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The spin-triplet correlations in superconducting spin valve structures arising in the presence of noncollinear
textures of magnetic moment are shown to enhance strongly the electromagnetic proximity effect, i.e., the long-
range leakage of the magnetic field from the ferromagnet (F) to the superconducting (S) layer. Both the dirty
and clean limits are studied on the basis of the Usadel and Eilenberger theory, correspondingly. Our results
suggest a natural explanation for the puzzling enhancement of the spontaneous magnetic fields induced by the
noncollinear magnetic structures observed by the muon spin rotation techniques in a wide class of layered S/F
systems. We show that the electromagnetic proximity effect causes the shift of the Fraunhofer dependence of
the critical current on the external magnetic field in the Josephson junction with one superconducting electrode
covered by the ferromagnetic layer. This provides an alternative way to measure both the magnitude and the
direction of the spontaneous magnetic field induced in the superconductor. We also demonstrate the possibility
of the long-ranged superconductivity control of the magnetic state in F1/S/F2 structures.

DOI: 10.1103/PhysRevB.99.104519

I. INTRODUCTION

The penetration of the Cooper pairs from the supercon-
ductor (S) to ferromagnets (F) and normal metals is widely
known as a manifestation of the so called “proximity” effect
which results in a number of spectacular phenomena studied
intensively during several decades [1–3]. No wonder that this
proximity effect is accompanied by the back-action of the
ferromagnet on the superconducting subsystem revealing in
the leakage of the magnetic moments and fields through the
S/F interface. The resulting magnetic fields induced inside the
superconductor have been experimentally observed with a va-
riety of techniques including the nuclear magnetic resonance
[4], polar Kerr effect analysis [5], neutron scattering [6–8],
and muon spin rotation measurements [9–11].

It is commonly believed that in S/F systems there are
only two major mechanisms responsible for the leakage of
the magnetic field from the F to the S layer. The first one
is associated simply with the stray magnetic field which
penetrates into the superconductor and induce the screening
currents there (orbital effect) [12]. The second one (so-called
inverse proximity effect) is attributed to the spin polarization
of electrons forming the Cooper pair arising near the S/F
interface [13–17]. Indeed, the electron with the spin along the
exchange field easily penetrates the F layer, while the electron
with the opposite spin tends to stay in the superconductor.
As a result, the opposite electron spins appear to be spatially
separated which gives rise to the spin polarization and sub-
sequent magnetization of the superconducting surface layer
with the width of the order of the Cooper pair size, i.e., the
superconducting coherence length ξ ∼ 1–100 nm.

However, the recent experiments on muon and neutron
scattering have revealed the anomalously large distances of
the magnetic field penetration to the superconductor in V/Fe,
Au/Nb/ferromagnet, Cu/Nb/Co, and YBaCuO/LaCaMnO
structures [6,10,11,18]. These distances exceed the corre-
sponding values of ξ up to five times which is inconsistent
with the predictions of the inverse proximity effect theory. At
the same time, the in-plane orientation of magnetic moment
in the F layers and the absence of the magnetic domains rule
out the orbital effect.

An alternative explanation of the long-range magnetism in
planar S/F structures is based on the electromagnetic prox-
imity effect [19]. This effect originates from the generation
of the superconducting currents inside the F layer due to
the direct proximity effect and the subsequent appearance of
the compensating Meissner currents flowing in the S layer.
The magnetic field induced by the Meissner currents de-
cays at the distances of the order of the London penetration
depth λ, which can naturally explain the observed long-range
magnetism in type-II superconductors where λ > ξ . Some
hints about the screening supercurrents flowing outside the
ferromagnet in thin S/F structures have been also obtained
in Refs. [20,21].

For typical ferromagnetic materials the magnetic moment
induced inside the superconductor due to the electromagnetic
proximity effect should dominate the one due to the spin
inverse proximity effect. Indeed, the very generic estimate
for the latter magnetization Ms can be obtained from the
evaluation of the derivative of the superconducting conden-
sation energy Es ∼ −�2N (0) over the exchange field H :
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Ms = −∂Es/∂H (here � is the superconducting gap and
N (0) is the density of states at the Fermi energy). At low
temperatures the suppression δ� of the gap by the exchange
field can be described by the pair-breaking factor ν as
δ� ∝ ν(H ). Assuming ∂ν/∂H ∼ Tc/H and � ∼ Tc, one finds
Ms ∼ μBn(Tc/h)(Tc/EF ) ∼ μBn × 10−5, where h = μBH is
the exchange field in the energy units, n is the electron
concentration, and μB is the Bohr magneton. This quantity
appears to be even less than the Pauli magnetization of
noninteracting electrons MP ∼ μBn(h/EF ) for most typical
ferromagnets with h � Tc. Turning now to the magnetization
Mem induced in the superconductor due to the electromagnetic
proximity effect we should keep in mind that it is determined
by the magnetization M of a ferromagnet Mem ∝ M. If we
do not restrict ourselves to the case of material where the
magnetization arises due to the itinerant electrons and take
account of the important contribution of the localized spins,
the magnetization should be of the order of the Bohr mag-
neton μB per atom. The resulting magnetization Mem strongly
exceeds the one caused by the spin polarization of the itinerant
electrons. Thus, for all such compounds, the contribution from
the spin polarization to the spontaneous magnetic field should
be negligible.

Interestingly, the muon-spin rotation measurements per-
formed for the Au/Nb/ferromagnet structures indicate the
puzzling behavior of the induced magnetic field in the case
when the F layer consists of two ferromagnets with different
orientations of magnetic moments in the plane of the sample
[10]. One can naively expect that the magnetic field induced
inside the S layer should be stronger for the parallel orienta-
tion of magnetic moments in comparison with the perpendic-
ular one since the average exchange field (or magnetization)
in the structure, which is the “source” of this field, is larger
in the former case. However, the experimental data show that
the situation is opposite: the observed magnetic field is more
pronounced if the magnetic configuration of the ferromagnet
is noncollinear.

Clearly, the full explanation of the above experimental puz-
zles as well as the stimulation of the new experiments verify-
ing the theory of the electromagnetic proximity effect require
the detailed quantitative consideration of all experimental
setups discussed in Ref. [19]. It is the goal of the present paper
to develop such quantitative theory of the experimentally
measurable consequences of electromagnetic proximity effect
in the S/F1/F2 structures (see Fig. 1). Contrary to the previous
work Ref. [19], we do not restrict ourselves to the quali-
tative arguments but focus on the evaluation of the explicit
expressions for all the quantities which we propose to measure
in experiments. Moreover, we derive these expressions for
both the dirty and clean limits making it possible to apply
them for the description of different experimentally accessible
structures.

