
PHYSICAL REVIEW B 99, 104520 (2019)

Electron-phonon superconductivity in CaBi2 and the role of spin-orbit interaction
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CaBi2 is a recently discovered type-I superconductor with Tc = 2 K and a layered crystal structure. In
this work electronic structure, lattice dynamics, and electron-phonon interaction are studied, with special
attention paid to the influence of the spin-orbit coupling (SOC) on the above-mentioned quantities. We find
that in the scalar-relativistic case (without SOC), electronic structure and electron-phonon interaction show
quasi-two-dimensional character. Strong Fermi surface nesting is present, which leads to the appearance of the
Kohn anomaly in the phonon spectrum and enhanced electron-phonon coupling for the phonons propagating
in the Ca-Bi atomic layers. However, strong spin-orbit coupling in this material changes the topology of the
Fermi surface and reduces the nesting, and the electron-phonon coupling becomes weaker and more isotropic.
The electron-phonon coupling parameter λ is reduced by SOC to almost half, from 0.94 to 0.54, giving an even
stronger effect on the superconducting critical temperature Tc, which drops from 5.2 K (without SOC) to 1.3 K
(with SOC). Relativistic values of λ and Tc remain in good agreement with experimental findings, confirming the
general need for including SOC in the analysis of the electron-phonon interaction in materials containing heavy
elements.

DOI: 10.1103/PhysRevB.99.104520

I. INTRODUCTION

Elemental bismuth has unusual electronic properties. It
is a semimetal, crystallizing in a diatomic, rhombohedral
structure, which is a result of a Peierls-Jones distortion [1].
Bi exhibits the strongest diamagnetism of all elements in the
normal state (susceptibility χ ∼ 10−5 emu) related to the large
spin-orbit coupling effects [2], as it has the highest atomic
number (Z = 83) of all nonradioactive elements. In its band
structure one can find Dirac-like electronic states with a small
effective mass [2] and large mobility. Bismuth has a very
low charge carrier density of electrons and holes (about 10−5

carrier per atom), and its Fermi surface consists of three
electron and one hole pockets [3,4]. As the electron pockets
lose their symmetry in the magnetic field, Bi was recently
proposed as a “valleytronic” material, where the contribution
of each electronic pocket to the charge transport may be tuned
by the magnetic field [5]. As far as the superconductivity is
concerned, it was discovered a long time ago that amorphous
bismuth is a superconductor with relatively high Tc = 6 K
[6,7]. On the other hand, crystalline bismuth was long con-
sidered not to be a superconductor, although, finally, it was
found that superconductivity occurs in ultralow temperatures,
below Tc = 0.53 mK [8].

There are many bismuth-based high-temperature supercon-
ductors, like Bi2Sr2CaCu2O8, where the Bi2O2 layer plays
the role of a charge reservoir [9]. Among the low-temperature
superconductors, we find several Bi-based families, including
ABi3, with A = Sr, Ba, Ca, Ni, Co, and La [10–14]; ABi,
with A = Li and Na [15,16]; and ABi2, with A = K , Rb, Cs,
and Ca. In the last family, KBi2, RbBi2, and CsBi2, with
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Tc = 3.6, 4.25, and 4.75 K, respectively, adopt cubic fcc struc-
ture [17], while our title compound, CaBi2, with Tc = 2.0 K,
is orthorhombic [18].

In recent years Bi compounds have attracted much atten-
tion as candidates for topological materials and topological
superconductors. Among them we find the well-known ex-
amples of the semiconducting Bi1−xSbx alloy and the “ther-
moelectric” tetradymites Bi2Te3 and Bi2Se3 [19,20] and their
relatives, like SrxBi2Se3 [21]. Also A3Bi2 (A = Ca, Sr, Ba)
compounds are considered as three-dimensional topological
insulators [22]. Moreover, topological states are present, e.g.,
in ThPtBi, ThPdBi, and ThAuBi [23] (topological metals),
HfIrBi [24] (topological semimetal), and Bi4I4 [25] (quasi-
one-dimensional topological insulator). All these examples
show that bismuth-based materials offer a variety of interest-
ing physical properties, usually related to the strong relativis-
tic effects.

In this work we focus on the CaBi2 compound, recently
reported [18] to be a type-I superconductor, with Tc = 2.0 K.
The key problem we would like to address is what the
effect of the spin-orbit coupling (SOC) is on the electron-
phonon interaction and superconductivity in this material.
In order to do so, the electronic structure, phonons, and
the electron-phonon coupling function are computed in both
scalar-relativistic [26] (without SOC) and relativistic (includ-
ing SOC) ways, and we find that SOC indeed has a very strong
impact on the computed quantities. In the scalar-relativistic
case, the electronic structure and electron-phonon interaction
show the quasi-two-dimensional character, with significantly
enhanced electron-phonon coupling for the phonons prop-
agating in the Ca-Bi atomic layers. However, strong spin-
orbit coupling in this material changes the topology of the
Fermi surface, indirectly making the electron-phonon interac-
tion more three-dimensional and weaker, and the computed
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FIG. 1. The CaBi2 crystal structure. Ca, Bi(1), and Bi(2) atoms
are marked by red, yellow, and blue balls, respectively. (a) The prim-
itive cell, (b) the conventional unit cell, (c) eight unit cells stacked to
show the Ca-Bi(1) and Bi(2) atomic layers, and (d) the Brillouin zone
of space group number 63 with high-symmetry k points marked. b∗

are the reciprocal primitive vectors, while x, y, z are the Cartesian
vectors in reciprocal space, parallel to the conventional unit cell a, b,
c vectors.

