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We here propose a feasible method to detect hidden orders in high-Tc superconductors. When we consider a
d-wave superconductor being in proximity to a two-dimensional Weyl model, a topological superconductor with
gapless edge states may be realized. The system can become topologically trivial when an additional d-density-
wave order is also included. The edge states become gapped and may be detected in experiments. For this,
the d-density-wave order can be detected experimentally, and different scenarios for the pseudogap in high-Tc

superconductors may be distinguished. This method may be used to detect various hidden orders through putting
high-Tc superconductors being in proximity to designated topologically nontrivial materials.
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I. INTRODUCTION

Although the high-Tc superconductivity was discovered in
cuprate materials more than 30 years ago [1], no consensus
has so far been reached regarding its mechanism. This is
partially due to lack of a profound understanding of pseu-
dogap states [2–8]. Generally, there are two different sce-
narios for the pseudogap states, according to the relationship
between the pseudogap and the superconducting pairing gap.
One is the phase fluctuation scenario, suggesting that the pseu-
dogap is due to the preformed Cooper pairs [4]. The other lies
in that the pseudogap may be due to certain competing hidden
orders [5–8]. Actually, the existence of possible competing
orders in high-Tc superconductors is a rather important issue.
Now it was widely believed that multiple competing orders
may exist, and they are not limited to explaining the pseu-
dogap phenomenon [6–10]. Identifying various orders in the
superconducting state is important and we may find a useful
clue in searching for the real origin of superconductivity.

Recently, research on topological superconductors has also
attracted tremendous interest [11]. A topological supercon-
ductor is characterized by a full superconducting gap in the
bulk and topologically protected gapless states at the system
edges. The edge states are in connection with the Majorana
bound states, which obey non-Abelian statistics and have po-
tential applications in topological quantum computation [12].
Notably, most previous efforts have been made in searching
for topological superconductors and Majorana bound states. It
was proposed theoretically that an effective topological super-
conductor may be realized in the heterostructure system, e.g.,
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the superconductor is in proximity to a topological insulator
[13], quantum anomalous insulator [14], or a semiconductor
with the spin-orbital coupling [15–17]. Experimentally, the
above heterostructure systems were indeed realized and pos-
sible signatures of Majorana bound states were reported in
these systems [18–25]. On the other hand, since the high-Tc

superconductors have a much larger pairing gap, it is natural
to consider whether the topological superconductor can be
realized in the high-Tc superconductor families. So far, the
cuprate-based heterostructure has been studied intensively
[26–30], and several signatures of proximity induced super-
conductivity were indeed probed experimentally [26,27]. It
was also indicated theoretically and verified experimentally
that the iron-based superconductors may provide another plat-
form based on high-Tc superconductors for realizing topolog-
ical superconductors [31–35].

In this paper we elucidate that the topological heterostruc-
ture may provide a useful platform to detect and resolve the
possible competing orders in high-Tc superconductors. As is
known, in the superconducting state of high-Tc superconduc-
tors, it may be rather difficult to detect the possible competing
orders because such order is normally covered up by the
superconducting gap. Even in the case that some signatures
of certain order are seen, it is still difficult to determine its
physical origin because the energy spectrum may be qualita-
tively the same for different theoretical scenarios. While in the
topological system, there exist gapless edge states, such that
even if the bulk states are similar to each other for different
orders, the edge states can be significantly different. Thus we
may be able to resolve different competing orders through
studying the edge states. Especially, the topological protected
features may be sensitive to a certain competing order, which
may be exploited to determine the physical origin of the
pseudogap behavior and to probe some weak hidden orders.
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FIG. 1. The normal state energy bands from the Hamiltonian of
Eq. (1).

The rest of the paper is organized as follows. In Sec. II
we introduce the model and present the relevant formalism.
In Sec. III we report numerical calculations and discuss the
obtained results. Finally, we give a brief summary in Sec. IV.

II. MODEL AND FORMALISM

To demonstrate our proposal, we start from a two-
dimensional lattice Weyl model, given by

HN =
∑
kσ

εkσ c†
kσ ckσ +

∑
k

(λkc†
k↑ck↓ + H.c.), (1)

with εkσ = −2σ t (cos kx + cos ky) being a spin polarized hop-
ping term. λk = 2λ0(sin kx + i sin ky) corresponds to a spin-
orbital coupling. Then we can obtain two energy bands with
E (kx, ky) =

√
εkσ

2+ | λk |2. These two bands as functions of
the momentums are plotted in Fig. 1. The Weyl points at the
positions (±π, 0) and (0,±π ) are seen clearly. The above
Hamiltonian may be realized in the HgTe/CdTe quantum well
system [36,37], or the single layer LaCl/LaBr materials [38].

