or the temperature, making it a sensitive tool
to identify Weyl points. We also calculate the Korringa relation for Weyl semimetals which shows an unusual
energy dependence rather than being constant as expected for a noninteracting Fermi system.

DOI: 10.1103/PhysRevB.99.115107

I. INTRODUCTION

With the advent of topological insulators, the observa-
tion of many fascinating phenomena became possible [1,2],
including the magnetoelectric effect, axion electrodynamics,
and Majorana fermions. In their bulk, these materials re-
semble to a normal insulator, but their surfaces or edges
host metallic states, which are protected by the underlying
topology. In this respect, they are regarded as the descendant
of quantum Hall states, which is manifested in, e.g., the
quantized spin-Hall conductivity in spin-Hall insulators [3].

The above story can further be twisted by designing ma-
terials whose bulk metallicity is protected by topology. A
topological metal in three dimensions (3D) is incarnated in
Weyl semimetals [4–7]. The protection of metallic behavior
is best visualized in momentum space where a Weyl point
may be regarded as a magnetic monopole [8]. These objects
appear pairwise and can only be annihilated by colliding
two monopoles with opposite topological charge into each
other. Due to the nontrivial topology, Weyl semimetals also
feature a variety of extraordinary phenomena, such as the
chiral anomaly or the anomalous Hall conductivity [7,8].

Although surface sensitive probes, such as scanning tun-
neling microscopy or angle-resolved photoemission spec-
troscopy (ARPES) capture the physics of protected surface
states, i.e., Fermi arcs for Weyl semimetals [9,10], bulk
probes also provide valuable information about the electronic
structure. Among these, nuclear magnetic resonance (NMR)
technique has long been known [11–13] to reveal a plethora
of information about the electronic or other degrees of free-
dom, through which nuclear spins relax. For example, the
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exponential vs power-law temperature dependence of the
relaxation time T1 (see Fig. 1) in a superconductor contains
information about the structure of the superconducting gap
and its possible nodal structure, whereas the position of
the resonance, i.e., the Knight shift K , depicted in Fig. 1,
distinguishes between singlet and triplet pairing [14,15]. In
materials whose superconductivity is mediated by spin-singlet
pairing, the Knight shift drops with decreasing temperature,
whereas it stays at its normal-state value for spin-triplet
Cooper pairs.

At the heart of the NMR lies the hyperfine coupling,
describing the interaction between nuclear spins and the sur-
rounding medium. In Ref. [16], we determined the hyperfine
interaction for Weyl semimetals using an “ab initio” treatment
of the low-energy effective Hamiltonian. This allowed to show
that the spin-lattice relaxation rate is anomalous in Weyl
semimetals and does not follow the behavior expected from
the density of states. Instead of a 1/T1T ∼ E4 scaling with
E being the maximum of temperature (kBT ) and chemical
potential, the nuclear spin-relaxation rate scales in a graphene-
like manner [17] as 1/T1T ∼ E2 ln(E/ω0) with ω0 as the
nuclear Larmor frequency. In Sec. II, we introduce the model
developed in Ref. [16] to set the stage for the subsequent
analysis. In Sec. III, we first recapitulate our previous work
on the nuclear spin-relaxation time and then apply the result
to the recent nuclear quadrupole relaxation data on TaP [18]
and demonstrate that, by taking the temperature dependence
of the chemical potential into account, we are able to describe
the salient features of the experimental data. In Sec. IV, we
provide a similar ab initio evaluation of the Knight shift
in Weyl semimetals as well, which reveals rich behavior
depending on the conspiracy of the chemical potential and
temperature. Namely, it can cross over between diamagnetic
and paramagnetic behaviors by tuning them, respectively. The
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FIG. 1. Sketch of NMR: nuclear spin states are split by an
external magnetic-field B, whose energy scale is measured together
with the relaxation time.

Korringa relation of a Fermi liquid, studied in Sec. V, is
not satisfied due to the strong spin-orbit coupling, which is
essential to induce Weyl points.