electron-phonon coupling constant λ is reduced to nearly
half.

II. COMPUTATIONAL DETAILS

CaBi2 forms an orthorhombic ZrSi2-type structure (space
group Cmcm, No. 63), which is shown in Fig. 1. The primitive
cell of CaBi2 is shown in Fig. 1(a) and contains 2 f.u. There are
two inequivalent positions of Bi atoms, denoted in this work
as Bi(1) and Bi(2), whereas Ca atoms occupy one position.
The base-centered conventional unit cell, shown in Fig. 1(b),
contains 6 f.u. The relation between the conventional and
primitive cells is visualized in the Supplemental Material
[27]. Experimental and theoretical [18] lattice parameters and
atomic positions are shown in Table I. The conventional unit
cell is elongated about 3.5 times along the b axis, compared to
other dimensions. This is related to the quasi-two-dimensional
(quasi-2D) character of the CaBi2 crystal structure, with a
sequence of atomic Bi(2) and Bi(1)-Ca layers, perpendicular
to the b axis, which form [Ca-Bi(1)]-[Bi(2)]-[Ca-Bi(1)] “sand-
wiches.” This quasi-2D geometry of the system, reflected also
in the charge density distribution, was discussed in more detail
in Ref. [18].

Calculations in this work were done using the QUAN-
TUM ESPRESSO software [28,29], which is based on density-
functional theory (DFT) and the pseudopotential method.
We used Rappe-Rabe-Kaxiras-Joannopoulos ultrasoft pseu-
dopotentials [30], with the Perdew-Burke-Ernzerhof [31]

TABLE I. Theoretical and experimental [18] crystal structure
parameters of CaBi2, space group Cmcm, No. 63. Theoretical values
were obtained in scalar-relativistic calculations (without SOC) and
relativistic calculations (with SOC), where for the latter case only
atomic positions were relaxed, with a, b, and c taken from the scalar-
relativistic relaxation. All atoms occupy (4c) positions, (0, y, 0.25),
where y is given below. Conventional unit cell parameters are ex-
pressed in angstroms, and the primitive cell angle α is shown in
Fig. 1.

a b c α y-Ca y-Bi(1) y-Bi(2)

Expt. 4.696 17.081 4.611 30.74◦ 0.4332 0.0999 0.7552
Without SOC 4.782 17.169 4.606 31.16◦ 0.4015 0.0655 0.7575
With SOC 0.4006 0.0668 0.7555

generalized gradient approximation for the exchange-
correlation potential. For the bismuth atom, both fully rel-
ativistic and scalar-relativistic pseudopotentials were used,
whereas for calcium only the scalar-relativistic pseudopoten-
tial was taken, as inclusion of SOC in its pseudopotential
did not affect the electronic structure of CaBi2. At first,
unit cell dimensions and atomic positions were relaxed with
the Broyden-Fletcher-Goldfarb-Shanno algorithm, where the
experimentally determined crystal structure parameters were
taken as initial values (see Table I). For the relativistic case
(with SOC included), the unit cell dimensions were taken
from the scalar-relativistic calculations, whereas the atomic
positions were additionally relaxed. Next, the electronic struc-
ture was calculated on a Monkhorst-Pack grid of 123 k points.
In the following step, the dynamical matrices were computed
on a grid of 43 q points, using density-functional perturbation
theory [32]. Through double Fourier interpolation, real-space
interatomic-force constants were obtained and used to com-
pute the phonon dispersion relations. Finally, the Eliashberg
electron-phonon interaction function α2F (ω) was calculated
using the self-consistent first-order variation of the crystal
potential from the preceding phonon calculations, where sum-
mations over the Fermi surface were done using a dense grid
of 243 k points. The obtained α2F (ω) was used to calculate
the electron-phonon coupling constant λ in both scalar and
relativistic cases, and by using the Allen-Dynes equation [33],
the critical temperature was determined.

III. ELECTRONIC STRUCTURE

The electronic structure of CaBi2 was initially presented
in Ref. [18]; however, for the sake of clarity and consistency
of the present work, it is also briefly discussed here. Fig-
ure 2 shows electronic dispersion relations, densities of states
(DOSs), and the Fermi surface (FS) of CaBi2. The Brillouin
zone of the system, with the location of high-symmetry points,
is shown in Fig. 1(d).

