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We extend the scope of the Klein bottle entropy, originally introduced by Tu [Phys. Rev. Lett. 119, 261603
(2017)] in the rational conformal field theory (CFT), to the compactified boson CFT, which are relevant to the
studies of Luttinger liquids. We first review the Klein bottle entropy in rational CFT and discuss details of how
to extract the Klein bottle entropy from lattice models using the example of the transverse field Ising model. We
then go beyond the scope of rational CFT and study the Klein bottle entropy ln g in the compactified boson CFT,
which turns out to have a straightforward relation to the compactification radius R, ln g = ln R. This relation
indicates a convenient and efficient method to extract the Luttinger parameter from lattice model calculations.
Our numerical results on the Klein bottle entropy in the spin-1/2 XXZ chain show excellent agreement with the
CFT predictions, up to some small deviations near the isotropic point, which we attribute to the marginally
irrelevant terms. For the S = 1 XXZ chain that cannot be exactly solved, our numerical results provide an
accurate numerical determination of the Luttinger parameter in this model.
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I. INTRODUCTION

Conformal field theory [1] (CFT) has become the center
of much interest during the past decades. Due to its powerful
nature in two dimensions, it has been widely applied to
study the universal behavior at the critical points of two-
dimensional statistical systems and one-dimensional quantum
systems, where the correlation length of the system diverges.
Notable applications include the classification of universality
classes [1], the gapless edge modes of fractional quantum Hall
systems [2], the entanglement entropy [3–9], and the Kondo
problem [10].

Recently, the entropy correction on a Klein bottle is pro-
posed to be a universal characterization of the critical systems
described by CFT, which is called the Klein bottle entropy
[11]. The path integral on a Klein bottle is achieved by
swapping the left movers and the right movers via a reflection
operator defined on the CFT Hilbert space. The operation
swaps the world line and glues them back via taking the trace
in the path integral. This result is soon generalized to other
nonorientable manifolds, such as the Möbius strip [12] and the
real projective plane [13]. In conformal critical systems, the
Klein bottle entropy is a universal value which only depends
on the type of the CFT, and thus it can be applied to char-
acterize the underlying CFT description of the system. The
Klein bottle entropy can also be used to accurately pinpoint
quantum critical points, even those without local order param-
eters [12]. In lattice models, the Klein bottle entropy can be
efficiently calculated using prevailing numerical algorithms,
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such as quantum Monte Carlo [14] and thermal tensor network
methods [12,13]. In these lattice model calculations, however,
it can be a subtle issue to identify the correct lattice operation
which exactly exchange the left movers and right movers
in the CFT level. Therefore, one should carry out a careful
analysis in order to confirm that the results of the lattice
simulation match the CFT predictions.

The initial work Ref. [11] of the Klein bottle entropy
only concentrates on the rational CFT (RCFT), whose space
of states can be decomposed into a finite number of repre-
sentations of the Virasoro algebra or other extended chiral
algebra (such as the Kac-Moody algebra). It is interesting to
investigate how the Klein bottle entropy extends to a broader
class of CFTs.

The main focus of the present work is to study the Klein
bottle entropy in another notable category of CFT, the free
boson theory compactified on a circle, which includes both
rational and nonrational CFTs. The compactified boson CFTs
all have the identical central charge c = 1 and are character-
ized by the compactification radius R. In condensed matter
physics, the compactified boson CFT plays an important
role through its connection to the Luttinger liquid theory,
which is a remarkably successful and powerful framework
describing the low-energy physics of one-dimensional critical
systems [15,16]. The Luttinger liquids are relevant to various
experimental systems, such as carbon nanotubes [17–20],
semiconductor wires [21,22], and highly tunable ultracold
atomic gases [23–25].

The Luttinger liquid theory is fully characterized by two
parameters, the sound velocity v and the Luttinger parameter
K . The value of the Luttinger parameter K has a direct relation
with the compactification radius R of the free boson CFT
[26]. However, the value of the Luttinger parameter cannot
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be reliably determined in field theory calculations, and one
usually has to resort to the microscopic models to obtain its
value which is usually still a nontrival task [16,27–32]. It is
highly desired to have a direct determination of the Luttinger
parameter without any finite-size scaling or fitting procedure.

In this paper, by studying the Klein bottle entropy of
the compactified boson CFT, we discover a simple relation
between the Klein bottle entropy ln g and the compactifi-
cation radius R, ln g = ln R. This simple relation suggests
an efficient and accurate method to extract the Luttinger
parameter from lattice models in a straightforward manner. To
verify this relation numerically, we perform quantum Monte
Carlo (QMC) calculations in the S = 1/2 XXZ chain, whose
Luttinger parameter (and thus the compactification radius)
can be exactly obtained from the Bethe ansatz solution [16].
As an application, we present numerical results in the S = 1
XXZ chain, which cannot be exactly solved, and our results
serve as an accurate numerical determination of the Luttinger
parameter in this model.

This paper is organized as follows. In Sec. II, we review
the main results of Ref. [11] by introducing the definition of
the Klein bottle entropy and deriving its RCFT prediction.
We also show how to extract the Klein bottle entropy from
lattice models by discussing the transverse field Ising model
(TFIM) in detail. In Sec. III, we present the main result of this
work, the prediction of the Klein bottle entropy in the com-
pactified boson CFT, and perform the numerical calculations
in the XXZ model with spin S = 1/2 and S = 1. Section IV
summarizes the results. In Appendix A, we discuss the details
of the extended ensemble Monte Carlo method in the XXZ
chain, and in Appendix B, we present the exact solutions of
the Klein bottle entropy for the two solvable lattice models,
the TFIM and the XY chain.

II. THE KLEIN BOTTLE ENTROPY OF RATIONAL CFT

In this section, we mainly review the results of Ref. [11],
which concentrates on RCFT. We first review the definition of
the Klein bottle entropy and derive the prediction of its value
in RCFT [33]. In order to show how to extract the Klein bottle
entropy from lattice models, we discuss the example of TFIM
in detail. We show that, in lattice models, the effect of the
reflection operator defined in the context of the CFT may be
actualized by a bond-centered lattice reflection, but whether
this lattice reflection would lead to the Klein bottle entropy
predicted by the CFT is not obvious, and one usually needs to
perform a careful analysis to confirm this.

A. CFT prediction

Let us consider a (1+1)-dimensional quantum chain with
length L and periodic boundary condition. At inverse temper-
ature β = 1/T (the Boltzmann constant kB is set to be 1), its
partition function can be written as a path integral defined on
a torus with size L × β. When the system is critical and its
low-energy effective theory is a CFT, the partition function
becomes the torus partition function ZT of the CFT (T stands
for torus) [1]

ZT = TrH⊗H(qL0−c/24q̄L̄0−c/24), (1)

where H⊗H represents the tensor-product Hilbert space of
the holomorphic sector H and the antiholomorphic sector H
of the CFT. L0 and L̄0 are the zeroth-level holomorphic and
antiholomorphic Virasoro generators. c is the central charge.
q = e2π iτ with τ = ivβ/L, where v is the velocity of the CFT,
and q̄ is the complex conjugate of q.

In the CFT, the Klein bottle partition function ZK (K
denotes the Klein bottle) is defined by [34]

ZK = TrH⊗H(�qL0−c/24q̄L̄0−c/24), (2)

where an extra operator � is inserted, which effectively
interchanges the holomorphic and antiholomorphic sectors,
�|α, μ̄〉 = |μ, ᾱ〉, i.e., interchanges the left and right movers.
As a result, only the left-right symmetric states |α, ᾱ〉 have
contributions to the Klein bottle partition function. One can
then write ZK as

ZK = Trsym(q2(L0−c/24)), (3)

where the subscript “sym” indicates that the trace in (3) is
taken over the left-right symmetric states |α, ᾱ〉 inH⊗H.

For rational CFTs, the Hilbert space can be organized into
a finite number of conformal towers, each of which is formed
by a primary state and its descendant states. In such CFTs, the
torus partition function is given by

ZT =
∑
a,b

χa(q)Ma,bχ̄b(q̄). (4)

Here χa(q) = Tra(qL0−c/24) is called a character, where a
labels the primary state of the conformal tower, and the trace
is over the conformal tower of states. χ̄ is the antiholomorphic
correspondence of χ . Ma,b represents the element of the
M matrix, which are non-negative integers representing the
number of primary states (a, b̄) in the Hilbert space H⊗H.
On the other hand, according to Eq. (3), one can write ZK as

ZK =
∑

a

Ma,aχa(q2). (5)

In the limit L � vβ, the partition functions can be eval-
uated by using the modular transformation of the charac-
ters, i.e., χa(q) = ∑

b Sabχb(q′), where q = e−2π
vβ

L and q′ =
e−2π L

vβ , and Sab is the element of the modular S matrix
[1]. When L � vβ, q′ → 0, then in the character χa(q′) the
primary state a dominates, so χa(q′) ≈ (q′)ha−c/24, where ha

is the conformal weight of the primary field a. Furthermore,
among all primary fields, the identity field with confor-
mal weight hI = 0 dominates over other primary fields with
ha > 0.