II. HYPERFINE INTERACTION IN WEYL SEMIMETALS

Following Ref. [16], we rederive the hyperfine interaction
in Weyl semimetals. By focusing on the low-energy excita-
tions, the Hamiltonian of Weyl semimetals is written as

H = vF (pxσx + pyσy + pzσz ). (1)

Here, the physical spin of the electron is represented by the
Pauli matrices (σ ’s), and vF is their Fermi velocity, typically
[19,20] on the order of 105–106 m/s. Its dispersion relation
is also linear in momentum as is usual for zero-mass Weyl
fermions in an arbitrary dimension (e.g., for graphene as well
[21]) as

ελ(k) = λvF h̄|k|, (2)

with λ = ± and k = |k| for the length of the 3D momentum.
The spinor eigenfunctions are written as

|k,+〉 =
[

cos
(

ϑk
2

)
sin

(
ϑk
2

)
exp(iϕk )

]
(3a)

|k,−〉 =
[

sin
(

ϑk
2

)
− cos

(
ϑk
2

)
exp(iϕk )

]
. (3b)

The + and − components in Eqs. (3) correspond to pos-
itive and negative eigenenergies, respectively, and ϕk is the
azimuthal angle on the (kx, ky) plane and ϑk is the polar angle
made from the kz axis in a spherical coordinate system.

In Ref. [16], the standard route outlined in Refs. [12,17]
was followed to obtain the hyperfine interaction. After rep-
resenting the nuclear spin as a dipole with dipole moment
m = h̄γnI, its vector potential is

A = μ0

4π

m × r
r3

= μ0

4π
h̄γn

I × r
r3

. (4)

Here γn is the nuclear gyromagnetic ratio, and μ0 is the
vacuum permeability. The vector potential, stemming from
the dipole, appears in the Hamiltonian through the Peierls
substitution as p → p + eA with e > 0 as the elementary
charge and its magnetic-field ∇ × A through the Zeeman
term.

Using this ab initio treatment of the nuclear spin within
the low-energy effective Hamiltonian of Eq. (1), the hyperfine
interaction between a localized nucleus and the surrounding
Weyl fermions after some lengthy calculation [16] reads
as [22]

HHFI = μ0

q2
γnh̄I ·

[
ievF (q × σ) − gμB

2
[q × (q × σ )]

]
, (5)

where the momentum transfer between the incoming (k) and
the outgoing (k′) electron, which gets scattered off the local-
ized spin, is q = k − k′. The first and second terms are the
orbital and the spin part of the hyperfine interaction. The first
one is the Fourier transform of σ · A, and its q dependence
comes from the Fourier transform of Eq. (4) as shown in
Ref. [16]. The second term is the Fourier transform of the
magnetic field from Eq. (4), B = ∇ × A, which explains the
extra q× factor compared to the first term. The peculiar fea-
ture in Eq. (5) is the evF /q divergence of the orbital hyperfine
coupling for q → 0. The second term containing gμB remains
finite in the small-q limit since both the numerator and the
denominator vanish with q2.

The above Hamiltonian neglects structures on an atomic
length scale and is the universal contribution from Weyl
fermions, valid in the low-energy long-wavelength limit. Ad-
ditional short-range terms to the hyperfine coupling can also
arise from short-range processes within the real-space unit cell
[23,24], which can be taken into account by considering the
lattice periodic Bloch wave function as well. This contribution
is, however, nonuniversal and depends on the actual geom-
etry of the lattice and the real-space unit cell, which hosts
Weyl fermions. Nevertheless, the lattice periodic Bloch wave-
function uk(r) can be Fourier expanded in terms of reciprocal
lattice vectors G as uk(r) = ∑

G ck(G)eiGr, and the Fourier
transform yielding Eq. (5) would now contain q + 
G instead
of q, and 
G is the reciprocal lattice vector difference of two
Bloch states. However, the 
G = 0 contribution is present in
general and gives the most dominant contribution in the small-
q limit as we detail it in the Appendix. Therefore, we focus
only on this as the universal signature of Weyl fermions and
neglect the nonuniversal structure on the atomic length scale.
Since many different lattices with distinct unit cells give rise to
Weyl fermions, it is important to focus on the universal long-
wavelength contribution without the nonuniversal short-range
pieces. The same approach was found to describe the NMR
relaxation rate and Knight shift on graphene [17], and as we
show below, this accounts successfully for the spin-relaxation
rate in a TaP Weyl semimetal.

III. NUCLEAR SPIN RELAXATION IN THE WEYL
SEMIMETAL TAP

In Ref. [16], we derived the spin-lattice relaxation rate of
Weyl fermions from an effective low-energy description of the
fermionic excitations. Surprisingly, the dominant contribution
at low T and μ comes from the orbital part of the hyperfine
interaction, which usually gives a small contribution in normal
metals.