Figure 2 shows both scalar- and fully relativistic results
to visualize the influence of SOC on the electronic structure.
As already mentioned [18], the studied system has a layered
structure, with metallic Bi(2) layers and more ionic Ca-Bi(1)
layers, stacked in [Ca-Bi(1)]-[Bi(2)]-[Ca-Bi(1)] sandwiches
along the b axis. This is reflected in the computed band struc-
ture, which is generally less dispersive for the ky direction,
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FIG. 2. The electronic structure of CaBi2 without and with SOC: (a)–(c) and (e)–(g) three Fermi surface (FS) pieces, (d) and (h) the second
FS piece with the nesting vector indicated, (i)–(j) electronic dispersion relations near the Fermi energy EF , and (k) the density of states (DOS),
with the partial atomic densities plotted only for the relativistic case.

parallel to the b axis (see bands, e.g., in the �-Y and Z-T
directions), and more dispersive in others.

Three bands cross the Fermi level and form three pieces of
the Fermi surface, plotted in Figs. 2(a)–2(d) for the scalar-
relativistic case and in Figs. 2(e)–2(h) for the relativistic
case. In general, the quasi-two-dimensional structure of the
system is seen in the topology of its Fermi surface, with
the highlighted ky direction parallel to the real-space b axis
and perpendicular to atomic layers. In line with this, the first
piece [Figs. 2(a) and 2(e)] is cylindrical along ky. The second
piece [Figs. 2(b) and 2(f)] is large and rather complex but
also has a reduced dimensionality: there are large and flat
FS areas parallel to ky, calculated without SOC. As there is
a special qn vector, which connects flat areas of this part
of the Fermi surface, as shown in Fig. 2(d), this FS sheet
exhibits strong nesting. The shortest nesting vector qn, which
lies in the �-A direction, is about 3

4 of �A long; however, as
seen in Fig. 2(d), the nesting condition is also fulfilled for
vectors longer than qn. Also, a similar nesting condition is
fulfilled for the �-A1 direction, perpendicular to �-A. This
piece of the Fermi surface is most strongly influenced by the
spin-orbit interaction, which splits it into separate sheets, con-
siderably reducing the area of its flat parts. Thus, SOC reduces
the quasi-two-dimensional character of the FS, and nesting
becomes much weaker. Changes in the topology of this FS
piece are caused by the significant shift of the band along
T -Z and the opening of a gap around the Z point, as seen in

Figs. 2(i) and 2(j). The presence of the spin-orbital-dependent
Fermi surface nesting will have strong implications for the
electron-phonon interaction, as will be discussed below. The
third, smallest piece of the Fermi surface, plotted in Figs. 2(c)
and 2(g), is also strongly two-dimensional and is changed by
SOC in a way similar to the second one; without SOC it is
nearly cylindrical along the T Z direction (with no dispersion
in ky), while calculated with SOC, due to the gap opening at
the Z point, it is split into two cones.

The DOS plot in Fig. 2(k) clearly shows the main role of
bismuth atoms in determining electronic properties of CaBi2,
as most electronic states around the Fermi level originate
from bismuth 6p orbitals. SOC visibly modifies DOS as well;
however, as far as the N (EF ) value is concerned, the difference
is not substantial since N (EF ) = 1.15 eV−1 (with SOC) and
N (EF ) = 1.10 eV−1 (without SOC).

To quantitatively investigate the quasi-2D electronic prop-
erties of CaBi2, the electronic transport function of CaBi2

was additionally computed within the Boltzmann approach
in the constant-scattering-time approximation (CSTA) and
using the BOLTZTRAP code [34]. Figure 3 shows the diago-
nal elements of the energy-dependent electrical conductivity
tensor of CaBi2 [transport function σ (E )]. For each band i
and wave vector k electrical conductivity is determined by
the carrier velocity v and scattering time τ via σαβ (i, k) =
e2τvα (i, k)vβ (i, k). Electron velocities are related to the gra-
dient of dispersion relations Ei(k), vα (i, k) = h̄−1∂Ei(k)/∂kα;
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FIG. 3. Transport function of CaBi2 computed in the constant-
scattering-time approximation, along three unit cell directions.

thus. in the CSTA, by taking τ = const, one may compute
σ (E )/τ . The diagonal elements of σαβ (i, k), integrated over
the isoenergy surfaces, are shown in Fig. 3 as σαα (E )/τ ,
where α = {a, b, c} are the three unit cell directions. As one

can see, the generally less dispersive band structure along
the ky direction in the Brillouin zone is responsible for the
smaller electron velocities, making σ (E ) around EF about
four times smaller along the b axis than in the in-plane (a, c)
directions.