Based on the discussion above, for the torus partition func-
tion, due to the modular invariance of the partition function
M = S†MS and uniqueness of the identity field MI,I = 1, one
obtains

ZT =
∑
a,b

χa(q′)Ma,bχ̄b(q′) ≈ |χI (q′)|2 = e
πcL
6vβ . (6)

Meanwhile, for the Klein bottle partition function, since
χa(q2) = ∑

b Sabχb(q′1/2) ≈ SaIχI (q′1/2), we have

ZK ≈
∑

a

Ma,aSaIχI (q′1/2) = ge
πcL
24vβ , (7)
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where we have introduced

g =
∑

a

Ma,aSaI =
∑

a

Ma,ada

D
. (8)

Here da is the quantum dimension of the primary field a and
D = √∑

a d2
a is the total quantum dimension, which satisfy

SaI = da/D.
In lattice models, besides the pure CFT predictions, one

has to take into account the nonuniversal free energy terms,

ln ZT ≈ − f0βL + πc

6vβ
L, (9)

ln ZK ≈ − f0βL + πc

24vβ
L + ln g, (10)

where f0 represents the bulk free energy density and ln g is the
Klein bottle entropy, which is universal and only depends on
the quantum dimensions of the primary fields [see Eq. (8)]. We
note that Eq. (9) is the seminal result obtained in Refs. [35,36],
and Eq. (10) is the central result of Ref. [11]. Actually, one can
cancel the nonuniversal terms in (9) and (10) and extract the
Klein bottle entropy ln g by calculating the following partition
function ratio:

ln g = ln
ZK

(
2L,

β

2

)
ZT(L, β )

. (11)

We emphasize that the Klein bottle entropy is universal, which
is unchanged even in the zero-temperature limit β → ∞,
as long as the thermodynamic limit L → ∞ is taken first.
In this regard, the Klein bottle entropy reflects the ground-
state properties of the system. Therefore, Eq. (11) allows one
to extract the ground-state properties directly from thermal
systems, without any fitting procedure.

B. Transverse field Ising model

As a concrete example, we consider the spin-1/2 critical
Ising chain,

HIsing = −
L∑

i=1

(
Sx

i Sx
i+1 + 1

2
Sz

i

)
, (12)

which is well known to be described by the Ising CFT. Here
we have imposed periodic boundary condition, i.e., Sν

L+1 =
Sν

1 (ν = x, y, z). For simplicity, we only consider the case of
even L.

The spin-1/2 critical Ising chain can be transformed into a
spinless fermion model via the Jordan-Wigner transformation,
Sz

i = f †
i fi − 1

2 and Sx
i = 1

2 ( f †
i + fi )eiπ

∑
l<i nl . The Hamilto-

nian (12) is then fermionized as

H = −1

4

L−1∑
i=1

( f †
i − fi )( f †

i+1 + fi+1) − 1

4

L∑
i=1

(2 f †
i fi − 1)

+ 1

4
Q( f †

L − fL )( f †
1 + f1), (13)

where the fermion parity Q = eiπ
∑L

l=1 nl = ±1 is a conserved
quantity in this model.

The Hilbert space splits into two sectors with definite
fermion parity in each sector. The two sectors, following
the CFT convention, are called Neveu-Schwarz and Ramond

sectors, respectively [1]. In the Neveu-Schwarz sector, the
fermion parity is even (Q = 1), with allowed lattice mo-
menta k = ±π

L ,± 3π
L , . . . ,± (L−1)π

L . In the Ramond sector, the
fermion parity is odd (Q = −1), with allowed lattice momenta
k = 0,± 2π

L ,± 4π
L , . . . ,± (L−2)π

L , π . In the two sectors, the
Hamiltonian (13) takes the same form

H± = −1

4

L∑
i=1

( f †
i − fi )( f †

i+1 + fi+1) − 1

4

L∑
i=1

(2 f †
i fi − 1),

(14)

but with different boundary conditions for fermions. In the
Neveu-Schwarz (Ramond) sector, the fermions have antiperi-
odic (periodic) boundary condition fL+1 = − f1 ( fL+1 = f1).

1. Bond-centered lattice reflection

For lattice models, one needs to find an operator defined
on the lattice, which effectively interchanges the left and right
movers when acting on the states of the system. As indicated
in Ref. [11], the following bond-centered lattice reflection
operator P serves as a natural candidate:

P|s1, s2, . . . , sL−1, sL〉 = |sL, sL−1, . . . , s2, s1〉, (15)

where si represents the spin state at site i.
Next, we need to work out the action of the reflection

operator P in the fermionic basis. From PSν
i P−1 = Sν

L+1−i,
one obtains P f †

i P−1 = f †
L−i+1Q with the help of the Jordan-

Wigner transformation, and in the momentum space

P f †
k P−1 = ei(L+1)k f †

−kQ. (16)

According to Eq. (16), up to a phase factor, the lattice reflec-
tion reflects a fermion mode of momentum k to a fermion
mode of momentum −k. As a result, one can infer that only a
few states which are composed of “fermion pairs” like f †

−k f †
k

(except k = 0, π , since the corresponding fermion mode is
reflected to itself, up to a phase factor) will contribute to the
Klein bottle partition function, while most other states in the
Hilbert space are orthogonal to their reflection partners. To
construct the states that are invariant under lattice reflection,
one can consider a state |ψ〉 that is invariant under the lattice
reflection, i.e., P|ψ〉 = |ψ〉, and create fermion modes on top
of this state. According to Eq. (16), one can easily see that

P f †
−k f †

k |ψ〉 = (e−i(L+1)k f †
k Q)(ei(L+1)k f †

−kQ)P|ψ〉
= f †

k Q f †
−kQ|ψ〉 = f †

−k f †
k |ψ〉. (17)

On the other hand, we note that the vacuum state |0〉 corre-
sponds to the spin fully polarized state and it is invariant under
the lattice reflection, i.e., P|0〉 = |0〉. What is more,

P f †
k=0|0〉 = f †

k=0|0〉, (18)

P f †
k=π

|0〉 = − f †
k=π

|0〉. (19)

Therefore, the states generated by creating fermion pairs like
f †
k f †

−k on top of |0〉 or f †
k=0|0〉 are invariant under lattice

reflection, and these states have total momentum ktot = 0.
Meanwhile, states generated by creating fermion pairs on top
of f †

k=π
|0〉 have total momentum ktot = π , and these states

are invariant under lattice reflection up to a sign factor −1.
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States in the other forms are all orthogonal to their reflection
partners.

In the lattice models described by RCFT, in order to verify
whether the lattice reflection will lead to the Klein bottle
entropy predicted by CFT, we need to identify the primary
states and investigate their behavior under the lattice reflec-
tion. Only the quantum dimensions of the primary states that
are invariant under the lattice reflection can be counted in the
summation of Eq. (8). We also note that sometimes there may
exist primary states that are invariant under lattice reflection
up to a sign factor −1. In such cases, when calculating the
Klein bottle entropy, one needs to add an additional minus
sign before the corresponding quantum dimension in Eq. (8)
[12].

2. Identification of the primary states of Ising CFT

As discussed above, in order to calculate the Klein bottle
entropy of the critical Ising chain using the RCFT prediction
Eq. (8), we need to identify the primary states in the fermionic
picture and analyze their behavior under the lattice reflection.
We also obtain the energy spectrum of the critical Ising chain
of size L = 14 by means of exact diagonalization calculations,
and then, as a separate check, we identify the primary states
obtained from the fermionic picture in this energy spectrum.

In the Neveu-Schwarz sector, Q = 1, k =
±π

L ,± 3π
L , . . . ,± (L−1)π

L . By a Fourier transformation, the
Hamiltonian becomes

H+ = 1

4

∑
k>0

( f †
k , f−k )

(−2cosk − 2 −2isink
2isink 2cosk + 2

)(
fk

f †
−k

)

+ 1

4

∑
k>0

(−2cosk − 2) + L

4
. (20)

By diagonalizing the matrix in Eq. (20), one can obtain the
dispersion relation εk = ±Ek , where we have introduced Ek =
cos(k/2). We then write H+ as

H+ =
∑
k>0

Ek (α†
k αk + βkβ

†
k ) −

∑
k>0

Ek

+ 1

4

∑
k>0

(−2cosk − 2) + L

4
, (21)

where αk = fk sin k
4 + f †

−k cos k
4 , βk = i fk cos k

4 − i f †
−k sin k

4 .
We introduce

γk =
{
αk for k > 0
β

†
−k for k < 0

(22)

and note the ground-state energy is

Egs = L

4
− 1

4

∑
k>0

(Ek + 2cosk + 2) = − 1

2 sin
(

π
2L

) (23)

so the Hamiltonian becomes

H+ =
∑
k 	=0

Ekγ
†
k γk + Egs. (24)

The low-energy states in the Neveu-Schwarz sector are gen-
erated by creating fermion modes γ

†
k ’s on top of the ground

state |gs〉.
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0
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FIG. 1. The low-energy spectrum of the critical Ising chain of
size L = 14. The primary states are marked by (I, Ī ), (σ, σ̄ ), and
(ψ, ψ̄ ) in the spectrum. The energy differences E ’s have been
rescaled according to the scaling dimensions of the primary fields.
The conformal towers of descendant states are marked by the same
color with the corresponding primary states, while the unidentified
states are marked as blue.

In order to determine whether the ground state is invariant
under lattice reflection, we have to derive the ground-state
wave function. To do this, we write the Hamiltonian in the
subspace of |0〉 and f †

k f †
−k|0〉,

Hk
+ =

(
0 − i

2 sink
i
2 sink − cos k − 1

)
. (25)

By diagonalizing this matrix, we obtain

|gs〉 =
∏
k>0

(uk + vk f †
k f †

−k )|0〉, (26)

where uk = i sin(k/4), vk = cos(k/4). Apparently, the
ground state has total momentum 0 and it is invariant under
the lattice reflection. The ground state corresponds to the
primary field (I, Ī ) in the Ising CFT, which has the conformal
weight (hI , h̄Ī ) = (0, 0). This state is labeled by (I, Ī ) in the
energy spectrum Fig. 1.