The relaxation time was evaluated as [16]

1

T1
= πμ2

0γ
2
n

4vF (2π )6

∫ ∞

−∞
dk

(kevF )2F (|k|/k0)

cosh2[(h̄vF k − μ)/2kBT ]
, (6)
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where k0 = ω0/vF is the Larmor wave number, ω0 = Bγn is
the nuclear Larmor frequency, which is the smallest energy
scale of the problem due to the heavy mass of the nucleus,
and γn is the gyromagnetic ratio of the studied nucleus and
the dimensionless functions F (x → 0) ≈ 52.7 ln(2x). From
Ref. [25], the numerical constant 52.7 is (4π )2/3.

By performing the remaining integral, we eventually obtain

h̄

T1kBT
= 52.7πμ2

0γ
2
n e2

(2π )6v2
F

×

⎧⎪⎨
⎪⎩

( kBT
h̄

)2 π2

3 ln
(

4kBT
h̄ω0

)
, μ � kBT,(

μ

h̄

)2
ln

(
2μ

h̄ω0

)
, μ 	 kBT .

(7)

This expression is valid at low temperatures and small chem-
ical potential (i.e., smaller than the bandwidth). The logarith-
mic Larmor frequency dependence is not specific to Weyl
fermions but is also predicted in a normal metal from the
orbital term [26]. This result agrees with similar calculations
in Refs. [25,27].

We mention that another part of the hyperfine interaction,
which contains both the spin dipole and the Fermi contact
terms, gives only a subleading contribution to the relaxation
rate. This can be seen by realizing that the matrix element of
this part of the hyperfine coupling is bounded from above as
‖[q × (q × σ)]/q2‖ � 1 and does not diverge for any q. Since
the wave function is also normalized, this gives a contribution
which is smaller than the otherwise leading term. Indeed,
using Eq. (15) in Ref. [16], the spin dipole and Fermi contact
terms give the 1/T1T ∼ max[(kBT )4, μ4] contribution, which,
for small T and μ, is negligible with respect to Eq. (7). Ad-
ditional pieces of hyperfine coupling, coming from structures
on an atomic length scale, also fall into this category and give
similar subleading corrections.

The chemical potential and temperature dependence of T1

in Eqs. (7) resembles closely that of graphene [17], namely,
that of two-dimensional (2D) Dirac semimetals. The only
difference is the weak Larmor frequency dependence in the
Weyl case. However, these systems are clearly distinguished
by their physical dimensionality, i.e., 3D vs 2D.

Using the archetypical Weyl-semimetal TaP, the nuclear
relaxation rate was measured using nuclear quadrupole reso-
nance experiments on the Ta nuclear spins [18]. The exper-
imental data for 1/T1T exhibits a constant, T -independent
behavior at low temperatures, which crosses over to a T 2

increase with increasing temperature. This agrees with our
analytical results in Eq. (7). However, to account for the fine
details of the experimental data, we have to take into account
the temperature dependence of the chemical potential. The
experiment was performed at a fixed number of electrons
which did not vary with the temperature, which amounts to
consider the μ(T ) chemical potential. As we show below, this
explains quantitatively all features of the experiment.

The total number of electrons in a Weyl semimetal is
calculated from the well-known expression [28],

N (T ) =
∫

dε
g(ε)

exp{[ε − μ(T )]/kBT } + 1
, (8)

where g(ε) = ε2V/2π2h̄3v3
F is the density of states in Weyl

semimetals and V is the volume of the sample. Using particle
number conservation, N (T �= 0) − N (T = 0) = 0, we get∫ ∞

−∞
ε2dε

(
1

exp{[ε − μ(T )]/kBT } + 1
− �[μ(0) − ε]

)
= 0,

(9)
where �(x) is the Heaviside function and μ(0) is the chemical
potential at T = 0. Upon evaluating Eq. (9), we obtain

μ3(T ) − μ3(0) + π2(kBT )2μ(T ) = 0. (10)

This equation has two complex roots, which are irrelevant for
our current paper, and its real root reads as

μ(T ) = E (T )

6
− 2π2(kBT )2

E (T )
, (11)

where E (T ) = [108μ3(0) + 12
√

12π6(kBT )6 + 81μ6(0)]1/3.
This yields

μ(T )

μ(0)
≈

⎧⎪⎨
⎪⎩

1 − 1
3

(
πkBT
μ(0)

)2
, kBT � μ(0),(

μ(0)
πkBT

)2
, kBT 	 μ(0).