In particular, we calculate the spontaneous magnetic field
induced in the S/F1/F2 structures and demonstrate that it
is much stronger for the perpendicular orientation of the
magnetic moments in two ferromagnets compared to the
parallel one. Such anomalous behavior of the induced field
is attributed to the appearance of additional equal-spin triplet
correlations in the case of noncollinear magnetic moments.
Since these correlations are long-ranged they give rise to the

FIG. 1. The sketch of the S/F1/F2 system where the non-
collinearity of the magnetic moments strongly enhances the magni-
tude of the electromagnetic proximity effect.

significant enhancement of the supercurrent flowing in the
F layer, thus, increasing the amplitude of the magnetic field
induced in the superconductor. Our results provide a natural
explanation of the experimental data reported in Ref. [10].
Also we propose an alternative way for the experimental
determination of both the absolute value and the direction
of the magnetic field induced inside the superconductor. Our
idea is based on the fact that the electromagnetic proximity
effect should produce the shift in the Fraunhofer dependence
of the critical current on the external magnetic field for
the Josephson junction with one electrode covered by the
ferromagnet. The analysis of this shift for two perpendicular
orientations of the magnetic field allows the reconstruction
of the magnetic field vector. Finally, we analyze the long-
range electromagnetic interaction of two ferromagnetic layers
through the superconductor in F1/S/F2 structures and show
that the electromagnetic proximity effect plays the dominant
role in the resulting magnetic ordering provided the thickness
of the S layer exceeds the coherence length. Specifically, for
the thin F layers the electromagnetic proximity effect should
favor the antiparallel magnetic configuration.

The paper is organized as follows. In Sec. II, we consider
S/F1/F2 structure and calculate the magnetic field induced in
the superconductor for parallel and perpendicular orientations
of the magnetic moments in the ferromagnets in dirty and
clean limits. In Sec. III, we calculate the Fraunhofer depen-
dence of the critical current vs. the external magnetic field
in S1I/S2/F Josephson junction. In Sec. IV, we analyze the
influence of the electromagnetic proximity effect on magnetic
configuration in F1/S/F2 type structures. In Sec. V, we sum-
marize our results.

II. ELECTROMAGNETIC PROXIMITY EFFECT
IN S/F1/F2 STRUCTURES

We consider the S/F1/F2 structure consisting of the super-
conductor (S) of the thickness ds � λ and two ferromagnets
F1 and F2 with the thicknesses d1 � λ and d2 � λ, respec-
tively (see Fig. 1). In the F1 layer, the magnetization M1 =
M0ez is directed along the z axis, while the magnetization M2

of the F2 ferromagnet forms the angle θ with the z axis, so
that M2 = M0 sin θey + M0 cos θez. The x axis is chosen to be
perpendicular to the layers with x = 0 in the S/F1 interface.

To describe the magnetic field arising in the system we
choose the vector potential A to have only two components
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A = Ay(x)ey + Az(x)ez. According to the Maxwell theory, this
vector potential satisfies the equation

rot rotA = 4π

c
(js + jm), (1)

where js is the superconducting current and jm = c rotM is
the magnetization current flowing at the boundaries of the
ferromagnetic layers.

Our strategy is to use Usadel and Eilenberger approaches
to calculate the material relation js(A) for the dirty and clean
limits, respectively, and then use this relation to solve Eq. (1)
and obtain the dependence of the magnetic field induced
in the superconductor on the angle θ between the magnetic
moments.

A. Dirty limit

In the dirty limit, the relation between the supercurrent and
the vector potential is local:

js(x) = − c

4πλ2(x)
A, (2)

where λ(x) is the London penetration depth. In the supercon-
ductor far away from the S/F1 interface the density of the
superconducting electrons is uniform and, consequently, the
length λ does not depend on x (in what follows we will denote
the London penetration depth in the bulk of the superconduc-
tor as λ0). However, in the small region of the thickness ξ near
the S/F1 interface the penetration of the Cooper pairs into the
ferromagnet results in the renormalization of λ. The contribu-
tion to the final result coming from such renormalization has
the order of ξ/λ � 1 and can be neglected [19]. Then the so-
lution of Eq. (1) inside the S layer gives A(x) = A0 exp(x/λ0),
where A0 is the vector potential at the S/F1 interface. The
corresponding magnetic field reads B(x) = B(0) exp(x/λ0),
where By(0) = −A0z/λ0 and Bz(0) = A0y/λ0.

To solve Eq. (1) inside the ferromagnets, we may ne-
glect the effect of the Meissner currents on the spatial vari-
ation of the vector potential since the thicknesses of the
F1 and F2 layers are assumed to be much smaller than
λ. Then the vector potential inside the ferromagnets takes
the following form: A = [A0y + 4πM0x]ey + A0zez for 0 <

x < d1 and A = [A0y + 4πM0d1 + 4πM0(x − d1) cos θ ]ey +
[A0z − 4πM0(x − d1) sin θ ]ez for d1 < x < d2.

To find the constants By(0) and Bz(0), we substitute the
above expressions for the vector potential into the equa-
tion (1) and integrate it over the width of the ferromagnets
d = d1 + d2 taking into account that B = rotA:

Bz(d ) − Bz(0) = A0y

∫ d

0

dx

λ2(x)
+ 4πM0

∫ d1

0

xdx

λ2(x)

+ 4πM0

∫ d

d1

[d1 + (x − d1) cos θ ]dx

λ2(x)
, (3)

By(d ) − By(0)

= −A0z

∫ d

0

dx

λ2(x)
+ 4πM0 sin θ

∫ d

d1

(x − d1)dx

λ2(x)
. (4)

The first terms in the right-hand side of Eqs. (3) and
(4) can be neglected since they are much smaller than
B(0). Indeed, these terms are of the order of [A0y(0z)d]/λ2 ∼
(d/λ)Bz(y)(0) � Bz(y)(0). In the absence of the external mag-
netic field, B(d ) = 0 and we immediately find that the com-
ponents of the magnetic field induced in the superconductor
have the form

B = −4πM0Qex/λ0 , (5)

where the components of the vector Q have the form Qz =
(Q1 + Q2 cos θ + Q3) and Qy = Q2 sin θ with

Q1 =
∫ d1

0

xdx

λ2(x)
, Q2 =

∫ d

d1

(x − d1)dx

λ2(x)
,

Q3 =
∫ d

d1

d1dx

λ2(x)
. (6)

The vector Q determines the electromagnetic kernel that
controls the magnetic field induced in the superconductor due
to the electromagnetic proximity effect.

Our next step is to calculate the components Qy and Qz.
The London penetration depth λ(x) is defined by the singlet
( fs) and triplet (ft ) components of the anomalous quasiclassi-
cal Green function f̂ (x) = fs + ftσ, which is 2 × 2 matrix in
the spin space (σ is the vector of Pauli matrices):

1

λ2(x)
= 16π2T σ (x)

c2

∑
ωn>0

[| fs(x)|2 − |ft (x)|2]. (7)

Here, ωn = πT (2n + 1) are the Matsubara frequencies and
σ (x) is the normal state conductivity. Throughout the paper
we put h̄ = 1.