The lowest excitation state in the Neveu-Schwarz sector is

|ψ, ψ̄〉 = γ
†
k=(1−2/L)πγ

†
k=−(1−2/L)π |gs〉. (27)

Note that for k > 0

Pγ
†
k P−1 = Pα

†
k P−1 = −ieikβkQ = −ieikγ

†
−kQ. (28)

One can infer that |ψ, ψ̄〉 is invariant under the lattice reflec-
tion. This state has momentum 0. The energy of this state is

E(ψ,ψ̄ ) = Egs + 2 cos

(
L − 2

2L
π

)

= − 1

2 sin
(

π
2L

) + 2 sin

(
π

2L

)
. (29)

This state corresponds to the primary field (ψ, ψ̄ ) with con-
formal weight (hψ, h̄ψ̄ ) = (1/2, 1/2). We label it by (ψ, ψ̄ )
in the energy spectrum Fig. 1.

In the Ramond sector, Q = −1, k =
0,± 2π

L ,± 4π
L , . . . ,± (L−2)π

L , π . Similarly, the Hamiltonian in
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this sector can be written as

H− = 1

4

∑
0<k<π

( f †
k , f−k )

(−2cosk − 2 −2isink
2isink 2cosk + 2

)(
fk

f †
−k

)

− f †
k=0 fk=0 + 1

4

∑
0<k<π

(−2cosk − 2) + L

4
, (30)

where the fermionic mode f †
k=π

does not show up since its
single-particle energy is zero. The energy dispersion εk =
±Ek = ± cos(k/2). The energy of the lowest state in the
Ramond sector is

E(σ,σ̄ ) = −1

2
− 1

2

∑
0<k<π

(
cos k + 2 cos

k

2

)
= −1

2
cot

(
π

2L

)
.

(31)

Note that since εk=0 = −1 [see Eq. (30)], the k = 0 mode is
occupied in |σ, σ̄ 〉, and the k = π state is therefore unoccu-
pied due to the odd fermion parity constraint. Similarly as
above, one can obtain the wave function for this state

|σ, σ̄ 〉 = f †
k=0

∏
0<k<π

(uk + vk f †
k f †

−k )|0〉, (32)

which is invariant under the lattice reflection. This state has
total momentum ktot = 0 and corresponds to the primary field
(σ, σ̄ ) in the Ising CFT, with conformal weight (hσ , h̄σ̄ ) =
(1/16, 1/16). We label it by (σ, σ̄ ) in the energy spectrum
Fig. 1.

From the discussions above, we see that the three primary
states of Ising CFT all have total momentum ktot = 0, and
they are all invariant under the lattice reflection. As a result,
the corresponding three primary fields all contribute to the
Klein bottle partition function. The quantum dimensions of
the primary fields I , ψ , and σ are, respectively 1, 1, and

√
2,

and the total quantum dimension D = 2. From Eq. (8), one
can then obtain

gIsing = 2 + √
2

2
, (33)

where we have used Ma,a = 1 ∀a in the Ising CFT.
As a consistency check, one can compute the Klein bottle

entropy for the critical Ising chain analytically and compare
with the CFT prediction. As shown in Ref. [11], the CFT
prediction and the exact solution are consistent with each
other. The details of the exact solution are presented in
Appendix B 1.

III. THE KLEIN BOTTLE ENTROPY OF THE
COMPACTIFIED BOSON CFT

In this section, we extend the results on Klein bottle en-
tropy to compactified boson CFT, which contains both rational
and nonrational CFTs. As a central result of this work, we
present the Klein bottle entropy of the compactified boson
CFT, which provides direct access to the compactification
radius R. This result provides a practical numerical method
to extract the Luttinger parameter of lattice models, due to
the direct relation between the compactification radius and the
Luttinger parameter. As concrete examples, we first discuss
the spin-1/2 XY chain in detail, which can be analyzed from

both the rational U (1)4 CFT and the compactified boson CFT
perspectives. Next, we extend our discussion to the XXZ chain
with S = 1/2 and S = 1 and numerically calculate the Klein
bottle entropy in the critical phases of these models.

A. CFT prediction

In the free boson CFT, the descendant states in the Hilbert
space are obtained by acting j−k and j̄−k (k > 0) on the
highest weight states |α〉 as [34]

jn1
−1 jn2

−2 . . . j̄m1
−1 j̄m2

−2 . . . |α〉 with mk, nk � 0, (34)

where j−k ( j̄−k) is the Laurent mode of the chiral current
j(z) = i∂zφ(z, z̄) (antichiral current j̄(z̄) = i∂z̄φ(z, z̄)) with
φ(z, z̄) being the free boson field. For k > 0, j−k ( j̄−k) plays
the role of creation operator of the excitations in the holomor-
phic (antiholomorphic) sector, and jk ( j̄k) is the annihilation
operator of the excitations in the holomorphic (antiholomor-
phic) sector. Highest weight states |α〉 are those states which
are annihilated by all annihilation operators, i.e., jk|α〉 = 0,
j̄k|α〉 = 0 ∀k > 0.

When the free boson is compacitified on a circle, the
highest weight states can be represented as |n, m〉, where
n, m ∈ Z. These states are eigenstates of j0 and j̄0,

j0|n, m〉 =
(

n

R
+ Rm

2

)
|n, m〉, (35)

j̄0|n, m〉 =
(

n

R
− Rm

2

)
|n, m〉, (36)

where R is the compactification radius. Here n corresponds
to the center of mass momentum, which is quantized due to
the existence of the compactification radius R. Meanwhile,
m is the winding number of the bosonic field, φ(x + L, t ) ≡
φ(x, t ) + 2πmR.

To evaluate the Klein bottle partition function (2) for
compactified boson CFT, one needs to find all the states that
are invariant under the reflection operator �. The operator
� effectively interchanges the holomorphic and antiholomor-
phic sectors, or more concretely, in the present case,

�−1 jk� = j̄k, k ∈ Z. (37)

To determine the reflected state of the highest weight state
|n, m〉, one can act j0 on �|n, m〉 and get j0�|n, m〉 =
�(�−1 j0�)|n, m〉 = � j̄0|n, m〉 = ( n

R − Rm
2 )�|n, m〉. Thus,

we have

�|n, m〉 = |n,−m〉, (38)

which indicates that only highest weight states with winding
number m = 0 are left-right symmetric. As a result, the sym-
metric states contributing to the Klein bottle partition function
in Eq. (3) can generally be expressed as

|n; n1, n2, n3, . . .〉 = jn1
−1 jn2

−2 . . . j̄n1
−1 j̄n2

−2 . . . |n, 0〉, (39)

where nk � 0, n ∈ Z.
To evaluate Eq. (3), one can express the zeroth Virasoro

generator in terms of jk’s,

L0 = 1

2
j0 j0 +

∞∑
k=1

j−k jk, (40)
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and act L0 on |n; n1, n2, n3, . . .〉. According to the commu-
tation relation [ jk1 , jk2 ] = k1δk1,k2 , [ jk1 , j̄k2 ] = 0, we obtain
[ j−k jk, jnk

−k] = knk jnk
−k , and thus |n; n1, n2, n3, . . .〉 is an eigen-

state of L0,

L0|n; n1, n2, n3, . . .〉 =
(

1

2

n2

R2
+

∞∑
k=1

knk

)
|n; n1, n2, n3, . . .〉.

(41)

Therefore, according to Eq. (3), the Klein bottle partition
function can be expressed as

ZK =
∑

n,n1,n2,...∈Z
〈n; n1, n2, n3, . . . |q2(L0−c/24)|n; n1, n2, n3, . . .〉

= q−c/12
∑

n,n1,n2,...∈Z
q

n2

R2 +2
∑

k�1 knk

= q−c/12
∑
n∈Z

q
n2

R2

∞∏
k=1

1

1 − q2k

= θ3(2τ/R2)
1

η(2τ )
, (42)

where η(τ ) ≡ q1/24 ∏∞
k=1(1 − qk ) is the Dedekind-η function,

and θ3(τ ) ≡ ∑
n∈Z qn2/2 is Jacobi’s theta function. To fur-

ther evaluate ZK(τ ), one uses the modular transformation of
Jacobi’s theta and Dedekind-η functions,

√−iτθ3(τ ) = θ3(−1/τ ), (43)

√−iτη(τ ) = η(−1/τ ), (44)

and obtains

ZK = R
θ3(−R2/2τ )

η(−1/2τ )
. (45)

Under the condition L � vβ, we have

θ3

(−R2

2τ

)
= 1 + 2e−π LR2

2βv , (46)

η

(
− 1

2τ

)
= e− 1

24
πL
βv , (47)

and therefore

ZK(L, β ) = Re
1

24
πL
βv . (48)

When combining with ZT(L, β ) = e
1
6

πL
βv , we finally arrive at

g = ZK(2L, β/2)

ZT(L, β )
= R, (49)

and the Klein bottle entropy is thus

ln g = ln R. (50)

Equation (50) is the central result of this work. When the
square of the radius R2 is not a rational number, this result
goes beyond the scope of Ref. [11], which focuses on rational
CFTs. Moreover, since the Luttinger liquid corresponds to
a compactified boson CFT, and the Luttinger parameter has
a direct relationship with the compactification radius, the
simple relation Eq. (50) allows us to determine the Luttinger

parameter via computing the Klein bottle entropy of lattice
models.

B. XY chain

As a concrete example to demonstrate the general result
Eq. (50), we first consider the case of the spin-1/2 XY model

H = −
L∑

i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
. (51)

This model is known to be described by a U (1)4 CFT, which
is a RCFT and, at the same time, a compactified boson CFT.
In the meantime, the model also allows exact solution via
fermionization. Thus, it provides a nice starting point for
checking consistency. As in the case of the critical Ising chain,
we use the lattice reflection operation to interchange the left
and right movers of the CFT.

