
PHYSICAL REVIEW B 99, 104513 (2019)

Effects of a magnetic field on vortex states in superfluid 3He-B

Kenichi Kasamatsu,1 Ryota Mizuno,2 Tetsuo Ohmi,1 and Mikio Nakahara3,4

1Department of Physics, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
2Department of Physics, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

3Department of Mathematics, Shanghai University, 99 Shangda Road, Shanghai 200444, China
4Research Institute for Science and Technology, Kindai University, Higashi-Osaka 577-8502, Japan

(Received 9 January 2019; published 18 March 2019)

Superfluid 3He-B possesses three locally stable vortices known as a normal-core vortex (o vortex), an A-phase-
core vortex (v vortex), and a double-core vortex (d vortex). In this work, we study the effects of a magnetic
field (� 0.1 T) parallel or perpendicular to the vortex axis on these structures by solving the two-dimensional
Ginzburg-Landau equation for two different sets of strong coupling correction. The energies of the v and d
vortices have nontrivial dependence on the magnetic field. As the parallel magnetic field increases, the v vortex
is energetically unstable even at high pressures and the d vortex becomes energetically most stable at all possible
pressures. In perpendicular magnetic field, the energy of the v vortex is lower than that of the d vortex in the
high pressure regime. In addition, the orientation of the double cores in the d vortex prefers to be parallel to the
magnetic field at low pressures, while the d vortex with the double cores perpendicular to the magnetic field is
allowed to continuously deform into the v vortex with increasing pressure.

DOI: 10.1103/PhysRevB.99.104513

I. INTRODUCTION

Superfluid 3He is a typical anisotropic fermionic superfluid
consisting of spin-triplet p-wave Cooper pairs [1]. The order
parameter of superfluid 3He is characterized by 3 × 3 complex
fields, which allows an existence of a rich variety of topo-
logical excitations. An example of topological excitations is a
quantized vortex. Quantized vortices in superfluid 3He involve
extremely rich physical phenomena and this topic has been
studied for decades [2,3].

Quantized vortices in superfluid 3He are classified by the
symmetry property [4,5]. Several types of axisymmetric vor-
tices exist, depending on which discrete symmetries are pre-
served in the order parameter of the vortex states. The actual
vortex structure at given temperature and pressure is obtained
by minimizing the appropriate free energy.

For the 3He-B phase, from many theoretical studies, it has
been known that three types of vortices exist as the local
minima of the free energy. One possible structure is known
as the o vortex [6,7], which preserves the maximal symmetry
group and its core is filled with the normal component.
However, the o vortex is not the absolute energy minimum
state in the parameter region where the B phase is stable [4,8].
Another axisymmetric vortex is the v vortex [4,8], which has
magnetic reflection symmetry on a plane including the vortex
line. The core of the v vortex is filled with the A-phase and
the β-phase components. In experiments, the v vortex exists
in high-temperature and high-pressure region in the p-T phase
diagram of superfluid 3He-B [9].

For low-temperature and low-pressure region, however,
the axisymmetry of the v vortex is spontaneously broken
into the double vortex-core structure, known as the d vor-
tex. Thuneberg revealed this double-core structure by direct
numerical minimization of the Ginzburg-Landau (GL) free

energy functional [10,11]. The d vortex can be interpreted as
two half-quantum vortices bound together by the planar phase
[10–12]. The nonaxisymmetric feature of the d vortex has
been experimentally observed by Kondo et al. [13] through
the measurement of a new Goldstone mode associated with
the spiral twisting of the anisotropic core. The vortex core
structure has been also calculated based on the quasiclassical
Eilenberger equation [14–16]. This method is applicable to the
weak-coupling regime, although it cannot explain the pressure
dependence of the vortex structure in the strong-coupling
regime.

The purpose of this paper is to analyze the influence of a
magnetic field on the stability of the aforementioned vortices.
We calculate the energy of the vortices using the GL free
energy, and construct the phase diagram of vortices in the
pressure and magnetic-field-strength plane. Here, the effect
of a magnetic field is included through the quadratic term
in the GL free energy. The energetic stability is nontrivial
because the magnetic field suppresses some order parameter
components in the core of the v and d vortices. To obtain the
reliable results for the vortex energy, it is important to use
the newly proposed values of the strong coupling correction
for the β parameters in the bulk GL free energy [17]. To this
end, we adapt two different data sets. One is the Sauls-Serene
values (set I) [18], which was employed in the seminal paper
by Thuneberg [10,11]. The other is obtained by optimizing
various experimental data [19] (set II).

We find that, although both parameter sets give qualita-
tively similar vortex phase diagrams without a magnetic field,
set II provides it closer to the experimental observations.
When a magnetic field parallel to the vortex axis is turned on
within the range where the bulk B phase is thermodynamically
stable, the d vortex is the most stable structure throughout the
pressure range. A magnetic field perpendicular to the vortex
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axis stabilizes the v vortex; as the field strength increases, the
stable region of the v vortex extends to the lower pressure
region. It also breaks the rotational degeneracy with respect
to the symmetry axis of the d vortex.