The anomalous Green functions in the ferromagnets can be
obtained from the Usadel equations [22]

D∂2
x fs = 2ωn fs + 2ihft , D∂2

x ft = 2ωnft + 2ih fs, (8)

where h is the exchange field and D is diffusion constant.
For simplicity, we assume σs � σ f 1, where σs and σ f 1

are the conductivities of the S and F1 layers, respectively.
This allows imposing the rigid boundary condition for the
anomalous Green function at the S/F1 interface: fs = fs0 =
�/

√
�2 + ω2

n, ft = 0, where � is the superconducting gap
which is assumed to be real. At the same time, at F1/F2

interface the anomalous Green function should be continuous.
The system (8) with the described boundary condition allows
the analytical solution which after substitution to Eqs. (7)
and (6) gives the components of the electromagnetic kernel
Q. The resulting expressions for arbitrary angle θ between
magnetic moments are rather cumbersome and, therefore,
presented in Appendix A. Keeping in mind the experimental
situation relevant to Ref. [10] here we focus on the difference
between the cases θ = 0 and θ = π/2. For simplicity, we
assume the equal conductivities, diffusion coefficients, and the
magnitudes of the exchange field in two ferromagnets.

For the parallel orientation of the magnetic moments
(θ = 0), the kernel Q has only one component Q‖

z directed
along the magnetic moments which coincides with the one for
the S/F bilayer with the ferromagnet of the width d = d1 + d2
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(see Ref. [19]):

Q‖
z = α

∑
ωn>0

f 2
s0Re

[
q2d2 + sinh2(qd )

q2 cosh2(qd )

]
, (9)

where α = 4π2T σ/c2 and q = √
2(ωn + ih)/D.

For the perpendicular orientation of the magnetic moments
(θ = π/2), the kernel Q and the corresponding spontaneous
magnetic field arising in the S layer have both z and y
components. To make the expressions for Q more transparent,
we additionally assume d1 ∼ ξ f , d2 � ξn, where ξ f = √

D/h
is the superconducting coherence length in the ferromagnet
and ξn = √

D/T is the normal metal coherence length. In this
limit, we find

Q⊥
y = −α

∑
ωn>0

f 2
s0γ

2
[
p2d2

2 + sinh2(pd2)
]

R2 p2 cosh2(pd2)
, (10)

Q⊥
z = α

∑
ωn>0

f 2
s0Re

{
1

q2 cosh2 χ

[
q2d2

1 + qd1 sinh(2qd1 + 2χ )

− sinh(qd1 + 2χ ) sinh(qd1)
]}

. (11)

In these expressions, we have introduced the following values:
p = √

2ωn/D,

γ = Im

{
Q(p, q)

[
Q(q∗, q∗)

cosh(qd1)
− Q(q, q∗)

cosh(q∗d1)

]}
,

R = Re{Q(p, q∗)[Q(q, q)Q(q∗, p) + Q(q∗, q)Q(q, p)]},

tanh χ = β + iγ

R sinh(qd1)
− 1

tanh(qd1)
,

where β = 2Re[Q(p, q∗)]Re[Q(q, p)/ cosh(q∗d1)] and the
function Q(ν1, ν2) depending on two wave-vectors is deter-
mined as Q(ν1, ν2) = 1 + [ν2 tanh(ν1d1) tanh(ν2d2)]/ν1.

The analysis of Eqs. (10) and (11) shows that the magnetic
field induced in the S layer is substantially stronger for
the perpendicular orientation of magnetic moments in the F
layers compared to the parallel one. Such counterintuitive
effect originates from the formation of the long-range spin-
triplet superconducting correlations when the two magnetic
moments are noncollinear. To illustrate this in more detail
let us assume that d2 � ξn and h � Tc. For the parallel
orientation (θ = 0), the superconducting correlations charac-
terized by the component ftz of the anomalous Green function
penetrate the ferromagnet over the distance ∼ξ f and the
estimate for the only component of the magnetic kernel Q
[see Eqs. (6) and (9)] gives Q‖

z ∼ (ξ f /λ)2. At the same time,
for the perpendicular orientation of magnetic moments (θ =
π/2) the ftz component of the Green function generated in
the F1 layer is insensitive to the exchange field in the F2

ferromagnet and the decaying scale of ftz becomes of the order
of the normal metal coherence length ξn instead of ξ f � ξn.
As a result, the screening parameter λ−2 stays substantially
large in the region of the width ∼ξn in the F2 layer which
gives Qy ∼ (ξn/λ)2. This Qy component of the kernel strongly
exceeds the one Qz ∼ (ξ f /λ)2 which is determined only by
the value of Q1 for θ = π/2. Note that the same estimates

FIG. 2. The dependencies of magnetic kernels Q for dirty
S/F1/F2 structure on the F1 ferromagnet thickness d1. The green
curve corresponds to Qz for the parallel orientation of magnetic
moments, while the red and the blue ones are Qz and Qy for
perpendicular orientation, respectively. Here, Q0 = 16π 2T σ f ξ

2
f /c2

and we take � = 2πT , h = 50πT , and d2 = 10ξ f .

for the kernel components can be also directly extracted from
the resulting expressions (10) and (11). Indeed, for the chosen
thicknesses of the F layers the functions Q(ν1, ν2) and all the
values γ , β, and R are of the order of 1. Then one sees that
each term in the sum (10) ∝ p−2 ∝ ξ 2

n while in Eq. (11) it is
proportional to q−2 ∝ ξ 2

f , which confirms the above estimate
Qy/Qz ∼ (ξn/ξ f )2 � 1.

Figure 2 shows the dependencies of the different compo-
nents of the kernel Q on the F1 layer thickness for parallel
and perpendicular orientations of the magnetic moments in
the ferromagnets. One sees that the component Q⊥

y is much
more pronounced than both Q‖

z and Q⊥
z for d1 ∼ ξ f . As a

result the total magnetic field induced inside the supercon-
ductors appears to be much larger for θ = π/2 compared to
the case of collinear magnetic moments θ = 0 (see Fig. 3).
Thus our theory explains the resent puzzling experiments on
the Au/Nb/ferromagnet structures where the rotation of the
exchange field in the F2 layer from θ = 0 to θ = π/2 has

FIG. 3. Spontaneous magnetic field at the S/F1 interface induced
due to the electromagnetic proximity effect as a function of the
F1 layer thickness. Green (red) curve corresponds to the parallel
(perpendicular) orientation of the magnetic moments in the ferro-
magnetic layers.
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FIG. 4. Angle � between this induced magnetic field in the
superconductor and the z-axis as a function of the thickness d1 of
the F1 layer in the case of perpendicular orientation of the magnetic
moment in the ferromagnets (θ = π/2).

resulted in the substantial increase of the induced magnetic
moment in the superconductor.

Interestingly, at the fixed angle θ between magnetic mo-
ments in ferromagnets, the direction of the spontaneous mag-
netic field inside the superconductor strongly depends on the
F1 layer thickness. In Fig. 4, we plot the angle � between
this induced magnetic field and the z axis as a function of d1

for θ = π/2. The complicated oscillatory behavior of �(d1)
demonstrates the rich interference physics associated with the
electromagnetic proximity effect in S/F systems.