By using the Jordan-Wigner transformation, the model (51)
is transformed into a spinless fermion model

H = −1

2

L−1∑
i=1

( f †
i fi+1 + H.c.) + 1

2
Q( f †

L f1 + f †
1 fL ), (52)

where Q = eiπ
∑L

l=1 nl is the fermion parity. Q is a conserved
quantity and the Hilbert space splits into the Neveu-Schwarz
(Q = 1 with even number of fermions) and Ramond (Q = −1
with odd number of fermions) sectors. In both sectors, the
Hamiltonians take the same form

H± = −1

2

L∑
i=1

( f †
i fi+1 + f †

i+1 fi ), (53)

with antiperiodic (periodic) boundary condition fL+1 = − f1

( fL+1 = f1) for the Neveu-Schwarz (Ramond) sector. After a
Fourier transformation, the Hamiltonian is expressed as

H± = −
∑

k

cos k f †
k fk (54)

with the allowed momenta k = ±π
L ,± 3π

L , . . . ,± (L−1)π
L in

the Neveu-Schwarz sector and k = 0,± 2π
L , . . . ,± (L−2)π

L , π

in the Ramond sector (we choose L = 4m, m ∈ N for sim-
plicity). The single-particle energy appearing in (54) will be
denoted by Ek = − cos k below.

1. Identification of the primary states

Since the XY model is described by the rational U (1)4

CFT, we start from the perspective of RCFT by identifying
all the primary states of the XY chain in the fermion picture
and analyzing their behavior under the lattice reflection, as
in the case of TFIM. We also present the energy spectrum
of the XY chain of size L = 20 obtained by means of exact
diagonalization calculations and then identify the primary
states obtained from the fermionic picture in the spectrum as
a separate check.

The ground state of the system is in the Neveu-Schwarz
sector

|gs〉 =
∏

|k|<π/2

f †
k |0〉, (55)
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FIG. 2. The energy spectrum of the XY model with L = 20.
The four primary states are marked by (I, Ī ), (s+, s̄+), (s−, s̄−), and
(ψ, ψ̄ ) in the spectrum. The energy differences E ’s have been
rescaled according to the scaling dimensions of the primary states.
The states in the same conformal tower are marked by the same color
with the corresponding primary state, while the unidentified states
are marked as blue.

and the ground-state energy is

E(I,Ī ) = −
∑

|k|<π/2

cos k = − 1

sin π
L

. (56)

The ground state has total momentum ktot = 0, and appar-
ently, it is invariant under the lattice reflection. The ground
state corresponds to the primary field (I, Ī ) in the U (1)4 CFT.
This state is labeled by (I, Ī ) in the energy spectrum (see
Fig. 2).

The lowest excited state in the Neveu-Schwarz sector is
obtained by creating a pair of fermions just above the Fermi
surface

|ψ, ψ̄〉 = f †
k= π

2 + π
L

f †
k=− π

2 − π
L
|gs〉 (57)

with energy

E(ψ,ψ̄ ) = E(I,Ī ) + 2 sin
π

L
. (58)

|ψ, ψ̄〉 has total momentum ktot = 0, and it is also invariant
under the lattice reflection. This state corresponds to the
primary field (ψ, ψ̄ ) in the U (1)4 CFT, which has conformal
weight (hψ, h̄ψ̄ ) = (1/2, 1/2). We label it by (ψ, ψ̄ ) in Fig. 2.
There is also one degenerate state fk= π

2 + π
L

fk=− π
2 − π

L
|gs〉 which

is obtained by annihilating two fermions near the Fermi
surface.

In the Ramond sector, the lowest energy states are

|s+, s̄+〉 =
∏

|k|� π
2

f †
k |0〉, (59)

|s−, s̄−〉 =
∏

|k|< π
2

f †
k |0〉. (60)

These two states are degenerate since Ek=± π
2

= 0 (note that
k = ±π

2 are allowed for L = 4m, m ∈ N). The energy of these
two states is

E(s+,s̄+ ) = E(s−,s̄− ) = − cot
π

L
. (61)

Both |s+, s̄+〉 and |s−, s̄−〉 have total momentum 0 and they
are invariant under the lattice reflection. They correspond
to the U (1)4 CFT primary states (s+, s̄+) and (s−, s̄−) with
conformal weight (hs+ , h̄s̄+ ) = (hs− , h̄s̄− ) = (1/8, 1/8). These
two states are labeled by (s+, s̄+) and (s−, s̄−) in Fig. 2.

From Fig. 2, one may notice that there are also low-
energy states with total momentum π . According to the
discussions in Sec. II B 1, one may suspect whether these
states will contribute to the Klein bottle entropy with a
−1 factor. To clarify this, we also identify them in the
fermionic picture. In the Neveu-Schwarz sector, the lowest-
energy states with momentum π are f †

k= π
2 + π

L
fk=− π

2 + π
L
|gs〉

and fk= π
2 − π

L
f †
k=− π

2 − π
L
|gs〉 with energy E(I,Ī ) + 2 sin π

L . In the
Ramond sector, the lowest-energy states with momentum π

are f †
k= π

2 + 2π
L

fk=− π
2 + 2π

L
|s±, s̄±〉 and f †

k=− π
2 − 2π

L

fk= π
2 − 2π

L
|s±, s̄±〉

with energy E(s±,s̄± ) + 2 sin 2π
L . These states are created via the

Umklapp process, and one can easily check that these states
have no contribution to the Klein bottle partition function,
since they are not left-right symmetric.

From the discussion above, we find that the four primary
states of the XY model are all invariant under the lattice
reflection operation. These four primary fields are Abelian
with quantum dimension da = 1 (total quantum dimension
D = 2). According to Eq. (8), one has

gXY = 2, (62)

since Ma,a = 1 ∀a in the U (1)4 CFT. This result is in agree-
ment with the exact solution of XY model, as shown in
Ref. [11]. We include the details of the exact solution in
Appendix B 2.

2. Identification of the compactification radius

From the perspective of the compactified boson CFT, it
is crucial to determine the compactification radius to make
the prediction on the value of the Klein bottle entropy. It
is well known that there exists a duality in this category of
CFTs, which results in the invariance of the torus partition
function and the spectrum under the interchange R ↔ 2/R.
This duality is called the T duality [1]. As indicated by
Eq. (50), the T duality is broken on the Klein bottle. When
Eq. (50) is applied to lattice models, it cannot be determined
in the context of the continuous field theory which radius
should be chosen. Therefore, in lattice models, we need to
construct the boson field starting from the microscopic model
and analyze the effect of the lattice reflection in order to
determine the compactification radius that should be used.

The low-energy excitations of the XY model are described
by a noninteracting Luttinger liquid model, based on which
the compactified boson theory is introduced by the bosoniza-
tion technique. Following Ref. [37], the Hamiltonian of the
Luttinger liquid reads

H = vF

2π

∫ L/2

−L/2
dx : [ψ†

L(x)i∂xψL(x) + ψ
†
R(x)(−i∂x )ψR(x)] :,

(63)

where vF is the Fermi velocity. The normal ordering is defined
by : A := A − 〈A〉gs, where 〈A〉gs represents the expectation
value of the operator A in the ground state |gs〉. The fermion
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fields ψL(x) and ψR(x) are defined by �(x) = e−ikF xψL(x) +
eikF xψR(x), where the fermion field �(x) is introduced from
the spinless fermion model in Eq. (52),

�(x) =
(

2π

L

)1/2 ∞∑
p=−∞

eipx fp (64)

=
(

2π

L

)1/2 ∞∑
k=−∞

(e−i(kF +k)x fk,L + ei(kF +k)x fk,R), (65)

where fk,L/R ≡ f∓(k+kF ). In the Luttinger liquid, the energy
spectrum is linearized, εk,L/R = vF k, and the range of k
has been extended to (−∞,+∞), in order to perform the
bosonization approach. The Hamiltonian is then expressed as

H =
∞∑

k=−∞

∑
η=L,R

vF k : f †
kη

fkη : . (66)

In terms of the fermion modes fk,L/R, the fermion
field ψL/R(x) can be written as ψL/R(x) = (2π/L)1/2∑+∞

k=−∞ e∓ikx fk,L/R, and the fermion density
ρL/R ≡: ψ†

L/RψL/R: is expressed as

ρL/R(x) = 2π

L

∑
q

e∓iqx
∑

k

: f †
k−q,L/R fk,L/R :=

∑
q

e∓iqxρq,L/R,

(67)

where we have introduced ρq,L/R = 2π
L

∑
k : f †

k−q,L/R fk,L/R :.

For q = 0, ρq,L/R = 2π
L nL/R corresponds to the number of

fermions in the left/right-moving sector, while for q < 0 (q >

0), ρq,L/R creates (annihilate) particle-hole excitations in the
corresponding sector.

Under the lattice reflection, according to Eq. (16), one can
easily check that P f †

k,L/RP = e∓i(L+1)(k+kF ) f †
k,R/LQ, then

Pρq,L/RP = 2π

L

∑
k

[P f †
k−q,L/R fk,L/RP − 〈 f †

k−q,L/R fk,L/R〉gs]

= e±iq(L+1) 2π

L

∑
k

: f †
k−q,R/L fk,R/L :

= e±iqρq,R/L, (68)

where we have used the fact that the ground state is left-right
symmetric and the fermion density ρL/R(x) should be periodic
in x. The modes of the fermion density in the left-moving
and right-moving sectors are indeed interchanged under the
lattice reflection. For q = 0, the phase factor e±iq = 1, which
implies that the numbers of fermions in the left and right
sectors are interchanged under the lattice reflection. For q 	=
0, there would be a nonvanishing phase factor. However,
the phase factor would cancel for left-right-symmetric states,
while those states that are not symmetric have no contribution
to the Klein bottle partition function.