In proximity to a cuprate high-Tc superconductor, the d-
wave superconducting (DSC) pairing term is induced to the
system. We also consider a competing d-density-wave (DDW)
order, which was proposed to describe the pseudogap state in
the underdoped high-Tc cuprates [5].

The Hamiltonian of the DSC and DDW parts are
expressed as

HDSC =
∑

k

�k(c†
k↑c†

−k↓ + H.c.) (2)

and

HDDW =
∑
kσ

Wk(c†
kσ ck+Qσ ), (3)

where Q = (π, π ), �k = 2�DSC(cos kx − cos ky), and Wk =
2i�DDW(cos kx − cos ky).

We define the topological invariant N expressed as

N = 1

2π

∫∫ [
∂ay(k)

∂kx
− ∂ax(k)

∂ky

]
dkxdky, (4)

with

aα (k) = −i
∑

m∈occ

〈um(k)| ∂

∂kα

|um(k)〉, (5)

where | um(k)〉 is the eigenstate of the occupied state m.
To study the edge states, we define a partial

Fourier transformation along the x direction with
C†

k = 1√
Nxa

∑
x C†

ky
(x)eikxx. The Hamiltonian is reduced to

the quasi-one-dimensional one, which can be rewritten as

HN = −t
∑

ky,x,σ

[σc†
kyσ

(x)ckyσ (x + a) + H.c.]

− iλ0

∑
ky,x

[c†
ky↑(x)cky↓(x + a) + H.c.]

− 2t
∑

ky,x,σ

σ cos kyc†
kyσ

(x)ckyσ (x)

+ 2iλ0

∑
ky,x

sin kyc†
ky↑(x)cky↓(x), (6)

with a being the lattice constant along the x direction.
The Hamiltonian for the DSC pairing and DDW parts are

rewritten as

HDSC =
∑
kyx

[�DSCc†
ky↑(x)c†

−ky↓(x ± a) + H.c.]

−
∑
kyx

[2�DSC cos kyc†
ky↑(x)c†

−ky↓(x) + H.c.] (7)

and

HDDW = −
∑
kyxσ

[i�DDWc†
kyσ

(x)cky+πσ (x + a) + H.c.]

−
∑
kyxσ

[2i�DDW cos kyc†
kyσ

(x)cky+πσ (x)]. (8)

The whole Hamiltonian can be written as 4Nx × 4Nx or
8Nx × 8Nx (with the DDW order) matrix form. Then the x-
dependent spectral functions Ax(ky, ω) and the local density
of states ρx(ω) can be calculated from the imaginary part of
the Green’s function, expressed as

Ax(ky, ω) =
∑
n,σ

∣∣un
xσ (ky)

∣∣2

ω − En(ky) + i�
(9)

and

ρx(ω) = 1

Ny

∑
ky

Ax(ky, ω). (10)

� is a small infinitesimal quantity which is usually induced to
make the Green’s function converge. un

xσ and En(k) are eigen-
vectors and eigenvalues through diagonalizing the Hamilto-
nian matrix.

In the following, we take the nearest-neighbor hopping t
and the lattice constant a as the energy and length units. The
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FIG. 2. Energy eigenvalues of the Hamiltonian in different states
[a pure DSC state (a), the coexistence states (b) and (c), and a pure
DDW state (d)], with the open boundary condition along x direction
being considered.

other input parameters are chosen as λ0 = 0.5 and � = 0.01.
We have checked numerically that our main results are not
sensitive to the parameters.