B. Clean limit

The dependence of the spontaneous magnetic field in-
duced in the superconductor on the mutual orientation of
the magnetizations in the ferromagnets is more pronounced
for clean structures where the Cooper pairs penetrate to the
ferromagnet over larger distances and, thus, the proximity
effect is stronger. To analyze the electromagnetic proximity
effect in this case, we consider clean S/F1/F2 structure and
calculate the magnetic field induced in the superconductor
for the parallel and perpendicular orientations of the magnetic
moments in the F1 and F2 layers. Our starting point is again
Eq. (1). However, for clean structures, the relation between
the Meissner current js and the vector potential A becomes
nonlocal:

js(x) = − c

4π

∫ d

−∞
A(x′)K (x, x′)dx′. (12)

Deep inside the superconductor, i.e., for |x| � ξ0 = vF /T ,
the magnetic kernel K (x, x′) is local and has the standard
London form K (x, x′) = λ−2

0 δ(x − x′), where λ0 is the bulk
magnetic penetration depth. At the same time, the proximity
effect results in the appearance of the London screening in
the F layer and the renormalization of the kernel at x <

0 in the surface layer of the thickness ∼ξ0 near the S/F
interface. Since we assume both d and ξ0 to be much less
than λ we can write down the supercurrent in the following
form:

js(x) = jM − c

4π
δ(x)

∫ d

−∞
A(x′)R(x′)dx′. (13)

Here, jM = −(c/4π )λ−2
0 Aθ (−x) is the Meissner current flow-

ing deep inside the superconductor and the correction

R(x′) =
∫ d

−∞
[K (x, x′) − λ−2

0 θ (−x)δ(x − x′)]dx, (14)

is substantially nonzero only in the layer of the thickness ∼ξ0

near the S/F interface [here, θ (x) is Heaviside step function].
The vector potential in the whole structure has the follow-

ing form: A = [A0y(x) + AMy]ey + [A0z(x) + AMz]ez, where
we separate the parts induced by the magnetizations AMy

and AMz: AMy = 4πM0x, AMz = 0 for 0 < x < d1 and AMy =
4πM0d1 + 4πM0(x − d1) cos θ , AMz = −4πM0(x − d1) sin θ

for d1 < x < d2. To calculate the supercurrent, we substi-
tute these expressions for the vector potential into Eq. (13).
Inside the superconductor the vector potential components
A0y(x) and A0z(x) decay at the distances ∼λ � ξ0 from the
S/F interface and, thus, they can be treated as constant in
the surface region of the nonlocality. Then the supercurrent
reads

js = jM − c

4π
[(Pz + 4πM0Qz )ey + (Py − 4πM0Qy)ez]δ(x),

(15)
where we have introduced the following values:

Pz = A0y

∫ d

−∞
R(x′)dx′, Py = A0z

∫ d

−∞
R(x′)dx′, (16)

Qz =
∫ d1

0
x′R(x′)dx′ +

∫ d

d1

[d1 + (x′ − d1) cos θ ]R(x′)dx′,

(17)

Qy =
∫ d

d1

(x′ − d1) sin θR(x′)dx′. (18)

In the above expressions, the terms proportional to Pz and
Py give rise to the small renormalization of the screening
current near the S/F1 interface and can be neglected due to
the assumptions d � λ and ξ0 � λ.

Solving Eq. (1) with the supercurrent js satisfying Eq. (15),
we obtain that the induced magnetic field in the S layer has
the form (5) where Qz and Qy are defined by Eqs. (17) and
(18), respectively. To perform the quantitative analysis of the
induced magnetic field we now find the values Qz and Qy

microscopically. To do this, we calculate the current js within
the Eilenberger formalism and comparing it with the phe-
nomenological expression (15) obtain the desired expressions
for the magnetic kernel components.

The superconducting current js flowing along the S/F1

interface is determined by the singlet component of the normal
Green function gs as

js = −4πeν0T
∑
ω>0

〈vF Im[gs]〉. (19)

Here, vF = vxex + vyey + vzez is the vector of quasiparticle
velocity along the quasiclassical trajectory which has the
components vx = vF sin θ cos ϕ, vy = vF sin θ sin ϕ, and vz =
vF cos θ ; ν0 is the density of states at the Fermi level per unit
spin projection; and the brackets denote the averaging over the
Fermi surface: 〈. . . 〉 = (4π )−1

∫ π

0 sin θdθ
∫ 2π

0 . . . dϕ.
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To calculate the function gs we solve the Eilenberger
equations along the quasiclassical trajectories [22]. Inside the
superconducting layer, they take the form

vF ∇̂ĝ = �∗ f̂ − � f̂ †, (20)

vF D̂ f̂ = −2ωn f̂ + 2�ĝ, vF D̂∗ f̂ † = 2ωn f̂ † − 2�∗ĝ, (21)

where ĝ = gs + gtσ is the normal Green function and f̂ =
fs + ftσ, f̂ † = f̃s + f̃tσ are the anomalous ones, and D̂ = ∇ +
2ieA/c is the gauge-invariant momentum operator (e > 0).

In what follows, we focus on the solution of the above
equations in the surface region of the thickness ∼ξ0 near
the S/F interface, where the surface current gives rise to the
significant renormalization of the electromagnetic response.
Since ξ0 � λ one can neglect the spatial variation of the
vector potential components A0y and A0z in the region under
consideration and assume them to be constant. In this case, the
effect of A0y and A0z on the Green functions can be taken into
account through the renormalization of Matsubara frequencies
ω̃n = ωn + ieA0yvy/c + ieA0zvz/c.

Inside the ferromagnets the Eilenberger equations for the
anomalous Green functions read [22]

vF D̂ f̂ = −2ωn f̂ − ihσ f − i f̂ hσ,

vF D̂∗ f̂ † = 2ωn f̂ † + ihσ f̂ † + i f̂ †hσ. (22)

Our further strategy is to find the solutions of the Eilen-
berger equations in the S, F1, and F2 layers separately and then
match them in the interfaces with the boundary conditions.
Taking the second derivative of Eq. (20) and using Eq. (21),
we obtain the equation which contains only the normal Green
function inside the superconductor (see Appendix B for de-
tails). The solution of this equation is straightforward. Next
we substitute the obtained function ĝ into Eq. (21) and find
the anomalous Green functions f̂ and f̂ †. As a next step, we
find the anomalous Green functions in the ferromagnets. For
this purpose, we first eliminate the vector potential from the
equations Eq. (22) by means of the gradient transformation
and then solve the obtained equations which have the standard
form. Finally, we match the anomalous Green functions in the
S/F1 and F1/F2 interfaces and find all unknown constants. For
details of the calculations, see Appendix B. The final expres-
sions for the singlet components of the normal Green function

in the superconductor for parallel (g‖
s) and perpendicular (g⊥

s )
orientations of the magnetic moments in the F layers have the
following form:

g‖(⊥)
s (x) = ω̃n

�̃n
+ 2�2

�̃n|vx|
eknx

× (kn + κntanhϕn)tanhϕn + (κn + kntanhϕn)t‖(⊥)

(kn + κntanhϕn)2 + (κn + kntanhϕn)2t‖(⊥)
,

(23)

where �̃n = √
ω̃2

n + �2, kn = 2�̃n/|vx|, κn = 2ω̃n/|vx|, t‖ =
tan2(ψ1 + ψ2), t⊥ = (tan2ψ1 + tan2ψ2), ψ j = 2hd j/vx, and