The bosonization method is based on the fact
that the particle-hole excitations in one dimension
have bosonic nature, due to the commutation relation
[ρqη, ρ−q′η] = 2π

L qδqq′ (q, q′ > 0). In fact, one can construct
left/right-moving boson field in terms of the particle-hole

excitations,

φL/R(x) =
∑
q 	=0

i

q
e−aq/2e∓iqxρq,L/R ± ρ0,L/Rx, (69)

where a > 0 is an infinitesimal regularization parameter to
regularize ultraviolet divergent momentum summations (not
to be confused with the primary state a). The fermion density
satisfies

±∂xφL/R(x) = ρL/R(x) (70)

and the bosonization identity is

ψL/R(x) = a−1/2e±i π
L xFL/Re−iφL/R (x), (71)

where FL/R is the Klein factor, which decreases the fermion
number in left-moving (right-moving) branch by one.

To obtain the time dependence of the boson field φL/R,
one can first write the linearized Hamiltonian in terms of the
modes of the particle-hole excitations [37],

H = vF L

2π

⎛
⎝ ∑

q>0,η=L,R

ρ−qηρqη + 1

2
ρ2

0η

⎞
⎠. (72)

Using the imaginary-time Heisenberg picture A(τ ) =
eHτ Ae−Hτ , it would be straightforward to obtain that

ρqη(τ ) = ρqηe−vF qτ , (73)

Fη(τ ) = Fηe−vF ρ0η
τ e

π
L vF τ . (74)

Formally, one can absorb the time dependence e−vF ρ0η
τ of the

Klein factor into the boson field. The time-dependent boson
field then becomes

φL/R(x, τ ) =
∑
q 	=0

i

q
e−aq/2e−q(±ix+vF τ )ρq,L/R

− iρ0,L/R(±ix + vF τ ). (75)

One can see that φL/R(x, τ ) only depends on ξ ≡ ix + vF τ

and ξ̄ ≡ −ix + vF τ , respectively. The bosonization identity
becomes

ψL/R(x, τ ) = a−1/2e
π
L (vF τ±ix)FL/Re−iφL/R (x,τ ), (76)

where the Klein factor FL/R has no time dependence.
Next, from the left/right-moving boson field one can con-

struct a pair of dual fields

φ(x, τ ) = φL(x, τ ) + φR(x, τ ), (77)

θ (x, τ ) = φL(x, τ ) − φR(x, τ ). (78)

By writing down φ(x, τ ) and θ (x, τ ) explicitly, one can see
that the dual boson fields are compactified bosons [1],

φ(x, τ ) = 2π

L
(nL − nR)x − 2π

L
(nL + nR)(ivF τ )

+ i

q
e−aq/2

∑
q 	=0

(e−q(ix+vF τ )ρqL + e−q(−ix+vF τ )ρqR),

(79)
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θ (x, τ ) = 2π

L
(nL + nR)x − 2π

L
(nL − nR)(ivF τ )

+ i

q
e−aq/2

∑
q 	=0

(e−q(ix+vF τ )ρqL − e−q(−ix+vF τ )ρqR),

(80)

whose “zero modes” φ0 and θ0 have already been absorbed
into the Klein factor [37].

In the Neveu-Schwarz sector, nL + nR ∈ 2Z, so nL − nR ∈
2Z. In the Ramond sector, nL + nR ∈ 2Z + 1. However, one
needs to note that there exists a fermion mode with zero
momentum in the Ramond sector [created by f †

k=0 in Eq. (54)],
which is always occupied in the low-energy description and
belongs to neither the left-moving nor right-moving sectors.
Formally we can “split” this state, and denote nL and nR as
half-integers, i.e., nL/R = n′

L/R + 1/2 with n′
L/R ∈ Z. There-

fore n′
L + n′

R ∈ 2Z and nL − nR = n′
L − n′

R ∈ 2Z. As a result,
in both sectors nL − nR ∈ 2Z and nL + nR ∈ Z, so φ has the
radius R = 2 [note that φ(x + L, t ) = φ(x, t ) + 2π (nL − nR)]
and θ has the radius R = 1 [note that θ (x + L, t ) = θ (x, t ) +
2π (nL + nR)]. The low-energy physics of the XY model is
thus described by two seemingly distinct boson fields with
different compactification radius, and the two radii are related
by the T duality [1].

On the other hand, in the compactified boson CFT, the
Laurent modes jq (or j̄q, the antiholomorphic counterpart)
of the U (1) current j = i∂zφ ( j̄ = i∂z̄φ) of the R = 2 bo-
son corresponds to the modes of the fermion density in the
left(right)-moving sector, where z ≡ e2πξ/L = e2π (ix+vF τ )/L

(z̄ ≡ e2πξ̄/L = e2π (−ix+vF τ )/L). Comparing Eqs. (69), (70),
and (75) and noting ∂z = 1

z
L

2π
∂ξ and ∂z̄ = 1

z̄
L

2π
∂ξ̄ , one can see

that

jq = L

2π
ρq,L, j̄q = L

2π
ρq,R. (81)

Meanwhile, for the field θ with radius R = 1,

j′q = L

2π
ρq,L, j̄′q = − L

2π
ρq,R, (82)

where j′q = i∂zθ and j̄′ = i∂z̄θ . According to Eq. (68) and
the discussions below, for the field φ with R = 2, the lattice
reflection P indeed interchanges the holomorphic and the
antiholomorphic sectors, up to a factor that will cancel in the
symmetric states. In contrast, for its dual field θ with R = 1,
the lattice reflection will introduce an additional minus sign.
Therefore, one can see that the bond-centered lattice reflection
in the XXZ model matches the reflection operation in the CFT
Hilbert space of the field φ with R = 2, instead of its dual field
θ . Using Eq. (50), we get

ln g = ln R = ln 2. (83)

This is consistent with the RCFT result in Eq. (62).
What is more, from the above discussion, one can gain a

physical interpretation of the states in Eq. (39) that contribute
the Klein bottle entropy. From Eq. (81), the highest weight
states |n, m〉 are annihilated by any jq (q > 0) that annihilates
the particle-hole excitations, so |n, m〉 represents the Fermi-
sea states with n, m ∈ Z representing the number of fermions,
correspondingly n

2 + m and n
2 − m in the left-moving and

right-moving sector. Therefore, jn1
−1 jn2

−2 . . . j̄n1
−1 j̄n2

−2 . . . |n, 0〉
represents the state with the same number of fermions and
same particle-hole excitations in the two sectors, which is
apparently left-right symmetric and thus makes a contribution
to the Klein bottle entropy.

C. XXZ model

Next, we consider the spin-1/2 XXZ model by adding a
nearest-neighboring Ising interaction to the XY chain,

H = −
L∑

i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + 

L∑
i=1

Sz
i Sz

i+1, (84)

where  is an anisotropy coefficient. For −1 <  � 1, the
system is in the Luttinger liquid phase, and its low-energy
physics can be described by a compactified boson CFT [16].
For general value of  within this phase, CFT prediction on
the Klein bottle entropy is the first result which goes beyond
the RCFT results of Ref. [11].

As in the case of XY model, the XXZ model can be trans-
formed into a spinless fermion model by Jordan-Wigner trans-
formation, with an additional interaction term Hint compared
to the XY model, i.e., H = H0 + Hint with H0 representing the
noninteracting fermion model obtained from the XY model,
and Hint reads

Hint = 

L∑
i=1

(
f †
i fi − 1

2

)(
f †
i+1 fi+1 − 1

2

)
. (85)

Since the fermion parity Q is still conserved, we can again
split the Hilbert space into the Neveu-Schwarz and Ramond
sectors with different fermion parities Q = ±1 and boundary
conditions fL+1 = ∓ f1. In the frame of bosonization one can
obtain the underlying compactified boson CFT of this system,
which leads to the CFT prediction of the Klein bottle entropy
in this model.

1. CFT prediction

To obtain the compactified boson description of the XXZ
model, we pass to the continuum limit. The interaction term
Hint can be written as [38]

Hint = Hd−d + HUmklapp, (86)

where we have introduced the local fermion-fermion interac-
tion term Hd−d and the Umklapp term HUmklapp that scatters
the fermions between different sectors

Hd−d = 

∫ L/2

−L/2

dx

2π
:
(
ρ2

L + ρ2
R + 4ρLρR

)
:, (87)

HUmklapp = −2

∫ L/2

−L/2

dx

2π
: [(ψ†

LψR)2 + H.c.] : . (88)

In the Luttinger liquid phase, by renormalization group analy-
sis, the Umklapp process HUmklapp is irrelevant for −1 <  <

1 and marginally irrelevant at the Heisenberg point  = 1,
while for  > 1 HUmklapp becomes relevant and introduces a
mass term which causes the system to be gapped [16].