This paper is organized as follows. In Sec. II A, we outline
the GL free energy required to analyze the vortex structure in
superfluid 3He-B and list two sets of parameters in the energy
functional. Section II B briefly reviews the bulk energy of
superfluid 3He and Sec. II C describes the prescription of the
numerical calculation. In Sec. II D, we show the numerical
results for the case without the magnetic field, which is
compared with those of the previous literature to confirm the
validity of our calculation. Section III is the main part of
our paper, where we show the numerical analysis of vortices
in the presence of a magnetic field parallel (Sec. III A) and
perpendicular (Sec. III B) to the vortex axis. Section IV is
devoted to conclusion.

II. GINZBURG-LANDAU THEORY OF VORTEX
STATES IN SUPERFLUID 3He

We first introduce a formulation based on the GL free
energy functional for the order parameter of superfluid 3He.
After describing the numerical procedure of the energy mini-
mization, we analyze vortices in the B phase without a mag-
netic field and compare the results with those of the previous
work to justify our calculation. We repeat the calculation
with the parameters set I and set II for the strong coupling
corrections and reproduce the results in Thuneberg [10,11] for
set I. The results for set II have not been reported before.

A. Ginzburg-Landau free energy

The order parameter of superfluid 3He is given by a
gap function �̂, which is a symmetric 2 × 2 matrix in spin
space [1,2]. By introducing the d vector d = (dx, dy, dz ), the
gap function can be written as �̂ = idμσμσy, where σ =
(σx, σy, σz ) is the Pauli matrix and summation over repeated
indices is understood. By incorporating the representation
dμ = Aμi p̂i with unit vector p̂ = ( p̂x, p̂y, p̂z ) of the momen-
tum on the Fermi surface, we write

�̂( p̂) = iAμiσμσy p̂i, (μ, i = x, y, z). (1)

Thus superfluid 3He is characterized by complex tensor (Aμi )
inherent in the p-wave (L = 1) and spin-triplet (S = 1) pair-
ing, where μ and i refer to the spin and the orbital indices,
respectively.

The GL theory is valid when we confine ourselves within
the situation near the superfluid transition temperature T �
Tc. By using Aμi, the bulk free energy density in the GL
expansion takes the form

fB = − α(t )A∗
μiAμi + β1A∗

μiA
∗
μiAν jAν j

+ β2A∗
μiAμiA

∗
ν jAν j + β3A∗

μiA
∗
νiAμ jAν j

+ β4A∗
μiAνiA

∗
ν jAμ j + β5A∗

μiAνiAν jA
∗
μ j, (2)

which is invariant under separate spin and real space ro-
tations in addition to the gauge transformation, namely
U(1)×SO(S)(3) × SO(L)(3). The coefficient α(t ) of the sec-
ond order term has a temperature dependence α(t ) = α0t

TABLE I. List of the coefficients for the fitting of the correction
of β according to the paper by Sauls and Serene [18]. Write “set I.”

j A(1)
j A(2)

j A(3)
j A(4)

j

1 − 0.041318 0.015586 − 0.0043854 0.00044482
2 − 0.13306 0.081867 − 0.025704 0.0030876
3 − 0.18713 0.10679 − 0.030986 0.0037026
4 − 0.28746 0.14638 − 0.043984 0.0054785
5 − 0.24049 0.090797 − 0.023003 0.0015738

with a constant α0 and a small parameter t = 1 − T/Tc. We
consider the pressure range 0 � p � 3.44 MPa, beyond which
the system solidifies. The fourth order contribution to the
bulk free energy has five terms with coefficients β j . In the
weak-coupling limit at zero pressure, these coefficients satisfy
the relation

−2βwc
1 = βwc

2 = βwc
3 = βwc

4 = −βwc
5 ≡ 2β0, (3)

where β0 = 7ζ (3)N (0)/[120π2(kBTc)2] with the density of
states at the Fermi surface per spin N (0) and the Riemann
zeta function ζ (3). The pressure dependence can be included
by the strong-coupling corrections for β j , which are written as
�β̃ j = �β j/β0 = (β j − βwc

j )/β0. However, the exact values
of the correction as functions of the pressure are not known.
Here, we use two data sets. One is the theoretical evaluation
by Sauls and Serene [18]. In their paper, the values of �β̃ j

for six values of pressure are given. In our work, these points
and �β̃ j = 0 at p = 0, where β j (p = 0) coincide with the
weak-coupling values of Eq. (3), are interpolated through
the fourth-order polynomials �β̃ j = ∑4

k=1 A(k)
j pk as shown in

Fig. 1(a), where p (MPa) is pressure. The list of the fitting
parameters A(k)

j are shown in Table I. We refer to this set of β j

as “set I.”
The other is described in Choi et al. [19], which reports a

new data of the βi values as functions of the pressure based on
past experiments. The thermodynamic properties of superfluid
3He have been better accounted for by the analysis with these
new β j values [20]. We also use the values of β j following
Ref. [19]; numerical fitting of the data with the ninth-order
polynomials �β̃ j = ∑9

k=0 B(k)
j pk is shown in Fig. 1(b), where

the coefficients B(k)
j are listed in Table II. We refer to this set of

β j as “set II.” The obvious differences between Figs. 1(a) and
1(b) are that the values of βi at p = 0 are slightly shifted from
the weak-coupling values, and the magnitude of the correction
is relatively large for β3 and β4 in Fig. 1(b); especially �β5

gives a positive correction in contrast with the set I case.
This parameter set energetically favors the emergence of the
A-phase component in the bulk phase diagram compared to
the case of set I, as seen in Ref. [20] and discussed below.