III. RESULTS AND DISCUSSION

We first study the energy spectra of different states, in-
cluding the pure DSC state, the DDW state, and the state
in which the DSC order and the DDW order coexist. Note
that the bulk energy bands from all three states are fully
gapped and a topological invariant [Eq. (4)] is well defined.
We now study numerically the edge states of these three states
through considering the open boundary condition along the
x direction with 1 � x � 100. Here the system size is large
enough for observing the edge states and our main results
are qualitatively the same when the open boundary rotates to
other directions. The numerical results of the energy bands for
the reduced quasi-one-dimensional Hamiltonian are presented
in Fig. 2. In the pure DSC state with �DDW = 0, as is seen
in Fig. 2(a), there are in-gap edge states crossing the Fermi
energy at the momentum ky = 0 and ky = π . The edge states
connect the upper and lower energy bands, indicating that
the system may be a topological superconductor. The energy
bands for the coexisting state are displayed in Figs. 2(b) and
2(c). For this case, the energy bands at the system edges are
also fully gapped, with the gap magnitude depending on the
DDW intensity. For the energy band of the pure DDW state, as
presented in Fig. 2(d), it is also fully gapped for both system
bulk and system edge. Thus for both the coexisting state and
the pure DDW state, the system is topologically trivial. This
result may be used to detect the DDW order experimentally.
The numerical results for the energy spectra are consistent
with the numerical calculations of the topological invariant.
For the pure DSC state, the topological invariant N equals 2
obtained from Eq. (4), corresponding to the two unequivalent
Weyl points at the momentums (0, π ) and (π, 0) shown in
Fig. 1. When the DDW term is added, the topological invariant

FIG. 3. The intensity plots of spectral functions at the system
bulk (a)–(c) and the system edge (d)–(f) for different states.

immediately turns to zero, as a result, the energy bands at the
system edge are also fully gapped.

Experimentally, the possible edge states may be detected
by the angle-resolved photoemission spectroscopy (ARPES)
experiments [39] or the scanning tunneling microscopy
(STM) techniques [40]. The results of these two experi-
ments can be described theoretically by the spectral function
[Eq. (9)] and the LDOS [Eq. (10)], respectively. We first study
numerically the spectral function with the open boundary con-
dition along the x direction with 1 � x � 100. The intensity
plots of the spectral functions for the three different states in
the system bulk and at the system edge are presented in Fig. 3.
In the system bulk with x = 50 [Figs. 3(a)–3(c)], the spectra
are fully gapped for all three states considered. It seems that
there is no significant difference between the bulk spectra of
different states. Especially when the DDW order coexists with
the DSC order, the spectrum is almost the same as that of the
pure DSC state, as seen in Figs. 3(a) and 3(b). Here the DDW
gap is indeed covered up, and thus it seems rather difficult to
detect such a gap merely from the bulk spectra.

We now turn to address the edge states of these three states.
The numerical results for the spectral functions at the system
edge (x = 1) are presented in Figs. 3(d)–3(f). In the pure DSC
state [Fig. 3(d)], there are gapless edge states crossing the
Fermi energy. While when a DDW term is added [Fig. 3(e)],
the edge states end up at a nonzero finite energy, indicated
by the arrows. An obvious energy gap is seen clearly. In
the pure DDW state [Fig. 3(f)], an obvious energy gap is
also seen clearly. Therefore, the existence of the DDW order
may indeed be detected from the edge states by ARPES
experiments.

Now we study the LDOS spectra. Considering the open
boundary along the x direction, the LDOS from the system
bulk to the system edge are plotted in Fig. 4. First let us look
at the spectra in the system bulk. The intensities reach zero
value at low energies for all three states, indicating the fully
gapped feature. Also, in the coexisting state, the DDW gap
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FIG. 4. The LDOS for different states for a two-dimensional system.

is almost hidden by the DSC gap and may be difficult to be
detected experimentally.

Let us study the LDOS spectra at the system edge. In the
pure DSC state, as is seen in Fig. 4(a), the LDOS intensities
at low energies are nonzero, due to the gapless edge states.
While when an additional DDW order is added to the system
[Fig. 4(b)], the low energy intensities recover to the zero
value. Especially, there exist two obvious low energy peaks
lying symmetric at the two sides of the Fermi energy. These
two low energy peaks are corresponding to the energy gap
opened by the DDW term at the system edge, as indicated by
arrows in Fig. 3(e). This additional gap feature can be seen
clearly from the LDOS spectrum in the coexisting state. In
the pure DDW state [Fig. 4(c)], the LDOS spectrum is fully
gapped and no in-gap features exist.

We wish to indicate that it may be difficult to use the above
LDOS spectra for resolving different states in real materials.
The whole system is a multiband system and some low
energy peaks may be proximity induced. Moreover, here the
LDOS spectrum at the system edge has no zero energy peak
even for a topologically nontrivial superconducting state, as
presented in Fig. 4(a). Actually, this result is understandable
because the low energy edge states in a two-dimensional
system are continuous crossing the Fermi energy. The small
nonzero values at low energies are difficult to be resolved
in real materials. It may also be due to finite temperature

smoothing or some other possible broadening effect. On the
other hand, note that in a quasi-one-dimensional topological
superconductor, usually the low energy edge states are the
zero energy bound states protected by a minigap [41]. As
a result, the LDOS at the system edge should have a sharp
peak at zero energy. We here propose that we can consider the
system with a DSC cuprate superconductor being coupled to
a quasi-one-dimensional semimetal system. Then the LDOS
spectra for the pure DSC state should be significantly different
from the other two states and may be resolved by the STM
experiments.