IV. PHONONS

Figure 4 shows phonon dispersion relations ω(q) and the
phonon density of states F (ω), computed without and with
SOC. The obtained phonon spectra are stable, i.e., with no
imaginary frequencies in both cases. As in the primitive
cell of CaBi2 there are six atoms (2 f.u.); the total num-
ber of phonon branches is 18. Contributions of each of the
atoms to the phonon branches are marked using colored
thick bands; additionally, partial phonon densities of states
are computed. Due to the large difference in atomic masses
(MBi � 209 u, MCa � 40 u) the phonon spectrum is separated
into two regions, with a low-frequency part, dominated by bis-
muth atoms’ vibrations, and a high-frequency part, dominated
by calcium. Average total and partial phonon frequencies
were computed using formulas (1)–(4) and are collected in

FIG. 4. Phonon dispersion relations and phonon DOS F (ω) of CaBi2 without (top) and with (bottom) SOC. The contributions of atoms
in dispersion relations in (a) and (d) are marked by colored thick bands: Ca, red; Bi(1), yellow; Bi(2), blue. The nesting vector qn, shown in
Fig. 2, is marked with an arrow in (b) and (e).
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TABLE II. The phonon frequency moments of CaBi2, computed using Eqs. (1)–(4).

〈ω1〉 (THz)
√

〈ω2〉 (THz) 〈ω〉 (THz) 〈ωlog〉 (THz) 〈ωα2F
log 〉 (THz)

Without SOC
Total 1.90 2.18 2.50 1.64 1.66
Ca 3.52 3.71 3.91 3.20
Bi(1) 1.55 1.70 1.87 1.40
Bi(2) 1.53 1.63 1.73 1.43

With SOC
Total 1.86 2.13 2.44 1.60 1.65
Ca 3.47 3.65 3.83 3.16
Bi(1) 1.49 1.62 1.77 1.36
Bi(2) 1.51 1.62 1.72 1.41

Table II:

〈ωn〉 =
∫ ωmax

0
ωn−1F (ω)dω

/ ∫ ωmax

0
F (ω)

dω

ω
, (1)

〈ω〉 =
∫ ωmax

0
ωF (ω)dω

/ ∫ ωmax

0
F (ω)dω, (2)

〈ωlog〉 = exp

(∫ ωmax

0
F (ω) ln ω

dω

ω

/ ∫ ωmax

0
F (ω)

dω

ω

)
,

(3)

〈
ωα2F

log

〉 = exp

(∫ ωmax

0
α2F (ω) ln ω

dω

ω

/ ∫ ωmax

0
α2F (ω)

dω

ω

)
.

(4)

Spin-orbit coupling has a visible impact on the dynamical
properties of CaBi2. At first, SOC leads to slightly lower
frequencies of phonons since some of the calcium and bis-
muth modes are shifted towards lower ω. This is seen in
phonon frequency moments, collected in Table II. However,
the gap between the high- and low-frequency groups of modes
increases, from about 0.7 THz without SOC to 0.9 THz
with SOC; that is, the frequencies of higher Bi modes are
influenced to a larger degree than the lower Ca branches.

The average phonon frequency 〈ω〉 = 2.44 THz (with
SOC) corresponds to a temperature of 117 K, lower than the
experimentally determined Debye temperature �D = 157 K
[18]. As there is no universal definition of the “theoretical”
Debye temperature for a system with optical phonon branches,
to be able to compare our calculations with the experimental
findings, the constant-volume lattice heat capacity CV was
calculated [35]:

CV = R
∫ ∞

0
F (ω)

(
h̄ω

kBT

)2 exp
(

h̄ω
kBT

)
[

exp
(

h̄ω
kBT

) − 1
]2 (5)

using the relativistic phonon DOS F (ω) function. In Fig. 5
the theoretical CV is compared to the experimental constant-
pressure Cp from Ref. [18] (the electronic heat capacity was
subtracted from Cp), and good agreement is found. Deviation
at higher temperatures is most likely due to the difference
between Cp and CV , related to the anharmonic effects, where
Cp � CV (1 + βγGT ) [35], where β is the volume thermal
expansion coefficient and γG is the Grüneisen parameter.
From the ratio of Cp/CV at 300 K we can estimate βγG �
1.7 × 10−4 K−1. At low temperatures, where the difference

between Cp and CV should be small, we observe slightly
larger calculated CV , seen better in the C/T vs T 2 plot in
the inset in Fig. 5. The largest difference appears around T �
30 K and indicates a slightly larger theoretical F (ω) in the
1–2-THz frequency range than in the real system. However,
still, the largest differences between experimental and calcu-
lated values are of the order of 3%–4%.