(12)

The T 2 initial decrease in the chemical potential is identical
to that in a normal Fermi gas [28] with the Fermi energy
replacing the chemical potential in the denominator. In that
case, however, the typical Fermi energy scale is 104 K, thus
the T dependence of the chemical potential is negligible at
the typical energy scales of condensed matter. On the other
hand, for the present case, upon small doping, the temperature
dependence of the chemical potential is important and cannot
be neglected since as we show below, μ(0) can be on the order
of 10–100 K and even the kBT 	 μ(0) region can easily be
reached.

Equation (11) arises from an ideal Weyl-fermionic band
structure where the linearly dispersing bands extend to arbi-
trary energies. For any real system, this is clearly not the case
as bands usually terminate at some cutoff energy and display
deviations from Eq. (2) at higher energies, which requires the
explicit knowledge of the full band structure. This, in turn, is
expected to alter the temperature dependence of the chemical
potential. We model this effect by a phenomenological μ(T )
function, which still preserves the overall features found in the
above calculations. To be explicit, we use

μ(T ) = μ(0)

1 + c[kBT/μ(0)]2
. (13)

The experimental data are fitted by plugging Eq. (13) into
Eq. (6) using c, μ(0), and the overall scale of 1/T1T as free
parameters. The experimental data determine roughly μ(0),
which then fixes the scale factor, thus the only free fitting
parameter is c. Other functions than Eq. (13) with similar
asymptotics work equally well. The result, together with the
μ(T ) curve from Eq. (11) is shown in Fig. 2, giving c = 12.
The phenomenological chemical potential follows closely that
of the ideal system from Eq. (11) as shown in the inset of
Fig. 2. This encodes all the neglected features of the band
structure, including tilting, warping, and anisotropy of the
Weyl dispersion, as well as deviations from it at high ener-
gies. The scale factor for the relaxation rate is μ0γne/vF =
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FIG. 2. The experimental spin-lattice relaxation rate on TaP from
Ref. [18] (red squares) together with the theoretical T1 of Eq. (6)
using the chemical potential from Eq. (11) (green dashed line) and
the approximate expression from Eq. (13) (blue line) with μ(0)/kB =
75 K and h̄ω0/kB = 0.0013 K. The inset: Temperature dependence
of μ(T ) from Eq. (11) (green dashed line) and of the approximate
function (blue) with c = 12.

1.8 × 10−14 s. Altogether, a convincing agreement between
experiment and theory is reached.

In Ref. [18], a phenomenological two-channel relaxation
model was used to explain the experimental data. One chan-
nel, independent from the Weyl point, was responsible for
the initial decrease in 1/T1T with the temperature, whereas
the other channel followed an activated Weyl-type behavior
as ∼T 2 exp(−
/kBT ) and accounted for the high-T increase
in the relaxation rate. Both the origin and the explicit T
dependence of the first channel as well as the activation energy

 for the Weyl node had been unknown. As opposed to
that, our theory together with μ(T ) explains all features of
the experimental data on the same footing, invoking only the
presence of the doped Weyl node.

Finally, let us mention that the contribution of the Fermi
arcs [9,10] together with possible topologically trivial surface
states is negligible for the relaxation time. NMR, unlike, e.g.,
ARPES, is a bulk probe and is sensitive to the response of the
total volume of the sample. As such, in a typical sample, the
surface-to-volume ratio is small, or in other words, the density
of surface states is small compared to the bulk density of
states. Therefore, the contribution coming from surface states
is overwhelmed by the bulk contribution.

IV. KNIGHT SHIFT

The conduction electrons induce an average static mag-
netic field through the hyperfine interaction at the position
of the nucleus, which is associated with the Knight shift
[11,13]. As a result, the nuclear Zeeman energy is given by
−h̄γnBIz(1 + K ) with K as the Knight shift. A static magnetic
field in the z direction cannot depend on the z coordinate,
thus its spatial Fourier transform depends only on qx,y. This
follows from that fact that B = [0, 0, B(x, y)] has to satisfy

∇B = ∂zBz = 0, so its Fourier transform Bq is independent of
qz.

The external magnetic field appears in Eq. (1) through the
vector potential and the Zeeman term. These give rise to an
additional perturbation as

H ′ = evF σ · A + gμB

2
Bzσz. (14)

Then, the basic question is how this external magnetic field in
the vector potential and the Zeeman term in the Hamiltonian
of Weyl semimetals influences the nuclear spin through the
hyperfine interaction in Eq. (5).