ϕn = κnd + 2ievy

c|vx|
∫ d

0
AMy(x′)dx′ + 2ievz

c|vx|
∫ d

0
AMz(x′)dx′.

(24)
At the same time, inside the ferromagnets both g‖

s and g⊥
s are

uniform and equal to g‖
s (0) and g⊥

s (0), respectively.
For the parallel orientation of the magnetic moments in the

two F layers, the function g‖
s for the S/F1/F2 structure is the

same as the singlet component of the normal Green function in
the S/F bilayer where the thickness of the ferromagnet equals
to d . Thus, for θ = 0, we have Q‖

y = 0 while Q‖
z coincides

with one obtained in Ref. [19].
For the perpendicular orientation of the magnetic moments

(θ = π/2) to calculate the supercurrent, we expand the func-
tion gs up to the first order over the vector potential and then
substitute it into Eq. (19). Further, it is convenient to represent
the supercurrent as js = jM + jsurf , where jM is the standard
Meissner current flowing in the bulk superconductor and jsurf

is the surface correction arising due to the proximity effect.
Neglecting the small renormalization of the jsurf caused by A0

we can write it down in the following form:

jsurf
y (x) = −2�

(
d2

1 + 2d1d2
)
cT M0

ξ 2
0 v2

F

∑
n�0

�2

�2
n

〈
v2

y

|vx|Pnek0nx

〉
,

(25)

jsurf
z (x) = 2�

(
d2

2 − 2d1d2
)
cT M0

ξ 2
0 v2

F

∑
n�0

�2

�2
n

〈
v2

z

|vx|Pnek0nx

〉
.

(26)

Here, � = 8π2e2ν0v
4
F /(c2T 2), �n = √

ω2
n + �2, k0n = 2�n/|vx|, and

Pn = 1

sinh2(κ0nd )

{
[ρ + S(ρ)] tanh(κ0nd ) + t⊥

S2(ρ) + ρ2S2(ρ−1)t⊥
− 2ρ[S(ρ) tanh(κ0nd ) + ρS(ρ−1)t⊥][S(ρ) + S(ρ−1)t⊥]

[S2(ρ) + ρ2S2(ρ−1)t⊥]2

}
, (27)

where κ0n = 2ωn/|vx|, S(x) = x + coth(κ0nd ), and ρ =
ωn/�n. In the ferromagnets the surface current is equal to
jsurf (0). Finally, we integrate jsurf over x and comparing ob-
tained expression with Eq. (15) find the kernels Qz and Qy for
the perpendicular magnetic configuration:

Q⊥
z = �

(
d2

1 + 2d1d2
)

ξ 2
0

∑
n�0

T �2

�3
n

〈
v2

y

v2
F

(1 + k0nd )Pn

〉
, (28)

Q⊥
y = �

(
d2

2 − 2d1d2
)

ξ 2
0

∑
n�0

T �2

�3
n

〈
v2

z

v2
F

(1 + k0nd )Pn

〉
. (29)

For the clean S/F1/F2 structure with perpendicular orien-
tation of magnetic moments and identical thicknesses of the
ferromagnetic layers, i.e., d1 = d2 the typical dependencies
Q⊥

z (d1) and Q⊥
y (d1) are shown in Fig. 5. For comparison, we

also plot Q‖
z (d1) for the same structure with parallel magnetic
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FIG. 5. The dependencies of magnetic kernels Q for clean
S/F1/F2 structure with identical thicknesses of the ferromagnets,
i.e., d1 = d2, on d1. Here, ξ f = vF /h. The green curve corresponds
to Qz for parallel orientation of magnetic moments, while the red
and blue ones are Qz and Qy for perpendicular orientation, respec-
tively. The parameters are � = 2πT and h = 10πT . Here � =
8π 2e2ν0v

4
F /(c2T 2).

configuration. As expected, the induced magnetic field in
the superconductor is more pronounced for θ = π/2 than
for θ = 0. Another distinctive feature of these dependencies
is the oscillatory behavior of the corresponding magnetic
kernels. The dependencies Q⊥

z (d1) and Q⊥
y (d1) demonstrate

oscillations with the period of the order of ξh = vF /h, while
the period of the oscillations of Q‖

z (d1) is two times smaller.
The change in the Qz (Qy) sign causes the corresponding
changes in the sign of Bz (By) component of the induced
magnetic field in the superconductor. Thus, depending on d1

the Bz and By components of the field can be either parallel or
antiparallel to the corresponding magnetization components.
At d � ξ0, the envelopes of all dependencies increases as
functions of d1 being proportional to (d/ξ0)2 at d � ξ0, while
at d � ξ0, they decay exponentially. In contrast to Q‖

z (d1)
the dependencies Q⊥

z (d1) and Q⊥
y (d1) are not symmetric with

respect to the x axis. Moreover, Qz⊥ and Qy⊥ have opposite
sign. Thus, if By is parallel to M2, then Bz is antiparallel
to M1.

III. SHIFT IN FRAUNHOFER CRITICAL CURRENT
OSCILLATIONS IN S1/I/S2/F STRUCTURE

The electromagnetic proximity effect also manifest itself in
the shift of the Fraunhofer dependence of the critical current
versus the external magnetic field in the Josephson junction
with one electrode covered by composite ferromagnetic layer.
This provides the possibility to determine experimentally both
the modulus and the direction of the magnetic field induced in
the superconductor. Indeed, let us consider the junction (see
Fig. 6) where S2 electrode with the thickness of the order
of λ is covered by the composite ferromagnet. The other su-
perconducting electrode S1 has the thickness ds1 � λ and the
square cross-section with the side L satisfying the condition
λ < L < λJ , where λJ is Josephson penetration depth. Since

FIG. 6. The sketch of the Josephson junction with one supercon-
ducting electrode covered by the composite ferromagnet.

L < λJ the probe S1 does not perturb the measured magnetic
field distribution. The insulating layer I has the thickness
dI . If the junction is placed into the external magnetic field
H = Hzez + Hyey, the Josephson phase φ obeys the following
equation [23]:

∇φ = 2π

�0

[
4πλ2

0

c
(j+s − j−s ) + (A+

s − A−
s )

]
, (30)

where the signs “+” (“-”) correspond to x = −ds (x = −ds −
dI ) and �0 is superconducting flux quantum. Since the thick-
ness of the insulating layer is rather small we can approxi-
mately write down A+

y − A−
y ≈ HzdI and A+

z − A−
z ≈ −HydI .