For −1 <  � 1, the interaction generally renormal-
izes the parameters and the interaction term Hd−d can be

115105-9



TANG, XIE, WANG, AND TU PHYSICAL REVIEW B 99, 115105 (2019)

written as

Hd−d =
∫ L/2

−L/2

dx

2π
:

[
1

2
g4

(
ρ2

L + ρ2
R

) + g2ρLρR

]
:, (89)

where g2 and g4 are undetermined coefficients which depend
on the specific choice of the parameter . Correspondingly,
the kinetic term H0 can be represented in terms of the fermion
densities,

H0 = vF

2π

∫ L/2

−L/2
dx :

1

2

(
ρ2

L + ρ2
R

)
:, (90)

and the total Hamiltonian H = H0 + Hd−d can be written in a
diagonalized form as

H = v

4

∫ L/2

−L/2

dx

2π
:

[
1

K
(ρL + ρR)2 + K (ρL − ρR)2

]
:, (91)

where v =
√

(vF + g4)2 − g2
2 is the velocity and K =√

vF +g4−g2

vF +g4+g2
is called the Luttinger parameter, which is usually

used as a parametrization of the interaction strength in the
system. Generally, the values of v and K cannot be reliably
obtained from field theory calculations and one has to resort
to the microscopic models to determine their values. In the
case of the spin-1/2 XXZ model, v and K are determined by
the Bethe ansatz solution [16]

K = π

2(π − cos−1 )
, (92)

v = π

2

√
1 − 2

cos−1 
. (93)

According to (70), (77), and (78), the Hamiltonian can be
expressed in terms of the boson fields,

H = v

4

∫ L/2

−L/2

dx

2π
:

[
1

K
(∂xθ )2 + K (∂xφ)2

]
: . (94)

Note that in the noninteracting case (XY limit), g2 = g4 =
0, and v = K = 1. As a result, the interaction effectively
rescales the compactified bosons as � = θ√

K
,� = √

Kφ, and
the Hamiltonian becomes

H = v

4

∫ L/2

−L/2

dx

2π
: [(∂x�)2 + (∂x�)2] :, (95)

where � has radius 1/
√

K and � has radius 2
√

K . According
to the discussion in the case of the XY model in Sec. III B 2,
one concludes that the Klein bottle entropy should be calcu-
lated based on the boson field �, which gives

g = 2
√

K =
√

2π

π − cos−1 
. (96)

2. Numerical results

Next we verify Eq. (96) numerically. We employ a quan-
tum Monte Carlo simulation in the XXZ chain, by calculating
the partition function ratio g = ZK(2L, β/2)/ZT(L, β ) using
an improved version of the extended ensemble Monte Carlo
method [14]. We include the details of the algorithm in
Appendix A.

As shown in Fig. 3, one can see that the numerical results
and the CFT predictions are in good agreement with each

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
1.0

1.5

2.0

2.5
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4.0

4.5
CFT

QMC

FIG. 3. Comparison of the QMC result of the Klein bottle en-
tropy with the CFT prediction. The error bars are smaller than the
data points. In the QMC calculation, the parameters are chosen as
L = 440, β = 44, where g is calculated by ZK(2L, β/2)/ZT(L, β ),
according to Eq. (11).

other, except in the vicinity of  = 1. The slight deviation
may originate from the marginally irrelevant Umklapp process
at  = 1. We have observed this kind of slight deviation in
the q = 4 Potts model, which also has a marginally irrelevant
term [14].

The remarkable agreement of the CFT prediction and the
QMC numerical results indicates that the Klein bottle entropy
can be a reliable tool to extract the Luttinger parameter K
from the lattice models. Comparing to the existing methods
[16,27–32], the advantage of the present approach is that one
can directly obtain the Luttinger parameter by calculating
the Klein bottle entropy in a finite temperature calculation,
without any fitting procedure.

D. Spin-1 XXZ model

Next we employ our QMC method to the more challenging
spin-1 XXZ model, where the Hamiltonian still takes the
form of Eq. (84), but the operators Sν (ν = x, y, z) are now
spin-1 operators. We calculate the Klein bottle entropy in
this model for −1 <  � 1. The spin-1 XXZ model is in the
Luttinger liquid phase only in the range −1 <  � 0. While
for 0 <  � 1, the system is in the massive Haldane phase
with a finite energy gap [39–41].

In contrast to the case of S = 1/2, the spin-1 XXZ model
cannot be exactly solved. According to the relation g = R =
2
√

K , our numerical results of the Klein bottle entropy can
be used to conversely determine the Luttinger parameter K .
We can compare our numerical result with the conjecture
proposed in Ref. [40] for the Luttinger parameter in the spin-S
XXZ model, KS = 2SKS=1/2, which is equivalent to

gS =
√

2SgS=1/2. (97)

For S = 1, we have gS=1 = √
2gS=1/2. As shown in Fig. 4, the

conjectured formula is in good agreement with the numerical
results up to some small deviations.

The conjecture (97) was proposed based on the finite-
size-scaling results of the exact diagonalization data [40],
and currently there is no rigorous proof for this conjecture.
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FIG. 4. The QMC result for the Klein bottle entropy for −1 <

 � 1. The error bars are smaller than the data points. For 1 <  �
0, the system is in the Luttinger liquid phase, and the Klein bottle
degeneracy g gives the compactification radius R. The solid line is
the conjectured Luttinger liquid parameter for S = 1 in Ref. [40].
For  > 0, the system is in the gapped Haldane phase, and the Klein
bottle entropy varies with the different temperature β and system size
L, in contrast to the case of critical phase. The deviation of the Klein
bottle entropy of different parameters starts at the quantum critical
point  = 0, as shown in the inset, where g = g(β, L) − g(β =
6, L = 480) is plotted.

However, based on the symmetry analysis, one can show that
the XY ( = 0) point of this conjecture is exact. On the one
hand, in the context of the continuous field theory, it is known
that there is an inherent SU(2) symmetry in the Berezinskii-
Kosterlitz-Thouless (BKT) transition point [42–46]. At the
BKT transition point, the Luttinger parameter is restricted,
and possible choices include K = 1/2 (corresponding to the
SU(2)1 Wess-Zumino-Witten model) and K = 2 [46]. On the
other hand, a hidden SU(2) symmetry was found in the spin-
1 XY model [47]. Together with the exact diagonalization
results given by Ref. [40], which indicate K = 2 in the spin-1
XY model, one can infer that the BKT transition between the
Luttinger-liquid phase and the Haldane phase locates exactly
at the XY point ( = 0), and this point precisely corresponds
to g = R = 2

√
2. As one can see in Fig. 4, there exists

some small deviation between our numerical result and the
exact result at the XY point, which is again attributed to the
marginally irrelevant term, since the BKT transition is driven
by the marginal operator.

We also calculate the Klein bottle entropy out of the critical
region into the gapped Haldane phase. With  passing the
BKT transition point  = 0, the originally degenerate values
of the Klein bottle entropy at different β and L start to deviate
with each other, as shown in Fig. 4. The deviation starts
exactly at the BKT transition point between the two phases
[12]. We note that it was a difficult task to determine the
BKT transition point from numerical calculations, due to the
exponentially small energy gap towards the BKT transition
point in the gapped phase [48,49]. In the Haldane phase, the
value of the Klein bottle entropy will eventually converge to
the ground-state degeneracy of the system on the Klein bottle
when β is large enough.

E. The Affleck-Ludwig entropy

As a comparison, we also attempted to extract the com-
pactification radius by calculating the Affleck-Ludwig (AL)
entropy in the spin-1 XXZ model [50]. The AL entropy
emerges from the open boundary of a long cylinder, which
is universal and only depends on the CFT and conformal
boundary conditions. In lattice models, when L � vβ, one
can obtain the AL entropy by calculating the ratio between
the partition functions of the systems on a long cylinder and a
torus [14],

ln

(
ZC

ZT

)
≈ SAL − fbβ, (98)

where fb is the surface free energy density, which is a nonuni-
versal quantity. By a linear extrapolation, one can get the AL
entropy as the intercept.

In the compactified boson CFT, the AL entropy is also
dependent on the compactification radius R. For simplicity,
we only consider the case that the boundary conditions on the
two boundaries are the same. For the Dirichlet and Neumann
boundary condition, we have [51]

SD
AL = ln(R/2), (99)

SN
AL = − ln R. (100)

In the XXZ model, the fixed (free) boundary condition of
spin chain corresponds to the Neumann (Dirichlet) bound-
ary condition for the free boson [52,53]. For simplicity, we
only performed the QMC calculations for the free boundary
condition. However, in practice, due to the existence of the
nonuniversal term − fbβ, the partition function ratio decays
exponentially with β, and the error of the calculation becomes
intolerable when β reaches some certain value. On the other
hand, the calculation result from the finite-size lattice will
converge to the universal value only when the β and L is large
enough [14]. In our calculations of the spin-1 XXZ model,
unfortunately, the range of β where we are able to perform the
calculation cannot give the accurate value of AL entropy. The
difficulty here highlights the advantage of using Klein bottle
entropy, which is free of nonuniversal surface energies and
does not need any extrapolation procedure.

IV. SUMMARY

To summarize, in this paper, we first review the results and
details of the initial work Ref. [11] which focuses on the Klein
bottle entropy in RCFT and discuss in detail how to extract
the Klein bottle entropy from lattice model calculations via
the bond-centered lattice reflection. We then go beyond the
scope of RCFT and study the Klein bottle entropy in the
compactified boson CFT, which contains both rational and
nonrational CFTs. We obtain a simple relation between the
Klein bottle entropy and the compactification radius, ln g =
ln R, which is the central result of our work. Due to the
direct connection between the compactification radius and the
Luttinger parameter, our result provides a straightforward and
efficient method to extract the Luttinger parameter from lattice
models.

In lattice models, we employ quantum Monte Carlo
calculations in the XXZ chain with S = 1/2 and S = 1,
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respectively. For the exactly solvable spin-1/2 XXZ chain,
our numerical results show excellent agreement with the CFT
prediction, except the slight deviations near the isotropic point
 = 1, which we attribute to the marginally irrelevant fields.
For the S = 1 XXZ chain that cannot be exactly solved, our
numerical results serve as a new numerical determination of
the Luttinger parameter in this model.
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APPENDIX A: IMPROVED EXTENDED ENSEMBLE
MONTE CARLO METHOD FOR PARTITION

FUNCTION RATIOS

1. General description

To compute the partition function ratios using Monte Carlo
methods, one can use the extended ensemble Monte Carlo
method. The basic idea is that, in order to obtain the partition
function ratio ZA/ZB where Zη corresponds to the system
put on the manifold η = A,B, we can perform an extended-
ensemble simulation whose partition function is written as

Z = ZA + ZB =
∑

η∈{A,B}

∑
C

W η(C), (A1)

where W η(C) represents the Boltzmann weight of the con-
figuration C in the ensemble η. During the simulation, we
treat the configuration C and the label η on equal footing,
i.e., the Monte Carlo updates also include transitions between
ensembles that update the label η [14].