The effective magnetic field felt by the nuclear spin is
obtained by taking the expectation value of Eq. (5) with
respect to the electronic degrees of freedom in the presence of
a static magnetic field in the z direction. This gives the energy
shift from the orbital part of the hyperfine coupling as


Eo = μ0γnh̄evF
iIz

q2
(qx〈σy〉 − qy〈σx〉). (15)

Here only the z component of the nuclear spin is relevant since
the magnetic-field point in the z direction. In a similar fashion,
the spin part of the hyperfine coupling gives rise to an energy
shift as


Es = μ0γnh̄
gμB

2
Iz〈σz〉. (16)

In order to obtain the Knight shift, we calculate within linear-
response theory [29] in the external magnetic field the quantity
〈σx,y,z〉 from H ′ in Eq. (14). This gives the expectation value
of the spin operator in the Weyl semimetal in the presence
of a small magnetic field from H ′. In the absence of this
perturbation, all 〈σx,y,z〉 = 0’s, i.e., the Weyl node is not
polarized in any direction. Since we need the expectation
value of the spin operators and both external perturbations,
i.e., the vector potential A and the Zeeman term B couple
to the physical spin of Weyl fermions in Eq. (14), we need
the spin-spin correlation function between σa and σb, denoted
as ab(ω = 0, q) to determine 
Eo

A and 
Eo
B from the Kubo

formula, respectively. This is given by

ab(q) = − 1

V

∑
k

∑
λ,λ′=±

f [ελ(k)] − f [ελ′ (k + q)]

ελ(k) − ελ′ (k + q)

×〈k, λ|σa|k + q, λ′〉〈k + q, λ′|σb|k, λ〉, (17)

where f is the Fermi function and the ω = 0 limit has already
been taken. This expression is complex, in general, due to
the complex matrix elements using Eqs. (3). For example, in
the case of an external perturbation of the form σbF (q), the
expectation values are 〈σa〉 = −ab(q)F (q) with a, b being
x, y, or z.

A. Chemical potential dependence at zero temperature

We expand Eq. (17) in Taylor series in q up to second order.
After some tedious although straightforward algebra, the spin-
correlation function is evaluated in this small-q limit at T = 0
as

ab(q) = qaqb

12π2h̄vF

[
ln

(
W

|μ|
)

− 14

15

]
− iεabcqcμ

4π2(h̄vF )2
, (18)
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where (a, b, c) denotes the spatial direction (x, y, z), a �= b
and W is a sharp high-energy cutoff regularizing the theory
and εabc is the Levi-Cività symbol. We note that, although
the logarithmic cutoff dependence is expected in the real part
of ab(q) for any kind of cutoff, i.e., sharp, exponential,
Gaussian etc., the numerical constant −14/15 is not universal
but is expected to be an order 1 constant for all cutoff schemes.
We also evaluated Eq. (17) numerically and found perfect
agreement with Eq. (18).

Starting with 
Eo
A, the Fourier transform of the vector

potential for a magnetic field in the z direction is represented
in different gauges as

A(q) =
(

0,
Bq

iqx
, 0

)
or A(q) =

(
− Bq

iqy
, 0, 0

)
(19)

to evaluate 〈σx,y〉. Since the expectation value 〈σx,y〉 is gauge
invariant, it is clear that the vector potential in any gauge can
be used to calculate them, which is what we use to our favor
to simplify the calculations. This allows us to write

〈σx〉 = −evF
Bq

iqx
xy and 〈σy〉 = evF

Bq

iqy
yx, (20)

using the two distinct gauges. Substituting it into Eq. (15), we
get


Eo
A = μ0γnh̄(evF )2 IzBq

q2

(
qx

qy
yx + qy

qx
xy

)
. (21)

A similar calculation is carried out to consider the effect of
the electronic Zeeman term on the spin expectation values,
yielding


Eo
B = μ0γnh̄evF

gμB

2

iIzBq

q2
(qy

xz − qx
yz ). (22)

The spin part of the hyperfine interaction is mostly affected by
the magnetic vector potential part of the Weyl Hamiltonian.
This gives


Es = μ0γnh̄
gμB

2
evF Iz

zx Bq

iqy
. (23)

Finally, an additional contribution from the spin part of the hy-
perfine interaction is, in principle, possible from the Zeeman
term in Eq. (14), involving the χzz(q) = 0 spin susceptibility.
In accord with Refs. [30,31], this can, in principle, yield
a nonuniversal constant term, independent of both T and
μ, which arises entirely from the high-energy part of the
spectrum, not taken into account by Eq. (1). This constant
term can be merged with the chemical shift [12].