The supercurrent j−s at the S1/I interface has the standard
form j−s = [êx × H] tanh (ds1/2λ0)c/(4πλ0) (êx is the unit
vector along the x axis), while j+s is renormalized due to
the presence of the spontaneous magnetic field inside the S2

superconductor. To calculate js = [c/(4π )]rotB inside the S2

layer, we solve the London equation (1) with the boundary
conditions B(0) = H − 4πM0Q and B(−ds) = H. The for-
mer condition follows from Eqs. (3) and (4). We obtain for the
supercurrent

j+sα = sα

c

4πλ0

{
Hβ tanh

(
ds

2λ0

)
+ 4πM0Qβ

sinh(ds/λ0)

}
. (31)

Here, if α = y (α = z), then β = z (β = y), sy = 1, sz = −1.
Substituting the found currents into Eq. (30), we immediately
obtain the Josephson phase φ(y, z) = nzy − nyz + C. Here, C
is the constant and the coefficients are

nz(y) = 2π

�0

[
Hz(y)(dI + 2λ̃) + 4πM0Qz(y)λ0

sinh(ds/λ0)

]
, (32)

where 2λ̃ = λ0{tanh[ds1/(2λ0)] + tanh[ds/(2λ0)]} [24]. Note
that Eq. (32) is valid only for ds values which are much larger
than the thickness of the region near the S/F interface where
the magnetic kernel substantially deviates from the London
one. Exactly this thickness cuts the divergence of Eq. (32) at
ds → 0 (see the detailed discussion in Sec. IV).
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Finally, we find the total current through the junction inte-
grating the current density jx(y, z) = jc sin(nzy − nyz + C):

I = − jcL2 cosC
sin(nzL/2)

(nzL/2)

sin(nyL/2)

(nyL/2)
. (33)

Thus the maximal current Ic through the junction has the
following form:

Ic = jcL2 �2
0

π2
(
�ext

y + �
spont
y

)(
�ext

z + �
spont
z

)

× sin

[
π

(
�ext

y + �
spont
y

)
�0

]
sin

[
π

(
�ext

z + �
spont
z

)
�0

]
, (34)

where �ext
y(z) = Hy(z)L(dI + 2λ̃) and �

spont
y(z) =

[4πM0Qy(z)λ0L]/[sinh(ds/λ0)] are the magnetic fluxes
generated by the external and spontaneous magnetic fields,
respectively. If one neglect the later contribution, then the
Eq. (34) takes the standard form for the rectangular junction
[24].

One can see, that both dependencies Ic(Hy) and Ic(Hz ) are
sfifted by the values proportional to the kernels Qy and Qz, re-
spectively. Thus, sequentially directing the external magnetic
field along two perpendicular components of the magnetiza-
tion of composite ferromagnet and measuring the Fraunhofer
dependencies of the critical current, one can independently
obtain both components of the magnetic field induced in the
superconductor due to the electromagnetic proximity effect.
Therefore this technique provides the possibility to determine
experimentally both the modulus and direction of the sponta-
neous magnetic field.

IV. LONG-RANGED SUPERCONDUCTIVITY CONTROL
OF THE MAGNETIC STATE IN F1/S/F2 STRUCTURES

The considered electromagnetic proximity effect mays also
play a role in the control of the mutual orientation of the
ferromagnetic moments in F/S/F spin valve. Let us consider
a simple model where the superconductor S with the thickness
ds ∼ λ is placed between two ferromagnets F1 and F2 with the
thicknesses d1 ∼ ξ f � λ, d2 ∼ ξ f � λ and the magnetiza-
tions M1 = M1ez, M2 = M2ez the electromagnetic proximity
effect causes the orientation of magnetic moments M1 and
M2 (see Fig. 8). If the currents inside both ferromagnets are
diamagnetic, then antiparallel magnetic configuration is more
favorable. To show it directly, we now consider the simple
model in which the F1 (F2) ferromagnet is characterized by
the London penetration depth λ1 (λ2) caused by the pen-
etration of Cooper pairs from the superconductor. At first,
we find the distribution of the vector potential A = Aey in
the whole structure using Eqs. (1) and (2). As before, inside
the superconductor we assume λ(x) = λ0 = const and obtain
As(x) = K1 cosh(x/λ0) + K2 sinh(x/λ0). The vector potential
inside F1 (F2) layer takes the form

AF1(2) = N1(2) cosh

(
x ∓ L1(2)

λ1(2)

)

+ 4πM1(2)λ1(2)

cosh[L1(2)/λ1(2)]
sinh

(
x

λ1(2)

)
, (35)

where L1(2) = d1(2) + ds/2. Using the continuity of A and
(B − 4πM) at the interfaces x = ±ds/2, we find the coeffi-
cients:

K1 = 4π (M̃1λ1r2 − M̃2λ2r1)

(r1v2 + r2v1)
,

K2 = 4π (M̃1λ1v2 + M̃2λ2v1)

(r1v2 + r2v1)
,

N1(2) = 1

cosh(d1(2)/λ1(2))

[
K1 cosh

(
ds

2λ0

)
± K2 sinh

(
ds

2λ0

)

∓ 4πM1(2)λ1(2)

cosh[L1(2)/λ1(2)]
sinh

(
ds

2λ1(2)

)]
,

where M̃1(2) = M1(2)[1 − cosh(d1(2)/λ1(2))], r1(2) = sinh(ds/

2λ0) sinh(d1(2)/λ1(2)) + [λ1(2)/λ0] cosh(ds/2λ0) cosh(d1(2)/

λ1(2)), and v1(2) = cosh(ds/2λ0) sinh(d1(2)/λ1(2)) +
[λ1(2)/λ0] sinh(ds/2λ0) cosh(d1(2)/λ1(2)).

Now we calculate the free energy per unit area F =∫
[(B − 4πM)2/(8π ) + A2/(8πλ2)]dx which can be rewrit-

ten as follows:

F = − 1
2 M1[AF1 (L1) − AF1 (ds/2)]

+ 1
2 M2[AF2 (−L2) − AF2 (−ds/2)] + 2π2

(
M2

1 d1 + M2
2 d2

)
.

Substituting the found vector potentials, we obtain

F = F0 + 16πλ1λ2M1M2

λ0(v1r2 + v2r1)
sinh2

(
d1

2λ1

)
sinh2

(
d2

2λ2

)
, (36)

where F0 is the part which does not depend on whether the
magnetic moments in the ferromagnets are parallel or antipar-
allel to each other. Since v1,2 > 0 and r1,2 > 0 the antiparallel
magnetic configuration is more favorable (see Fig. 8). In the
case λ1 = λ2 = λ0, the expression (36) takes the following
transparent form:

F = F0 + πλ0M1M2

sinh[(ds + d1 + d2)/λ0]

(
d1

λ1

)2(d2

λ2

)2

. (37)

In general case with a relatively thick ferromagnetic layers,
we may expect that qualitatively the behavior of the free
energy will be similar to (37), but with the parameters (di/λi )2

replaced in the dirty limit by the corresponding kernels QFi ∼
(ξFi/λi )2, where i = 1 and 2. Interestingly, the exchange inter-
action also contributes to the antiferromagnetic ordering of the
magnetizations in such structures. De Gennes [25] was first
who proposed this mechanism for a thin S layer in between
two ferromagnetic insulators. Later it was generalized for
the case of metallic ferromagnets [26–28]. Recently it has
been demonstrated the possibility to switch the F/S/F spin
valve into antiferromagnetic state by superconductivity [29].
This exchange mechanism of switching may operate for S
layer thicknesses of the order of superconducting coherence
length ξ0. For such thicknesses, the discussed electromagnetic
mechanism gives greater contribution than the exchange one
if the magnetizations satisfy the condition Mi > (λi/ξ f )2Hc1,
where Hc1 is the lower critical field. On the other hand the
electromagnetic mechanism is a long-ranged and should dom-
inate for S layer thickness larger than ξ0. Note that in the case
of diamagnetic currents inside F layers the electromagnetic
mechanism favors the antiferromagnetic ordering while in
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general case one can expect that the ground state configuration
is determined by the signs of the electromagnetic kernels
which depends on their thicknesses (see Fig. 2).