A typical issue of such methods is that the acceptance
rate of the transition between different ensembles usually
decays exponentially with the system size. Usually, one can
overcome this issue by introducing some intermediate systems
and compute the partition function as

ZA

ZB
= ZA

Z (1)

Z (1)

Z (2)
. . .

Z (m)

ZB
, (A2)

where Z (n), n = 1, 2, . . . , m is the partition function of the
intermediate systems.

Here we present another possible improvement for this
method in combination with loop/cluster update employed in
our simulation [56,57]. Similar tricks have been applied to the
Swendsen-Wang algorithm in classical systems [58,59] and
to stochastic series expansion (SSE) in quantum spin systems
[60], which, together with the loop/cluster algorithm, all share
the same framework of “two-step selection” [57].

Generally, in the loop/cluster algorithm of path-integral
QMC, the update procedure consists of two steps [57]. In
the first step, we stochastically generate a graph G from
the current configuration C with probability P(G|C), and in
the second step, we generate the new configuration C′ from

the graph G with probability P(C′|G). Therefore, during the
simulation, there exists another graph space � other than the
configuration space �. By introducing a new weight W (C, G)
defined by W (C) = ∑

G∈� W (C, G) in the joint space � × �,
one can write the probabilities P(G|C) and P(C′|G) as

P(G|C) = W (C, G)

W (C)
, P(C′|G) = W (C′, G)

W (C)
. (A3)

One can then define the Boltzmann weight of the graph as

W (G) ≡
∑
C∈�

W (C, G). (A4)

In the most straightforward manner of the extended-
ensemble method, one proposes a transition from ensemble
A to the other ensemble B directly in the configuration
space without modifying the configuration C and calculate the
acceptance ratio as

r(C;A→ B) = min

(
1,

W B(C)

WA(C)

)
. (A5)

Usually, W B(C)/WA(C) = e−β(EB(C)−EA(C)) 	= 1 since the
same configuration C usually has different energies in differ-
ent ensembles. The energy difference EB(C) − EA(C) often
scales with the system size L or the temperature β. As a result,
the acceptance rate of the transitions between ensembles
usually decays exponentially with L or β.

As a concrete example, one can consider the Ising model
at the critical point, whose spins usually form large domains.
When the system configuration is put onto another manifold,
the original domains of spins slip and mismatch, and this
usually results in an increase of the system energy. Quali-
tatively speaking, such increase of the energy usually scales
with the system size, which will lead to the exponential decay
of the acceptance rate of the transitions. Another example
is the XXZ chain discussed in the present paper, where
the spin configuration in the path-integral formulation forms
closed loops due to conservation of the Sz magnetization. If
one directly put the configuration onto another path-integral
manifold, these closed loops often get broken, which leads
to an illegal configuration, and the transition update will be
rejected. One in general anticipates that the chances of the
closed loops not getting cut will decay exponentially with the
system size.

The improvement we present here is to propose the tran-
sition between ensembles in the graph space � instead of
the configuration space �. After we generate the graph G
from the configuration C, we can propose the transition to
the other ensemble based on the graph G. Usually, the graph
G cannot be directly put in the other ensemble, since the
lattice sites have different connection relations on different
manifolds. However, the graph elements in the graph G can
be manipulated with much more freedom than the spins in
the configuration C [61]. This allows us to manipulate the
graph elements in the original graph G according to the
topology of the targeted manifold. After the manipulation,
a new graph G′ is generated, and from this new graph, we
can then generate the new configuration C′, which naturally
resides on the targeted manifold. The acceptance ratio of
this graph manipulation operation can be determined by the
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Boltzmann weight of the graphs G and G′,

r(G → G′;A→ B) = min

(
1,

W B(G′)
WA(G)

)
, (A6)

where W η(G) represents the Boltzmann weight of the graph
G in the ensemble labeled by η = A,B.

Next, we derive the acceptance ratio in the cluster/loop
algorithm, following the conventions of Ref. [57]. During the
update procedure, when generating the configuration C from
the graph G, if we flip the clusters with even probability, then

P(C|G) = W (C, G)

W (G)
= 1

qM
, (A7)

where q is the number of spin states (for example, for the
spin-1/2 system, q = 2), M is the number of clusters in
the graph. On the other hand, in the loop/cluster algorithm,
the joint weight W (C, G) can be expressed as [57]

W (C, G) =
∏

p

ωp(Cp, Gp) =
∏

p

vp(Gp)(Cp, Gp), (A8)

where p is the “plaquette,” (Cp, Gp) is 1 if Cp and Gp are
compatible and equals 0 otherwise. vp(Gp) is the Boltzmann
weights of the graph elements, which depends only on the type
of the graph element. Now we specify a configuration C0 that
is compatible with graph G. Then in Eq. (A8) all (Cp

0 , Gp) =
1. Therefore

W (C0, G) =
∏

p

vp(Gp). (A9)

According to Eqs. (A7)–(A9),

W (G) = W (G)

W (C0, G)
W (C0, G) = qM

∏
p

vp(Gp). (A10)

When manipulating the graph elements in G, if we only move
the locations of the graph elements without removing any of
them or adding new ones, the number of graph elements of
each type is unchanged. Then the jump acceptance ratio only
depends on the number of clusters formed in the graphs G
and G′,

r(A→ B) = min

(
1,

W B(G′)
WA(G)

)
= min(qMG′ −MG , 1),

(A11)

where MG represents the number of clusters in the graph G.
In practice, one can usually improve the acceptance rate

by a large factor by performing the transition update in the
graph space, since this trick actually expands the overlap
between the two ensembles. As an example, in the XXZ
chain where we perform our simulation, if we propose the
transition update directly in the configuration space, most of
such updates will be rejected, since there are usually graphs
locating between the boundary sites, which will lead to the
cut of closed loops in the worldline configuration after the
direct transition. In other words, the direct transition update,
which is originally developed for the quantum Potts model
[14], will usually break the total spin conservation which is
satisfied by the XXZ model. In this case, the overlap between
the two ensembles only consists of those configurations with
no graph elements between the boundaries, which will quickly

decay with respect to the system size L and the temperature
β. As a comparison, our new method allows us to propose
the ensemble transition update at any possible configuration,
i.e., the overlap between the two ensembles is expanded to
the whole configuration space, which will greatly improve the
efficiency of the sampling process.

2. Klein bottle entropy

Next, we discuss the details of the calculation of the Klein
bottle entropy of the XXZ chain using the improved extended
ensemble method. In numerical calculations, we obtain the
Klein bottle entropy by calculating the partition function ratio

g = ZK(2L, β/2)/ZT(L, β ). (A12)

During the simulation, we use the standard loop algorithm
[56,57], and the two manifolds in the two ensembles of the
extended ensemble simulation are correspondingly a torus
and a Klein bottle. Although the Klein bottle and the torus
have different sizes along the spatial and imaginary-time
directions, as shown in Ref. [14], one can transform the
Klein bottle with parameters β/2 and 2L into a cylinder with
parameters β and L that has long-range interactions on the
boundaries. The cylinder and the torus have the same size
along both the spatial and imaginary-time directions, and their
differences only locate in the boundary conditions. Therefore,
the transition between the two ensembles only involves the
transformations on the boundaries. In our improved extended
ensemble simulation, we only need to manipulate the graph
elements on the boundaries according to the topology of the
targeted manifold, as shown in Fig. 5. To be more specific, for
the spin-1/2 XXZ chain, we show the details of a single Monte
Carlo update in Fig. 6, using the language of the worldlines in
the loop algorithm.

For the XXZ chain with S = 1, one can decompose each
spin operator into the sum of two spin-1/2 operators and apply
a projection operator in order to project the expanded Hilbert
space onto the original Hilbert space [57,62]. Its partition

FIG. 5. The manipulation of the graph elements during the tran-
sition from the torus ensemble to the Klein bottle ensemble. The
graph elements on the boundaries are separated into two groups,
which are marked by blue and red dashed lines, correspondingly.
In practice, one can separate these graph elements by, for example,
putting the graph elements within the range (0, β/2) into one group
and those within the range (β/2, β ) into another group. For the blue
graph elements, we cut their connections with the right boundary and
connect them to the opposite location on the left boundary. Similar
operations are performed for the red graph elements. After the
manipulation, the graph elements on the boundaries are apparently
compatible with the long-range interactions on the cylinder bound-
ary, which correspond to the Klein bottle manifold. Conversely, to
propose a transition from the Klein bottle ensemble to the torus
ensemble, one only needs to reverse the manipulation procedure
described above.
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FIG. 6. The steps within one Monte Carlo update. Here we use a system with size L = 4 and inverse temperature β as an example. (a)
We start with a worldline configuration in the torus ensemble. The different colors of the worldlines represent different spin orientations. The
worldlines form closed loops, and this configuration cannot be directly put in the Klein bottle ensemble. (b) From the worldline configuration,
one can generate a graph G by inserting graph elements into the worldline configuration. The graph elements form MG = 3 clusters. (c) To
propose a transition to the Klein bottle ensemble, one has to manipulate the graph elements on the two boundaries according to the connection
relations in the latter manifold. For the graph element at τ1 in the lower half (0, β/2) of the imaginary time axis, we cut its connection with the
right boundary and connect it to the location τ1 + β/2 at the left boundary. Meanwhile, for the graph element at τ2 in the upper half (β/2, β ),
we do the opposite. One may note that there exist different choices in the cutting and reconnection procedure described above, i.e., for a graph
element locating between the boundary sites, one can cut its connection with either the left or the right boundary site. To avoid this ambiguity,
which may cause a problem in the detailed balance condition, one only needs to fix the choice for all Monte Carlo steps. For example, for the
graph in the range (0, β/2), we always cut its connection with the right boundary, and for the graph in the range (β/2, β ), we always choose
to cut its connection with the left boundary. Reversely, when performing the transition from the Klein bottle ensemble to the torus ensemble,
for the graph on the left boundary, we always cut its connection in the range (β/2, β ), and for the graph on the right boundary, we always
cut its connection in the range (0, β/2). (d) The new graph G′ that resides on the Klein bottle. There are MG′ = 2 clusters in this graph. The
acceptance ratio according to Eq. (A11) is r = min(1, 2MG′ −MG ) = 0.5. If this update is accepted, we can proceed to randomly flip the clusters
in this graph and obtain a new worldline configuration in the Klein bottle ensemble. Otherwise, one needs to go back to the original graph
in (b) and generate new worldline configurations in the torus ensemble based on it. (e) The new worldline configuration in the Klein bottle
ensemble, generated from the graph in (d).