We plot, in Fig. 5, the LDOS spectra of different states for
the system size 200 × 8 with the open boundary condition
along the x direction. In the system bulk with x = 100, the
LDOS spectra are fully gapped at low energies for all three
states we considered. While at the system edge with x = 1,
as is seen in Fig. 5(a), there is one zero energy peak and two
symmetric low energy peaks in the pure DSC state. When the
DDW order is added to the system, as is seen in Figs. 5(b) and
5(c), the zero energy peak disappears. Thus for the quasi-one-
dimensional system, the pure DSC state may be distinguished
from the state with the DDW order. In this way, the existence
of the DDW order may be detected by the STM experiments.

We have demonstrated that the topological property varies
when a DDW order is added, so that the existence of the DDW
order may be detected through investigating the edge states.

FIG. 5. The LDOS for different states for a quasi-one-dimensional lattice with the system size 200 × 8.
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The size effect is also checked numerically and our results
do not change as the system size increases. The spectra at
the system edge recovers to the bulk value when four lattices
away from the system edge. We also studied the disordered
effect and confirmed that the disorder does not affect the main
results.

Our main results about the topological features can be un-
derstood through block diagonalizing the Hamiltonian. In the
pure superconducting state, as have been verified in Ref. [42],
one may define two spinless operators, then the system is
equivalent to a two-band p + ip superconductor with the same
chirality, with the spin-orbital coupling term λk turns to the
quasiparticle pairing term. As a result, the system should be a
topological superconductor.

In the presence of the DDW order, we start from the
4 × 4 nonsuperconducting Hamiltonian in the momentum
space with �DSC = 0. Defining the quasiparticles αkσ and
βkσ , with (

αkσ

βkσ

)
=

(
ukσ vkσ

vkσ ukσ

)(
ckσ

ck+Qσ

)
, (11)

where ukσ and vkσ are expressed as

(ukσ , vkσ ) =
(

i | Wk |√
2Ek(Ek − εkσ )

,

√
Ek − εkσ

2Ek

)
, (12)

with Ek =
√

ε2
kσ+ | Wk |2 .

Then the 4 × 4 Hamiltonian in the pure DDW state can be
expressed as

H = 

†
k

⎛
⎜⎝

Ek iλk 0 0
−iλ∗

k −Ek 0 0
0 0 Ek iλ∗

k
0 0 −iλk −Ek

⎞
⎟⎠
k, (13)

where 

†
k = (α†

k↑, β
†
k↓, α

†
k↓, β

†
k↑).

The above Hamiltonian has been block diagonalized to two
2 × 2 matrices, which are equivalent to the two fully gapped
p-wave pairing superconductors with the opposite chiralities.
Thus the whole Hamiltonian should be topologically trivial.
When the superconducting term is added to the system, the
Hamiltonian is written as the 8 × 8 matrix. According to
Ref. [42] one may also define spinless operators, such that an
effective four-band p-wave superconductor can be obtained,
among which two bands have iλk pairing, and the other two
have iλ∗

k pairing. As a result, the whole topological invariant
keeps zero in the superconducting state.

From the above analytical results, one may understand that
our main results are rather robust and should not depend on
the input parameters we considered. While we would like
to emphasize that here the d-wave symmetry is anisotropic
and will generate two nodal lines. Generally, our main results
do not depend on the directions of the DSC order or the
DDW order. While if the nodal lines rotate to cross the Weyl
points, the system turns to a gapless one and the topological
invariant may not be well defined. For this case, our proposal
may not work. On the other hand, we need to pinpoint that
here a microscopic model should include three parts of the
Hamiltonian, i.e., the original DSC superconductor, the Weyl
semimetal system, and their tunneling. With a self-consistent
calculation the two systems may be coupled through the direct