In the phonon spectrum, especially in the non-SOC case,
we observe Kohn anomalies along the �-A direction in Fig. 4,
where some of the phonon frequencies are strongly renor-
malized and lowered. This part of the spectrum is enlarged
in Figs. 4(b) and 4(e), and one observes dips in the phonon
branches, as well as the inflection of the acoustic mode,
associated with Bi(2) vibrations, in the non-SOC spectrum.
A similar inflection was observed, e.g., in palladium [36].
In general, the Kohn anomaly [37] is an anomaly in the
phonon dispersion curve in a metal, where the frequency
of the phonon is lowered due to screening effects. Such an
anomaly appears at the wave vector qn which satisfies the
nesting conditions; when there are flat and parallel parts of the
Fermi surface, which can be connected by qn, there are many
electronic states which may interact with phonons with the
wave vector qn. In CaBi2, as we mentioned above, large parts
of Fermi surface sheets, plotted in Figs. 2(b) and 2(f), may
be connected by the same nesting vector qn, which is parallel
to the �-A direction, as shown in Figs. 2(d) and 2(h) for the
scalar- and fully relativistic cases, respectively. This nesting
vector is also marked with an arrow in the dispersion plots in
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Figs. 4(b) and 4(e). Since in the scalar-relativistic case much
larger parts of this Fermi surface sheet are parallel, nesting is
much stronger, and thus, the anomalies are very pronounced
in the non-SOC calculations, as seen in the dispersion plots
in Fig. 4. The anomaly, observed here near the A point, will
have a strong impact on electron-phonon interaction, as will
be discussed in the next section.

V. ELECTRON-PHONON COUPLING

Electron-phonon interaction can be described in terms of
the Hamiltonian [35,38]

Ĥe−p =
∑
k,q,ν

gqν (k, i, j)c†i
k+qc j

k(b†
−qν + bqν ). (6)

The creation and annihilation operators c†i
k+q and c j

k refer to
electrons in states k + q and k in the ith and jth bands,
respectively, while the b†

−qν and bqν operators describe emis-
sion and absorption of the phonon from the νth mode with
wave vectors −q and q, respectively. The electron-phonon
interaction matrix elements gqν (k, i, j) have the form

gqν (k, i, j) =
(

h̄

2Mωqν

)1/2

〈ψi,k|dVSCF

dûν

· ε̂ν |ψ j,k+q〉. (7)

Here ωqν is the frequency of the νth phonon mode at the q
point, ψi,k is an electron wave function at the k point, ε̂ν

is a phonon polarization vector, and dVSCF
dûν

is the change in
electronic potential, calculated in the self-consistent cycle,
due to the displacement of an atom ûν . On this basis one can
calculate the phonon linewidth

γqν = 2πωqν

∑
i j

∫
d3k

�BZ
|gqν (k, i, j)|2

× δ(Eq,i − EF )δ(Ek+q, j − EF ), (8)

where Ek,i refers to the energy of an electron. The phonon
linewidth describes the strength of the interaction of the elec-
tron at the Fermi surface with the phonon from the νth mode,
which has the wave vector q, and it is inversely proportional
to the lifetime of the phonon. Now, the Eliashberg function
can be defined as

α2F (ω) = 1

2πN (EF )

∑
qν

δ(ω − ωqν )
γqν

h̄ωqν

, (9)

where N (EF ) refers to the electronic DOS at the Fermi level.
The Eliashberg function is proportional to the sum over all
phonon modes and all q vectors of phonon linewidths divided
by their energies and describes the interaction of electrons
from the Fermi surface with phonons with frequency ω.
The total electron-phonon coupling parameter λ may now be
defined using the α2F (ω) function as

λ = 2
∫ ωmax

0

α2F (ω)

ω
dω, (10)

or, alternatively, directly with the phonon linewidths,

λ =
∑
q,ν

γqν

π h̄N (EF )ω2
q,ν

. (11)

A more detailed description of the theoretical aspects of the
electron-phonon coupling can be found in [35,38].

Figures 6(a) and 6(d) display the phonon dispersion curves,
with shading corresponding to the phonon linewidth γqν (in
THz) for mode ν at the q point. To make γqν visible for the
SOC case, γqν is multiplied by 4, and the same multiplicator
is kept in both Figs. 6(a) and 6(d) to ensure the same visual
scale. The Eliashberg function α2F (ω), plotted on the top of
the phonon DOS F (ω) is shown in Figs. 6(b) and 6(e), and
α2F (ω) decomposed over the 18 phonon modes is shown
in Figs. 6(c) and 6(f). In Figs. 6(b) and 6(e), the Eliashberg
function is renormalized to 3n (n is the number of atoms
in the primitive cell) in the same way as the phonon DOS
to allow for a direct comparison of both functions. Each of
the quantities is plotted as obtained from scalar-relativistic
calculations [Figs. 6(a)–6(c)] and fully relativistic calcula-
tions [Figs. 6(e)–6(h)]. The finite width of the phonon lines,
according to Eq. (11), is a measure of the local strength of
the electron-phonon interaction. One thing that immediately
catches the eye is the huge phonon linewidth γqν around
the A point in the scalar-relativistic results in Fig. 6(a). This
large γqν area starts at the nesting vector qn and is related
to the presence of the Kohn anomaly and Fermi surface
nesting. The large number of electronic states, which may
interact with phonons having wave vectors from this area
of the Brillouin zone, makes the electron-phonon interaction
strong and anisotropic. Comparing Figs. 6(a) and 4(a), we also
see that the strong electron-phonon interaction around the A
point is related to the Ca and Bi(1) atom vibrations, with a
much smaller contribution from Bi(2) atomic modes. These
strong-coupling modes involve both in-plane and out-of-plane
Ca and Bi(1) atomic displacements, as can be seen in the
displacement patterns shown in the Supplemental Material
[39]; however, the corresponding phonon wave vectors are
confined to the in-plane qx-qz directions. This is correlated
with the quasi-2D layered structure of this compound and
shows signatures of the two-dimensional character of the
electron-phonon interaction here. Frequencies and phonon
linewidths γqν of all doubly degenerated phonon modes in the
A point are shown in Table III.