V. CONCLUSION

To sum up, we have developed the theory of the electro-
magnetic proximity effect in S/F1/F2 structure both in dirty
and clean limits. We have demonstrated that in dirty case
the magnetic field B induced in the superconductor is sig-
nificantly larger for the perpendicular magnetic configuration
(⊥) (the magnetization M1 in the F1 ferromagnet coincides
with z axis, while the magnetization M2 in the F2 layer is
directed along y axis) in comparison with the parallel one
(‖) (both M1 and M2 coincide with z axis), see Fig. 3.
The microscopical analysis based on the Usadel equation
shows that for the perpendicular magnetic configuration B⊥

y
component of the induced magnetic field is much more pro-
nounced than B⊥

z , which has the same order as B‖
z for the

parallel configuration (see Fig. 2). The effect is due to the
generation of the long-ranged superconducting correlations
in the perpendicular case. We also have demonstrated the
enhancement of B⊥

y in comparison with both B⊥
z and B‖

z for
clean structures (see Fig. 5). In this case, the magnitudes of
the induced magnetic field oscillate with the period of the
order of superconducting coherence length in ferromagnet
both in the parallel and perpendicular magnetic configuration.
It is interesting to estimate the ratio between the amplitude
of these oscillations for the Au/Nb/Co(2d0)/Co(d0) structure
and parameters relevant to the recent experiment (temperature
T = 3 K, superconducting critical temperature Tc ∼ 7.5 K,
exchange field in the ferromagnets h ∼ 7.4πT , supercon-
ducting gap � ∼ 1.4πT ), where a significant enhancement
(∼20 times) of the remote field was observed for the per-
pendicular magnetic configuration in comparison with the
parallel one [10]. At d0 ∼ 0.025ξ0, which corresponds to the
maximum values of B⊥

y and B⊥
z , the amplitude of the induced

magnetic field for the perpendicular case is ∼7 times larger
than for the parallel. Thus our theory provides an adequate
explanation of the experimental data in Ref. [10].

FIG. 7. Shift in the Fraunhofer critical current oscillations
in the S1/I/S2/F Josephson junction caused by the elec-
tromagnetic proximity effect. Here, I0y(z) = jcL2�0/[π (�ext

y(z) +
�

spont
y(z) )] sin [π (�ext

y(z) + �
spont
y(z) )/�0].

FIG. 8. The magnetic states and the corresponding magnetic
field profiles in different F1/S/F2 structures. The electromagnetic
proximity effect controls the magnetic state of two ferromagnets: in
the case when electromagnetic kernels QF1 and QF2 of the F1 and
F2 layers are positive antiparallel magnetic configuration is more
favorable.

Interestingly, that the direction of the spontaneous mag-
netic field generated in the superconductor strongly depends
on F1 ferromagnet thickness (see Fig. 4). This effect can
be probed experimentally by measuring the critical current
Ic of the Josephson junction with an electrode covered by
the composite F layer as a function of the external magnetic
field H. As we show, both Fraunhofer dependencies Ic(Hy)
and Ic(Hy) are shifted by the values proportional to Qy and
Qz, respectively (see Fig. 7). Thus one can independently
determine two components of the spontaneous magnetic field
generated in the superconductor due to electromagnetic prox-
imity effect.

We also demonstrated the possibility of long-ranged su-
perconductivity controlled electromagnetic coupling between
two ferromagnets in F1/S/F2 structures. In the case of dia-
magnetic supercurrents inside the ferromagnets, the ground
state of the system corresponds to antiferromagnetic ordering
(see Fig. 8). This electromagnetic mechanism of coupling
between two ferromagnets should dominate over the exchange
one [29] when the thickness of the S layer exceeds ξ0.

After this work was submitted, we learned about a related
work [30], where the electromagnetic proximity effect has
been discussed together with the spin-based inverse proximity
effect mentioned in our Introduction. The authors of Ref. [30]
argue that the spin polarization of the superconductor in S/F
structures can strongly affect the electromagnetic proximity
phenomenon discussed in our work changing the amplitude
and the direction of the spontaneous magnetic field inside
the superconductor. Their conclusion seems to be based on
the important assumption that the magnetic moment in the F
layer is induced only by the itinerant electrons. Clearly, this
assumption can break down for a wide class of ferromagnetic
materials where the dominant mechanism of magnetic order-
ing is associated with the localized spins (see Introduction).
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APPENDIX A: SOLUTION OF THE USADEL EQUATION
IN THE DIRTY LIMIT

The anomalous Green function in the F1 layer has the form

f (1)
s = Re(F1), f (1)

ty = A2 sinh(p1x)

sinh(p1d1)
, f (1)

tz = iIm(F1),

(A1)
while in the F2 ferromagnet the solution of the Usadel equa-
tion reads as

c f (2)
s = 2Re(F2), f (2)

ty = 2iIm(F2) sin θ + F3 cos θ,

f (2)
tz = 2iIm(F2) cos θ − F3 sin θ. (A2)

Here we use the following notations:

cF1 = fs0 cosh(q1x) + 2A1 sinh(q1x)

sinh(q1d1)
,

F2 = B1 cosh[q2(x − d )]

cosh(q2d2)
, (A3)

F3 = B2 cosh[p2(x − d )]

cosh(p2d2)
,

where q j = √
2(ωn + ih)/Dj , p j = √

2ωn/Dj ( j = 1 and 2 is
the index corresponding to the F1 or F2 layer), d = d1 + d2,
and

B1 = fs0

R(θ )

{
Q(p1, p2)W (θ ) cos θ

+ 2Re

[
Q(q1, p2)

cosh(q∗
1d1)

]
Q(p1, q∗

2 ) sin2 θ

}
, (A4)

B2 = −i
2 fs0

R(θ )
Im[Q(p1, q2)W (θ )] sin θ, (A5)

A1 = − fs0

2
cosh(q1d1) + B1 cos2 θ

2
+ B∗

1 sin2 θ

2
− B2

2
sin θ,

(A6)

A2 = 2iIm(B1) sin θ + B2 cos θ, (A7)

W (θ ) = 2Q(q∗
1, q∗

2 )

cosh(q1d1)
cos2 θ

2
+ 2Q(q1, q∗

2 )

cosh(q∗
1d1)

sin2 θ

2
, (A8)