Using the spin-correlation function in Eq. (18) for
Eqs. (21)–(23) and the fact that qz = 0 for a magnetic field in
the z direction, we finally obtain the zero-temperature Knight
shift as

K = μ0e

4π2h̄

{
gμB

h̄vF
μ − evF

3

[
ln

(
W

|μ|
)

− 14

15

]}
. (24)

Here the first term stems from the electronic Zeeman term
and is the paramagnetic contribution, whereas the second
terms arise due to the electronic orbital contribution and repre-
sents the diamagnetic term. The logarithmic term, dominating
the diamagnetic term, is always negative since W/μ 	 1.

However, the sign of the first paramagnetic term can change
sign depending on whether the system is electron or hole
doped. These agree qualitatively with Ref. [30]. This means
that, already the paramagnetic term can be negative, thus
resembling the diamagnetic contribution, and by tuning the
chemical potential, one can make the Knight shift vanish at
some chemical potential or even change its sign.

B. Temperature dependence at μ = 0

The knowledge of the finite temperature spin-spin correla-
tion function in Eq. (18) is required to obtain the temperature
dependence of the Knight shift. Since it is calculated from
the Kubo formula for noninteracting electrons in Eq. (17),
it depends linearly on the Fermi-Dirac distribution function.
We then use the trick of Ref. [32] for the Fermi function
f (ε; μ; T ) as

f (ε; μ; T ) =
∫ ∞

−∞
dμ′

(
−df (μ; μ′; T )

dμ

)
�(μ′ − ε), (25)

where f (ε; μ; T ) = 1/{exp[(ε − μ)/kBT ] + 1} and its T = 0
limit is the Heaviside function as �(μ − ε). Although the
expression in Eq. (17) is valid for any temperature, only its
zero-temperature limit is evaluated in Eq. (18). Nevertheless,
using the transformation in Eq. (25), the zero-temperature
response is transformed to finite T by an integral over the
chemical potential as

ab(μ, T ) =
∫ ∞

−∞
dμ′

(
−df (μ; μ′; T )

dμ

)
ab(μ′, T = 0).

(26)
Putting Eq. (18) in Eq. (26) to get the finite-T spin cor-

relator, its imaginary part remains unchanged, and only its
real part is influenced by finite temperatures. For μ = 0, it
reads as

Re ab(q, T ) = qaqb

12π2h̄vF

[
ln

(
2eγW

πkBT

)
− 14

15

]
, (27)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Thus,
the temperature-dependent Knight shift for undoped Weyl
semimetals is

K = μ0e

4π2h̄

(
gμB

h̄vF
μ − evF

3

[
ln

(
2eγW

πkBT

)
− 14

15

])
. (28)

C. Combined effect of temperature and chemical potential

Combining the finite T, μ = 0 results from Eq. (28) with
the finite μ, T = 0 expression in Eq. (24), we arrive at our
main result. The Knight shift in Weyl semimetals for any finite
doping and temperature scales as

K (μ, T ) ≈ μ0e

4π2h̄

[
gμB

h̄vF
μ − evF

3
ln

(
W

max[|μ|, kBT ]

)]
,

(29)
and the chemical potential itself is temperature dependent and
vanishes gradually with temperature as in Eq. (12). The first
term is interpreted in terms of the Knight shift in normal met-
als [12,33], where K ∼ Ah f (μ)g(μ) with Ah f as the hyperfine
coupling, which is usually energy independent and g(μ) is
the density of states. For Weyl semimetals, g(μ) ∼ μ2, thus
an energy-dependent hyperfine coupling is required to satisfy
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FIG. 3. Schematic of the temperature dependence of the Knight
shift for a large positive chemical potential at T = 0 (blue upper
curve) where the paramagnetic term dominates for μ = 0 (red dashed
curve) and for a large negative chemical potential (black lower
curve). Although the first case induces a transition from K > 0 to
K < 0 with increasing temperature, the latter two cases give K < 0,
respectively.

this relation as Ah f ∼ 1/μ. The effective hyperfine coupling
diverges upon approaching the Weyl point and changes sign
depending on the doping level. This is in accord with the
analysis of the relaxation time [16].

Depending on the temperature and the doping level, it
can either be dominated by the diamagnetic term with the
logarithmic temperature and chemical potential dependence
or by the paramagnetic term which can still change sign
depending on the electron or hole doping level, respectively.
In typical NMR experiments, the temperature dependence
of the relaxation time and the Knight shift is measured be-
cause tuning the temperature is an easier task than tuning
the chemical potential. In Fig. 3, we show typical behaviors
of the Knight shift with different zero-temperature chemical
potentials.