The strong anisotropy and mode dependence of the
electron-phonon interaction in CaBi2 in the scalar-relativistic
case results in the Eliashberg function having a significantly
different shape than the phonon DOS function F (ω), as seen
in Fig. 6(b). α2F (ω) is strongly peaked around the seven
frequencies of phonon modes from the A point which have
large γqν . Contributions of each of the 18 phonon modes to the
total α2F (ω) function are plotted in Fig. 6(c), and λν values
are collected in Table IV. The total electron-phonon coupling
constant is directly calculated from the Eliashberg function,
using Eq. (10), which gives λ = 0.94. This value is consider-
ably larger than expected from the experimental value of Tc

via the inverted McMillan formula [40], λ = 0.53. The latter
value is calculated using the experimental Debye temperature
�D = 157 K [18] and assuming the Coulomb pseudopotential
parameter μ∗ = 0.10 since CaBi2 is a simple metal with s
and p electrons and a low N (EF ) value [41]. Also, λ may be
extracted in the usual way from the experimental value of the
electronic heat capacity coefficient γexpt = 4.1 mJ/(mol K2)
and calculated γcalc = π2

3 k2
BN (EF ), where kB is the Boltzmann

constant and N (EF ) is the DOS at the Fermi level if one
assumes that the measured Sommerfeld coefficient γexpt is
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FIG. 6. Electron-phonon coupling in CaBi2 (a)–(c) without SOC and (d)–(f) with SOC. Phonon dispersion relations with shading
correspond to phonon linewidth γqν [(a) and (d)]. In both (a) and (d), γqν (in THz) is multiplied by 4 to make it visible for the SOC case.
(b) and (e) show the Eliashberg function α2F (ω), renormalized to 3n (n = 6 is the number of atoms in the primitive cell), with the phonon
DOS F (ω) plotted in the background; (c) and (f) show the actual α2F (ω) with decomposition over all 18 phonon modes.

renormalized by only the electron-phonon interaction:

λ = γexpt

γcalc
− 1. (12)

This gives γcalc = 2.59 mJ/(mol K2) and a similar value of
λ = 0.58, much smaller than the λ = 0.94 obtained in the
scalar-relativistic calculations.

When spin-orbit coupling is included, however, due to the
change in the Fermi surface shape and the reduction of the
area of flat parts of the FS, connected by the nesting vector qn

[see Figs. 2(b) and 2(f)], the overall strength of the electron-
phonon interaction is reduced in relation to both the A-point

TABLE III. Frequencies ωνq (THz) and linewidths γνq (GHz) of
18 doubly degenerate phonon modes ν at the q point A, obtained in
scalar-relativistic (scalar) and relativistic (rel) calculations.

ν

1–2 3–4 5–6 7–8 9–10 11–12 13–14 15–16 17–18

ωscalar 0.84 1.10 1.44 1.57 1.93 2.29 3.68 4.29 4.69
ωrel 0.91 1.08 1.42 1.59 2.06 2.33 3.65 4.25 4.54
γscalar 1.9 39.4 67.5 13.3 8.3 48.9 29.7 37.9 15.8
γrel 0.6 0.5 0.3 0.8 2.0 1.9 0.9 0.9 1.2
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TABLE IV. Contributions to the total electron-phonon coupling constant λ from each of the 18 phonon branches of CaBi2, with the total
λ = ∑

ν λν .