R(θ ) = 4

[
T1(q1, q2) cos4 θ

2
− T1(q1, q∗

2 ) sin4 θ

2

]
cos θ

+ 4Re

[
T2(q1, q2) cos2 θ

2
+ T2(q∗

1, q2) sin2 θ

2

]
sin2 θ,

(A9)

cQ(ν1, ν2) = 1 + ν2 tanh(ν1d1) tanh(ν2d2)

ν1
,

T1(ν1, ν2) = Q(p1, p2)|Q(ν1, ν2)|2,
T2(ν1, ν2) = Q(ν1, ν2)Q(ν∗

1 , p2)Q(p1, ν
∗
2 ). (A10)

Next we substitute the expressions for the f̂ into the Eq.(7)
and calculate Q1, Q2, and Q3 using Eq. (6):

Q1 = α1Re
∑
ωn>0

{
f 2
s0

q2
1 cosh2 χ

[
q2

1d2
1 + q1d1 sinh(2q1d1 + 2χ )

− sinh(q1d1 + 2χ ) sinh(q1d1)

]
+ |A2|2

p2
1 sinh2(p1d1)

× [
p2

1d2
1 − p1d1 sinh(2p1d1) + sinh2(p1d1)

]}
, (A11)

Q2 = α2Re
∑
ωn>0

{
4
[
q2

2d2
2 + sinh2(q2d2)

]
q2

2 cosh2(q2d2)
B2

1

−
[
p2

2d2
2 + sinh2(p2d2)

]
p2

2 cosh2(p2d2)
|B2|2

}
, (A12)

Q3 = α2Re
∑
ωn>0

{
4[q2d2 − sinh(q2d2)]d1

q2 cosh2(q2d2)
B2

1

− [p2d2 − sinh(p2d2)]d1

p2 cosh2(p2d2)
|B2|2

}
, (A13)

where tanh χ = (2A1)/[ fs0 sinh(q1d1)], α j = (4π2T σ j )/(c2),
j = 1, 2. The values of Qy and Qz oscillate as functions of
ferromagnets’ thicknesses.

APPENDIX B: SOLUTION OF THE EILENBERGER
EQUATION IN THE CLEAN LIMIT

Our goal is to calculate the singlet component of the
normal Green function gs which enters the expression for the
supercurrent (19). For this purpose, we solve the Eilenberger
equation in all three layers and find the unknown constants
using the boundary conditions on the interfaces.

First, we solve the Eilenberger equation in the supercon-
ductor. Since we assume that all Green functions depend only
on x and concentrate on the solution in the region with the
thickness in the order of ξ0 � λ the Eilenberger equations in
the S layer reads as

vx∂xg = �∗ f − � f †, (B1)

vx∂x f + 2ω̃ f = 2�g, vx∂x f † − 2ω̃ f † = −2�∗g. (B2)

Taking the derivative of the Eq. (B1) and substituting ∂x f
and ∂x f † from Eqs. (B2), we find

∂2
xxg = 4�2

v2
x

g − 2ω̃

v2
x

(�∗ f + � f †). (B3)

Performing the same procedure with Eq. (B3) and using
Eq. (B1), we eliminate the anomalous Green functions and
obtain the following equation for the normal one:

∂3
xxxg − 4�̃

v2
x

∂xg = 0, (B4)

where �̃ = √
ω̃2 + �2. The solution of the above equation

which decays at x → −∞ reads as

g(x) = g1 + g2ekx, (B5)
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where k = 2�̃/|vx|, g1 and g2 are unknown 2 × 2 matrices.
Substituting (B5) into the Eqs. (B2), we obtain the anomalous
Green functions in the superconductor:

f (x) = f1e−sκx + q

κ
g1 + sq

k + sκ
g2ekx,

(B6)

f †(x) = f2esκx + q∗

κ
g1 − sq∗

k − sκ
g2ekx,

where κ = 2ω̃/|vx| and q = 2�/|vx|, s = sgn(vx ). With the
help of the normalization condition g2 + f f † = 1 we find that
f1 = f2 = 0, g1g2 = g2g1, and

g2
1 = k2

κ2
σ0. (B7)

If we represent the unknown matrices as g j = g js + g jtσ

( j = 1, 2), then from the Eq. (B7) with an additional assump-
tion about the singlet structure of the normal Green function
deep inside the superconductor we obtain g1s = ω̃/�̃, g1t = 0.
Finally, we write down the Green functions (B5) and (B6) in
the usual form g = gs + gtσ, f = fs + ftσ, f † = f̃s + f̃tσ and
obtain

gs = ω̃

�̃
+ g2se

kx, gt = g2t e
kx,

fs = �

�̃
+ sq

k + sκ
g2se

kx, f t = sq

k + sκ
g2t e

kx,

f̃s = �∗

�̃
− sq∗

k − sκ
g2se

kx, f̃ t = − sq∗

k − sκ
g2t e

kx, (B8)

where g2s and g2t are the parameters which should be find
from the matching conditions.

Now we turn to the solution of the Eilenberger equations
in the ferromagnets. The normal Green function in the F
layers does not depend on x and equals to g(0). To find the
anomalous ones we exclude the vector potential by gradient

transformation. The obtained equations have the standard
form. Introducing the following phase:

β(a, b) = evy

cvx

∫ b

a
Ay(x′)dx′ + evz

cvx

∫ b

a
Az(x′)dx′, (B9)

we immediately can write down all components of the anoma-
lous Green functions in the F1 layer:

fs = (a1e−κ f x + a2e−κ
∗
f x )e−2iβ(0,x),

ftz = (a1e−κ f x − a2e−κ
∗
f x )e−2iβ(0,x),

fty = a3e−κxe−2iβ(0,x),
(B10)

f̃s = (b1eκ f x + b2eκ
∗
f x )e2iβ(0,x),

f̃t z = (b1eκ f x − b2eκ
∗
f x )e2iβ(0,x),

f̃ty = b3eκxe2iβ(0,x),

where κ f = 2(ω + ih)/vx, κ = 2ω/vx. In the F2 layer, the
anomalous Green functions satisfying the boundary condi-
tion in the outer boundary reads as fl = Fle2iβ(x,d ), f̃l =
F̃l e−2iβ(x,d ), where l = {s, ty, tz} and

Fs = m1e−κ f (x−d ) + m2e−κ
∗
f (x−d ),

Fty = [m1e−κ f (x−d ) − m2e−κ
∗
f (x−d )] sin θ + m3e−κ(x−d ) cos θ,

Ftz = [m1e−κ f (x−d ) − m2e−κ
∗
f (x−d )] cos θ − m3e−κ(x−d ) sin θ,

F̃s = m1eκ f (x−d ) + m2eκ
∗
f (x−d ),

F̃ty = [m1eκ f (x−d ) − m2eκ
∗
f (x−d )] sin θ + m3eκ(x−d ) cos θ,

F̃tz = [m1eκ f (x−d ) − m2eκ
∗
f (x−d )] cos θ − m3eκ(x−d ) sin θ.

(B11)

Finally, we calculate all unknown constants including desired
g2s which enters gs using continuity of the singlet and the
triplet components of the anomalous Green functions in the
S/F1 and S/F2 interfaces. The resulting gs has the form (23).
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