or the inverse proximity effect [43–46]. Since the cuprate
superconductor itself is a gapless system, for the whole system
including the cuprate DSC Hamiltonian, the whole band struc-
ture should also be gapless. Then it is difficult to analyze the
topological feature numerically and analytically. Thus in the
present work, the considered model is phenomenologically
written through including the DSC pairing term and the
DDW term directly into the two-dimensional Weyl semimetal.
Neither the possible mixing of the band structures between
the cuprate system and the Weyl semimetal, nor the possible
inverse proximity effect [44–46] is considered here. This phe-
nomenological approach has been widely used in various pro-
posals of proximately induced topological superconductors
[13–17,30–32]. Experimentally, it was indeed reported that
the fully gapped topological superconductor may be realized
through coupling to a gapless cuprate superconductor [27].
Moreover, it has been proposed that in cuprate superconduc-
tors, there may exist two independent interlayer coupling,
namely, the single particle hopping effect and the two-particle
pair tunneling effect [47–49]. The mixing of the band structure
and the inverse proximity effect may be avoided technically by
inserting a thin insulating layer between them. Then the single
particle hopping and the inverse proximity effect should be
negligibly weak. The DSC and the DDW orders are induced
to the Weyl semimetal by the two-particle pair tunneling effect
[47–49].

It is insightful to investigate the coexistence of the su-
perconducting order with some other possible orders, and
compare the numerical results with those for DDW order. We
now consider two kinds of spin order, namely ferromagnetic
(FM) order and antiferromagnetic (AFM) order, with the
corresponding Hamiltonian being expressed as

HFM =
∑
kσ

σ�FMc†
kσ ckσ (14)

and

HAFM =
∑
kσ

σ�AFM(c†
kσ ck+Qσ + H.c.). (15)

In the presence of the FM order, the system in the non-
superconducting state is fully gapped and topologically non-
trivial. The Hamiltonian is still expressed as a 2 × 2 matrix in
the momentum space. According to Ref. [42], the supercon-
ducting Hamiltonian should still be topologically nontrivial.
In the presence of the AFM order, the normal state Hamilto-
nian is expressed as the 4 × 4 matrix. However, different from
the case of the DDW order, here the Hamiltonian cannot be
simply block diagonalized and then the topological features
should be stable when additional AFM order is added to the
system.

Now we study this issue numerically considering when
the FM or AFM order coexists with the DSC pairing order.
Considering the open boundary condition, the energy bands
of the two kinds of coexisting states are plotted in Fig. 6. As
is seen, for both cases, there are gapless edge states at ky = 0
and ky = π . The numerical results for the energy bands are
consistent with the calculations of the topological invariant,
namely, we have N = 2 for both coexisting states. Thus the
topologically nontrivial behavior is robust and stable when the
FM or AFM order is added into the system.
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FIG. 6. Energy eigenvalues of the Hamiltonian when the superconducting order coexists with the spin order, with the open boundary
condition along x direction being considered.

We here would like to remark on the significance of the
present work. First, we have provided a workable method
to detect possible weak hidden orders in high-Tc supercon-
ductors. Our results may be used to distinguish different
pictures of the pseudogap behavior. Second, it has been noted
that our minimal model is considered for illustration. One
may also choose another topologically nontrivial system to
detect other possible competing orders, e.g., if a topological
insulator system with time-reversal symmetry is considered,
a topological superconductor protected by the time-reversal
symmetry may be constructed. This system may be used to
detect both the spin order and the DDW order because the
time-reversal symmetry is broken by these orders. Moreover,
we expect that our scenario may also work well for iron-based
superconducting materials. Recently it has been reported the
topological superconductor can be realized in the family of
iron-based superconductors. And it was widely believed that
multiple competing orders may also be important in under-
standing the superconductivity of this family. At last, we have
also provided an effective method to realize the topological
superconductor with a high-Tc superconductor platform. The
results may be useful in the further studies of topological
superconductors and Majorana bound states, which may have
potential application in topological quantum computation.

IV. SUMMARY

In summary, we have proposed that the heterostructures
may be used to detect the hidden orders in high-Tc supercon-
ductors. A typical system, namely a two-dimensional Weyl
model in proximity to a high-Tc superconductor with the d-
wave pairing order or a possible competing d-density-wave
order, is considered to endorse our proposal. For the pure
superconducting state, the system is topologically nontrivial
and there are gapless edge states crossing the Fermi energy.
When an additional d-density wave is added, the system be-
comes topologically trivial and the edge states are gapped. We
elaborate that these features may be detected experimentally
through the spectral functions and the local density of states
at the system edge. Our results may be helpful for exploring
the mechanism of the high-Tc superconductivity.
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