Mode

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total λ

λν without SOC 0.04 0.05 0.10 0.10 0.09 0.09 0.07 0.11 0.04 0.03 0.05 0.04 0.02 0.02 0.02 0.03 0.01 0.01 0.94
λν with SOC 0.06 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.54

area and the total λ. As can be seen in Figs. 6(e) and 6(f), in
this case electron-phonon interaction becomes less mode and
q dependent, and huge γqν around the A point are absent. From
the values of the phonon frequencies and linewidths at the A
point, collected in Table III, we precisely see the strong impact
of SOC on the electron-phonon interaction: relatively small
changes in phonon frequencies ω are followed by a reduction
in γqν by a factor of 10 to 100. Because now the coupling of
electrons to those planar phonon modes is not enhanced any
more, in the relativistic case the electron-phonon interaction
is more three-dimensional and weakly depends on frequency,
and thus, the Eliashberg function now closely follows the
phonon DOS F (ω) function, as presented in Fig. 6(e). The
relative enhancement of the electron-phonon coupling occurs
for the last three optic modes from the lower-frequency part
of the spectrum before the gap. They are modes 10, 11, and
12 in Fig. 6(f), located between 2.0 and 2.2 THz. Atomic
displacement patterns for these modes at the Y point, where
the phonon linewidths are relatively large, are shown in the
Supplemental Material [42]. In mode 12 we find Bi(1) and Ca
vibrations perpendicular to atomic layers, whereas in modes
11 and 10 mostly Bi(2) atoms are involved in the in-plane
vibrations. Due to the overlap of these three modes in the
2.0–2.2-THz frequency range, coupling is here enhanced, and
α2F (ω) is above the bare DOS function F (ω) if both are
normalized to the same value [3n in Fig. 6(e)]. But if we
take a look at Table IV, due to the strong dependence of λ

also on the phonon frequency in Eq. (11), λ ∝ ω−2, the largest
contributions per phonon mode come from mode 1, the lowest
acoustic mode, and from optic mode 9, which involves Ca and
Bi(1) vibrations.

The cumulative frequency distribution of λ is shown in
Fig. 7. For both the scalar and relativistic cases, the main
contribution to the electron-phonon coupling constant comes
from the phonon modes, located between 1.0 and 2.5 THz. For
the scalar-relativistic case, λ(ω) has three steps due to peaks
in the Eliashberg function, which appear before the gap of

FIG. 7. The cumulative frequency distribution of λ, defined as
λ(ω) = 2

∫ ω

0 α2F (�) d�

�
, for scalar and relativistic cases.

the phonon spectrum in Fig. 6. When the spin-orbit coupling
is included, as has been mentioned above, electron-phonon
interaction becomes less frequency dependent; thus, λ(ω) is
nearly a linear function in this frequency range. As ω increases
above the gap, the relative contribution of the higher-energy
modes to λ becomes small, as almost 90% of the total λ is
provided by phonons with ω < 2.5 THz.

Now, moving to the total electron-phonon coupling pa-
rameter, in the relativistic case λ = 0.54, which is now in
excellent agreement with the above-mentioned values, deter-
mined from the experimental Tc (λ = 0.53), as well as from
the Sommerfeld parameter renormalization factor [λ = 0.51,
when taking the relativistic N (EF ) value]. These numbers are
summarized in Table V.

Using the calculated λ and 〈ωα2F
log 〉 values and the Allen-

Dynes [33] formula

kBTc = h̄
〈
ωα2F

log

〉
1.20

exp

{
− 1.04(1 + λ)

λ − μ�(1 + 0.62λ)

}
, (13)

superconducting critical temperatures are calculated and are
included in Table V. The Coulomb pseudopotential parameter
was kept at μ� = 0.10. As in the case of λ, in the scalar-
relativistic calculations the obtained value of the critical tem-
perature Tc = 5.2 K is considerably above the experimental
Tc = 2.0 K. Better agreement with experiment is reached after
including the spin-orbit coupling, as it reduces computed Tc to
1.3 K, only slightly lower than the experimental one.

Our calculations show that in CaBi2 the spin-orbit coupling
has a very strong and detrimental effect on the electron-
phonon interaction and superconductivity. This effect is indi-
rect here, as it is caused by the reduction of the Fermi surface
nesting, which leads to important changes in the ω and q
dependence of the electron-phonon interaction. As a result,
with SOC, the electron-phonon interaction is more three-
dimensional and isotropic, compared to the scalar-relativistic
case. SOC effectively weakens the electron-phonon coupling
by 42%: from λscalar = 0.94 to λrel = 0.54. This underlines

TABLE V. Electron-phonon coupling constant λ and critical
temperature Tc calculated for CaBi2 without SOC (w/o SOC), with
SOC (w SOC), extracted from the experimental data using Tc and the
McMillan formula [Expt. (Tc)], and extracted from the experimental
data using the electronic heat capacity coefficient γ and theoretical
N (EF ) with SOC [Expt. (γ )].

w/o SOC w SOC Expt. (Tc) Expt. (γ )

N (EF ) (eV−1) 1.10 1.15
λ 0.94 0.54 0.53 0.51
Tc (K) 5.2 1.3 2.0
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TABLE VI. Experimental and theoretical data for selected binary Bi-based superconductors. λcalc and Tc are calculated from DFT in
scalar-relativistic (scalar) and relativistic (rel) ways. λ(Tc ) is calculated from experimental Tc, the McMillan formula, Debye temperature �D,
and taking μ∗ = 0.10. λ(γexpt ) is computed using Eq. (12) from the experimental Sommerfeld parameter γexpt and the theoretical “bare” value
of N (EF ), as given in the referenced literature.