Exactly at the Weyl point, the Knight shift displays strong
diamagnetic behavior and diverges with decreasing tempera-
ture as − ln(W/kBT ). At T = 0, Eq. (24) applies and the sign
of the Knight shift is determined by the conspiracy of the
paramagnetic and diamagnetic contributions, but for μ < 0,
it is always negative. Upon increasing the temperature, two
things kick in: First, the chemical potential starts to decrease,
and the paramagnetic term slowly vanishes as predicted in
Eq. (11) and visualized in the inset of Fig. 2. Second, the
temperature starts to compete with the chemical potential
in the diamagnetic term, and for kBT > μ, it reduces the
contribution of the diamagnetic term. Therefore, at high-
temperatures kBT 	 μ(0), the sign of the Knight shift is
most probably negative as the paramagnetic term vanishes
due to the vanishing of the chemical potential, and only the
diamagnetic contribution remains as ∼− ln(W/kBT ). These
features are visualized in Fig. 3.

V. KORRINGA RELATION

The calculation of the relaxation time T1 and the Knight
shift allows to test the validity of the Korringa relation, i.e.,

whether 1/T1T K2 = const holds. In general, the Korringa
relation is valid for a Fermi liquid. In particular, for a non-
interacting Fermi gas [33],

1

T1T K2
= 4πkB

h̄

(
h̄γn

gμB

)2

, (30)

whereas deviations from this usually indicate certain instabil-
ities, strong correlation effects, or transitions.

Since our Weyl fermions are noninteracting, it is interesting
to investigate to what extent this Korringa relation holds. From
our results in Eqs. (7) and (29), we infer that whereas T1

shows rather smooth behavior and increases roughly with the
temperature, the Knight shift exhibits more intricate behavior
and can even vanish in certain cases as exemplified in Fig. 3.
This means that (T1T K2)−1 can change significantly with
both temperature and chemical potential and can even diverge
when the Knight shift changes sign.

Therefore, it is much more instructive to focus on the
T = 0 behavior and assume significant doping away from the
Weyl point. In this limit, there is a well-developed and large
Fermi surface, similar to that in normal metals. In this case,
by neglecting the logarithmic terms both in the relaxation time
and in the Knight shift, we deduce

1

T1T K2
≈ 4πkB

3h̄

(
h̄γn

gμB

)2

, (31)

which is three times smaller than what is expected in a normal
Fermi gas.

Finally, by tuning the system to the close vicinity of the
Weyl point with μ(T ) = 0 or by moving to high temperatures
with kBT 	 μ(0), it acquires a strong temperature depen-
dence as

1

T1T K2
≈ 4πkB

h̄

(
h̄γn

gμB

)2(gμBπ3/2kBT

h̄ev2
F

)2

, (32)

up to logarithmic corrections in temperature. At the Weyl
point, the Korringa relation vanishes for T → 0 and gets
significantly enhanced with the temperature. Even though
the electronic system is noninteracting, the Korringa relation
deviates from its ideal value due to the strong temperature
dependence of the spin-relaxation time and the very weak
temperature dependence of the Knight shift. The strong spin-
orbit coupling, which induces Eq. (1), entangles the spin
degrees of freedom with the lattice, and spin fluctuations,
which play an important role in determining T1T K2, causes
deviations from the ideal Fermi-gas value.

VI. CONCLUSIONS

The purpose of this paper is twofold: First, we focused
on the spin-relaxation time of Weyl fermions in TaP. We
took into account the temperature dependence of the chemical
potential, whose characteristic energy scale, separating the
high- and low-temperature behavior in μ(T ), is the zero-
temperature chemical potential, i.e., the Fermi energy of the
system, measured from the Weyl point. Unlike in normal
metals, this scale can be on the order of 10–100 K for weakly
doped Weyl systems, and the temperature dependence of the
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chemical potential is essential to understand quantitatively the
observed relaxation time.

We also investigated carefully the other characteristics
of nuclear magnetic resonance, the Knight shift, which de-
termines the position of the resonance for nuclear spins.
It exhibits rich behavior as a function of temperature and
doping and can even vanish and change sign as a function of
these parameters. Close to absolute zero, it is diamagnetic for
small doping, but can become either positive or negative with
increasing doping depending on the doping level (i.e., electron
or hole doping). At high temperatures, on the other hand, it is
always dominated by the diamagnetic term and decays very
slowly as − ln(W/kBT ) with increasing temperatures. These
unique features, in our opinion, can be used to identify signa-
tures of Weyl points in the band structure even at significantly
large doping level.
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APPENDIX: THE HYPERFINE INTERACTION
FOR THE BLOCH WAVE FUNCTION