function in the torus ensemble is expressed as

Z = Tr(Pe−βH̃ ), (A13)

where H̃ represents the Hamiltonian of the spin-1/2 sys-
tem obtained from the decomposition, and P = ∑

i Pi =
1
2

∑
π,i Di(π ) represents the projection operator, with Pi rep-

resenting the projection on each site, and Di(π ) representing
the permutation π : {1, 2} → {π (1), π (2)}. We note that the
projection operator commutes with both the lattice reflection
P and the spin-1/2 Hamiltonian H̃ . Therefore, the extended
ensemble Monte Carlo update procedure is the same as that of
S = 1/2, despite the more complicated lattice structure.

3. Affleck-Ludwig entropy

The AL entropy can be obtained by calculating the par-
tition function ratio ZC(L, β )/ZT(L, β ) and performing a
linear extrapolation along β, according to Eq. (98). Here C
represents the cylinder, due to the open boundary condition.
To calculate the partition function ratio above, we again use
the method of extended ensemble simulation and still perform
the transition operations in the graph space. Here we only
consider the case of free boundary condition. We note that
there exist plenty of graphs with nonidentical graph elements
between the site 1 and site L in the torus ensemble, and
these graphs are all forbidden in the cylinder ensemble. In
contrast, if a graph has no nonidentical graph elements on the
boundaries, it can reside in both ensembles, and its Boltzmann
weights in the two ensembles are related by a multiplicative

constant, which originates from the additional identical graph
elements between site 1 and site L on the torus [57],

W C(G)/W T(G) = (1 + aτ )−β/τ = e−aβ, (A14)

where a is a constant, and we have taken the continuous limit
τ → 0.

We handle the multiplicative constant by a reweighting
procedure. During the extended ensemble simulation, we set
r(T→ C) = n(L, 1) and r(C→ T) = 1, where n(i, j) equals
one if there are no nonidentical graph elements between site i
and site j and equals zero otherwise. Therefore, the partition
function ratio that we obtain from the extended ensemble
calculation is actually eaβZC(G)/ZT(G). The prefactor eaβ

won’t affect the result of the AL entropy since it can be
absorbed into the nonuniversal surface energy.

In practice, since r(C→ T) = 1, as indicated in Ref. [63],
we can conveniently obtain the partition function ratio by
performing the simulation only in the torus ensemble

ZC

ZT
= 〈r(T→ C)〉T

〈r(C→ T)〉C = 〈n(L, 1)〉T. (A15)

We improve this estimator by

ZC

ZT
= 1

L

〈
L∑

i=1

n(i, i + 1)

〉
T

= 〈Nempty〉T
L

, (A16)

where we have identified site L + 1 with site 1 and intro-
duced the quantity Nempty ≡ ∑L

i=1 n(i, i + 1) that represents
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the number of intervals that are “empty,” i.e., contain no
nonidentical graph elements.

APPENDIX B: EXACT SOLUTION TO THE PARTITION
FUNCTIONS FOR CRITICAL ISING CHAIN

AND XY CHAIN

1. The critical Ising chain

For the critical Ising chain (12), the torus partition function
is given by ZT = Tr(e−βH ) = TrNS(e−βH+ ) + TrR(e−βH− ),
where TrNS and TrR represent the trace over the Neveu-
Schwarz and the Ramond sector, respectively. In the Neveu-
Schwarz sector, we represent the states by γ

†
k1
γ

†
k2

. . . γ
†
kN

|gs〉
with k1 < k2 < . . . < kN belonging to the allowed lattice mo-
menta KNS = {±π

L ,± 3π
L , . . . ,± (L−1)π

L }. To enumerate these
states, we introduce a set of numbers F = {Fk} (k ∈ KNS) for
each state, where Fk = 1 if the fermion mode γ

†
k is occupied,

and Fk = 0 otherwise. Since the fermion parity is even in the
Neveu-Schwarz sector, we have

TrNS(e−βH+ ) = e−βEgs
∑
F

∏
k∈KNS

e−βFkEk
1 + (−1)N

2
, (B1)

where Egs is the ground-state energy of the critical Ising chain
[see Eq. (23)], and Ek = cos(k/2). Here we have introduced
a factor 1+(−1)N

2 to remove the states with odd fermion parity
Q = −1. Note that N = ∑

k∈KNS
Fk , the summation over F =

{Fk} can then be carried out for each Fk = ±1 individually,

TrNS(e−βH+ )

= 1

2
e−βEgs

⎡
⎣ ∏

k∈KNS

(1 + e−βEk ) +
∏

k∈KNS

(1 − e−βEk )

⎤
⎦. (B2)

In the Ramond sector, similarly, we represent the
states by γ

†
k1
γ

†
k2

. . . γ
†
kN

|σ, σ̄ 〉 with k1 < k2 < . . . < kN

belonging to the allowed lattice momenta KR =
{0,± 2π

L ,± 4π
L , . . . ,± (L−2)π

L , π}, where we have defined
γ

†
0 ≡ f0 and γ †

π ≡ f †
π for convenience. By again introducing

a set of numbers F = {Fk} (k ∈ KR) for each state, one can
similarly obtain

TrR(e−βH− )

= 1

2
e−βE(σ,σ̄ )

⎡
⎣ ∏

k∈KR

(1 + e−βEk ) +
∏

k∈KR

(1 − e−βEk )

⎤
⎦,

(B3)

where E(σ,σ̄ ) is the energy of the first excited state of the
critical Ising chain [see Eq. (31)] and Ek = cos(k/2) (note
that we have absorbed Ek=π = 0 and Ek=0 = 1 in this ex-
pression, which correspond to γ †

π = f †
π and γ

†
0 = f0, re-

spectively). Since Ek=π = 0, the second term in the square
bracket of Eq. (B3) vanishes, and the torus partition function

reads

ZT(L, β ) = 1

2
e−βEgs

⎡
⎣ ∏

k∈KNS

(1 + e−βEk ) +
∏

k∈KNS

(1 − e−βEk )

⎤
⎦

+ 1

2
e−βE(σ,σ̄ )

∏
k∈KR

(1 + e−βEk ). (B4)

For the Klein bottle partition function (obtained by the
bond-centered lattice reflection, see Sec. II B 1), the fermion
modes all group in pairs (except k = 0, π in the Ramond
sector). In the Neveu-Schwarz sector, one has

TrNS(Pe−βH+ ) = e−βEgs
∏

k∈KNS,k>0

(1 + e−2βEk ), (B5)

while for the Ramond sector, recall that states built from
|(σ, σ̄ )〉 have parity 1, and states built from f †

k=π
fk=0|σ, σ̄ 〉

have parity −1, one then obtains

TrR(Pe−βH− ) = e−βE(σ,σ̄ ) (1 − e−β(Ek=π +Ek=0 ) )

×
∏

k∈KR,0<k<π

(1 + e−2βEk ). (B6)

Therefore, the Klein bottle partition function for the Ising
chain is given by

ZK(L, β ) = e−βEgs
∏

k∈KNS,k>0

(1 + e−2βEk )

+ e−βE(σ,σ̄ ) (1 − e−β )
∏

k∈KR,0<k<π

(1 + e−2βEk ).

(B7)

One can use the exact solutions of the partition functions
Eqs. (B4) and (B7) to calculate the Klein bottle entropy ln g
by Eq. (11), under the condition L � vβ, where the velocity
is v = 1/2 in the Ising chain.

2. XY chain

For the XY chain (51), the method for calculating the
partition functions is very similar to the Ising case in
Appendix B 1. The torus partition function takes a form
similar to Eq. (B4),

ZT(L, β ) = 1

2

∏
k∈KNS

(1 + e−βEk ) + 1

2

∏
k∈KNS

(1 − e−βEk )

+ 1

2

∏
k∈KR

(1 + e−βEk ), (B8)

where Ek = − cos k. On the other hand, similarly as Eq. (B7),
the Klein bottle partition function reads

ZK(L, β ) =
∏

k∈KNS,k>0

(1 + e−2βEk )

+ (eβ − e−β )
∏

k∈KR,0<k<π

(1 + e−2βEk ). (B9)

Again, Eqs. (B8) and (B9) can be used to calculate the Klein
bottle entropy ln g by Eq. (11), under the condition L � vβ,
where the Fermi velocity is v = 1 in the XY chain.
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