Space γexpt T scalar
c T rel

c T expt
c �D

group λscalar
calc λrel

calc ( mJ
mol K2 ) λ(Tc ) λ(γexpt ) (K) (K) (K) (K) Ref.

CaBi2 CmCm 0.94 0.54 4.1 0.53 0.51 5.2 1.3 2.0 157 this work, [18]
KBi2 Fd 3̄m 0.76 1.3 0.70 0.7 2.73 3.6 123 [43,44]
NaBi P4/mmm 3.4 0.56 1.05 2.1 140 [16]
BaBi3 Fd 3̄m 3.2 0.76 − 0.43 6.0 171 [45]

1.43 41 0.83 6.25 5.29 5.9 142 [10,46]
49.2 0.81 7.70 5.9 149 [47]

SrBi3 Pm3̄m 0.91 1.1 14 0.91 1.74 3.73 5.15 5.5 111 [10,48]
6.5 0.72 0.27 5.6 180 [45]
11 0.72 1.16 5.5 180 [47]

LaBi3 Pm3̄m 0.90 1.35 3.71 6.88 7.3 [13,49]
CaBi3 Pm3̄m 1.23 5.16 1.7 [11,50]
CoBi3 Pnma 16.7 0.41 1.19 0.5 124 [14]
NiBi3 Pnma 12.7 0.70 1.45 4.1 141 [12,51]

11.1 0.73 1.14 128 [12,52]

the need to include SOC in calculations of the electron-
phonon coupling in compounds based on heavy elements, like
bismuth, where SOC strongly affects the Fermi surface of the
material.

In Table VI we gather available computational and ex-
perimental data on a number of related binary intermetal-
lic superconductors containing Bi. Comparing our results to
those reported recently for ABi3 (A = Ba, Sr, La), we notice
that the SOC effect on the electron-phonon interaction and
superconductivity in CaBi2 is stronger if the relative change
between the calculated λscalar and λrel is taken as an indicator.
Moreover, in CaBi2 the effect is the opposite since in ABi3

SOC enhances the electron-phonon interaction, λ and Tc. It
is worth noting here that, except for CaBi2, there are large
differences in λ values obtained from experimental Tc via the
McMillan equation and from the Sommerfeld electronic heat
capacity coefficient and computed N (EF ) values [Eq. (12)].
For the cases of KBi2 and BaBi3, the computed γcalc values
are even larger than the measured γexpt, making λ negative
and showing that those systems require reinvestigation, espe-
cially BaBi3, for which two other reported values of γexpt >

40 mJ/(mol K2) are large beyond expectations and also result
in spurious values of λ ∼ 6–7 [53].

VI. SUMMARY AND CONCLUSIONS

First-principles calculations of the electronic structure,
phonons, and the electron-phonon coupling function have
been reported for the intermetallic superconductor CaBi2. Cal-
culations were performed within the scalar-relativistic (with-
out spin-orbit coupling) and relativistic (with spin-orbit cou-
pling) approaches, which allowed us to discuss the SOC effect
on the computed physical properties. The electronic structure
and electronic transport function reflect the quasi-2D layered
structure of the studied compound. The dynamic spectrum of
CaBi2 is separated into two parts, dominated by the heavier
(Bi) and lighter (Ca) atoms’ vibrations. A strong influence

of SOC on the electron-phonon interaction was found. In the
scalar-relativistic case, due to strong nesting between the flat
sheets of the Fermi surface and the presence of a large Kohn
anomaly, electron-phonon interaction is enhanced in the vicin-
ity of the A point in the Brillouin zone. This enhancement
of the electron-phonon interaction has a two-dimensional
character, as electrons from the flat parts of the FS are strongly
coupled to phonons, propagating in qx-qz directions, which
involves displacement of atoms from the Ca-Bi(1) layers.
When SOC is included, however, due to the change in the
Fermi surface topology, nesting becomes weaker, and the
electron-phonon coupling becomes more isotropic and less
ω dependent. As a result, SOC reduces the magnitude of the
electron-phonon coupling by about 42%, from λscalar = 0.94
to λrel = 0.54, in a way opposite to the related ABi3 supercon-
ductors. The critical temperature, calculated using the Allen-
Dynes equation and the relativistic electron-phonon coupling
constant, gives Tc = 1.3 K. The computed relativistic values
of λ and Tc remain in good agreement with experimental
results, where Tc = 2.0 K and λ = 0.51 (from the Sommerfeld
parameter renormalization) or λ = 0.53 (from Tc, �D, and the
McMillan equation). Our results confirm the need to include
the spin-orbit coupling in calculations of the electron-phonon
interaction functions for materials containing heavy elements,
like Bi, where SOC strongly modifies the Fermi surface of
the system. Finally, we may summarize that CaBi2 is a mod-
erately coupled electron-phonon superconductor with strong
spin-orbit coupling effects on its physical properties.
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