The hyperfine interaction matrix elements should, in prin-
ciple, be calculated from Eqs. (1) and (4) using the full real-
space Bloch wave function. We show, that its most domi-
nant contribution is captured by using a simple plane-wave
wave function, yielding Eq. (5). The real-space Bloch wave
function, corresponding to the upper (u) and lower (l) spinor
component in Eq. (3), is written as [24]

�k, j (r) = exp(ik · r)uk, j (r), (A1)

where j = u, l , the uk, j (r) = uk, j (r + R) function is lattice
periodic with R being the lattice vector. Using the appropriate
atomic wave function for Weyl semimetals, it is written as
uk, j (r) = 1√

N

∑
R exp[−ik · (r − R)]φ j (r − R), which is in-

deed lattice periodic. Here, φ j (r) is the atomic wave function,
and N is the total number of lattice sites. Due to its real-
space periodicity, it can be Fourier expanded in terms of the
reciprocal lattice vectors G as

uk, j (r) =
∑

G

ck, j (G) exp(iG · r), (A2)

where ck, j (G)’s are the expansion coefficients. Putting this
back into Eq. (A1), we are in the position to discuss the matrix
element of any real-space operator, f j′, j (r) with j′, j = u or l ,
connecting all possible spinor components. In particular, we
are interested in the matrix elements of f (r) = σ · A with A
as the vector potential from Eq. (4).

By using the Bloch wave function from Eq. (A1),
the matrix elements of f j′, j (r) are evaluated

from ∫
dr �∗

k′, j′ (r) f j′, j (r)�k, j (r)

=
∫

dr u∗
k′, j′ f j′, j (r) exp[i(k − k′) · r]uk, j, (A3)

and upon using Eq. (A2), this simplifies to∑
G,G′

ck, j (G)c∗
k′, j′ (G

′) f̂ (q + 
G), (A4)

where q = k − k′, 
G = G − G′, and f̂ (q) = ∫
dr f (r)

exp(iq · r).
Applying this to the matrix elements of σ · A, which are

essential in determining the orbital part of the hyperfine
coupling, they read as

I ·
∑
G,G′

ck, j (G)c∗
k′, j′ (G

′)

[
(q + 
G) × σ j′, j

]
|q + 
G|2 , (A5)

where we have dropped unimportant constant prefactors to
focus on the ensuing mathematical structure. Equation (A5)
contains a denominator, which diverges for G = G′ and q →
0 but stays finite for 
G �= 0. Therefore, we keep only the
most dominant 
G = 0 terms from the expansion to focus on
the low-energy limit of Weyl semimetals in Eq. (5) and neglect
the other terms, which are finite in the q = 0 limit. Moreover,
the magnitude of the 
G �= 0 terms decreases as 1/|
G| with
increasing 
G from Eq. (A5), therefore, they give a negligible
contribution to the hyperfine coupling.

Since we are interested in the low-energy response of
Weyl fermions, we can also take the k, k′ � G limit in
the expansion coefficients. The low-energy theory, Eq. (1)
is valid in this long-wavelength limit. We can safely take
the k, k′ = 0 limit in the expansion coefficients because no
sharp structures are expected at a small wave vector from the
Fourier transform of the atomic wave function in Eq. (A2).
Therefore, only an overall k-independent normalization factor
as

∑
G c0, j (G)c∗

0, j′ (G) remains present for the 
G = 0 terms
from the Bloch wave function, which can be merged with
the numerical constants in Eq. (5). The resulting expression
is then identical to Eq. (5), which was obtained in Ref. [16]
without the full Bloch wave function.

Having identified the most divergent contribution of the
hyperfine coupling to Weyl fermions, one can ask whether
this is the appropriate one to describe the experimental prob-
lem one is dealing with. The hyperfine coupling, emanat-
ing from Eq. (4), is long range in real space, therefore it
is natural to consider its long-wavelength contribution in
momentum space, which is Eq. (5). Moreover, as we have
shown [16], this divergent hyperfine coupling gives the most
dominant contribution to the nuclear spin-relaxation time and
is essential to describe the experimentally observed 1/T1T ∼
max[(kBT )2, μ2]-type behavior [18]. Additional nondivergent
(in the q → 0) hyperfine terms only give rise to subleading
1/T1T ∼ max[(kBT )4, μ4] scaling as argued below Eq. (7) as
well. Thus, the additional 
G �= 0 terms do not explain the
experimental data in TaP, only the 
G = 0 terms provide the
observed behavior.
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