The gradient energy in the GL expansion is given by

fG = K1∂iAμ j∂iA
∗
μ j + K2∂iAμi∂ jA

∗
μ j + K3∂iAμ j∂ jA

∗
μi. (4)

The coefficients Ki satisfy K1 = K2 = K3 = K in the weak-
coupling limit, which we employ in the rest of this paper for
simplicity. By comparing the gradient term and the first term
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FIG. 1. Strong coupling correction �βi (i = 1−5). The data
points are taken from Ref. [18] (set I) (a) and Ref. [19] (set II) (b),
and the curves represent the interpolating functions.

of the bulk energy [Eq. (2)], the coherence length is defined as

ξ (t ) =
√

K

α(t )
=

√
K

α0

1√
t
. (5)

The minimum length scale of our problem is the coherence
length at zero temperature ξ (0) = √

K/α0 ∼ 0.01 μm.
In this work, we consider the effect of a magnetic field on

the vortex state. We take account of this effect through the

second order magnetic free energy given by

fM = gmHμA∗
μiHνAνi, (6)

where the coefficient gm is given in the weak-coupling limit as

gwc
m = 7ζ (3)N (0)(γ h̄)2

48
[(

1 + F a
0

)
πkBTc

]2 (7)

with the gyromagnetic ratio γ = −2.04 × 105 mT−1 sec−1

and the Landau parameter F a
0 = −0.695 at zero pressure. The

pressure dependence of gm was also reported in Ref. [19],
where gm is close to its weak-coupling value gwc

m in 0 �
p � 3.44 MPa. Thus we assume gm = gwc

m in the following
calculation. The characteristic strength of the magnetic field
is H0 = √

α/gwc
m � 0.79

√
t (T). We ignore the first-order con-

tribution of the magnetic field to the GL free energy, since it
is sizable at a strong magnetic field ∼1 T, which stabilizes the
A1 phase, while our interest is in weaker magnetic fields on
the order of 100 mT. Also, we drop the contribution of the
dipole energy which provides negligible contribution to our
free energy [21].

B. Bulk energy density

To introduce the basic scales in our problem, let us look
at the equilibrium property of the bulk 3He-B phase without
a magnetic field. The B-phase order parameter is written as
A(B) = �BR(n̂, φ), where �B is the bulk gap amplitude and
R(n̂, φ) is the rotation matrix with an angle φ around the
axis n̂; the bulk energy is degenerate with respect to n̂ and
φ. Choosing φ = 0, we have A(B) = �BÎ with the 3 × 3 unit
matrix Î . The energy density for the bulk 3He-B phase is given
by

f 0
B = −3α�2

B + (9β12 + 3β345)�4
B, (8)

where βi j = βi + β j and βi jk = βi + β j + βk . Minimization
of this energy density leads to the bulk gap

�B =
√

α

β ′ (9)

and the corresponding energy density

f 0
B = −3α2

2β ′ (10)

with β ′ = 6β12 + 2β345.
In this work, a magnetic field H = Hei is applied along the

direction which is parallel (i = z) and perpendicular (i = x) to
the vortex axis. The magnitude of H is assumed to be small
enough so that the system does not escape from the B phase.
To find the suitable range of H , we calculate the bulk free

TABLE II. List of the coefficients for the fitting of the correction of β j according to the paper by Choi et al. [19]. Write “set II.”

j B(0)
j B(1)

j B(2)
j B(3)

j B(4)
j B(5)

j B(6)
j B(7)

j B(8)
j B(9)

j

1 0.030472 0.018587 − 0.34839 1.0919 − 1.66 1.4058 − 0.69863 0.2027 − 0.031801 0.0020847
2 − 0.11014 0.61315 − 1.4457 1.8258 − 1.5064 0.84442 − 0.31656 0.075439 − 0.010271 0.00060559
3 0.10094 − 1.7982 4.1219 − 6.3112 6.4351 − 4.2344 1.7664 − 0.45099 0.06427 − 0.0039131
4 − 0.15024 − 1.5428 2.8253 − 3.82 3.9311 − 2.858 1.3449 − 0.3822 0.059274 − 0.0038433
5 0.16064 0.25229 − 0.79652 1.4591 − 1.9474 1.655 − 0.84977 0.25472 − 0.04103 0.0027444
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FIG. 2. Bulk phase diagram of superfluid 3He in the p-H plane,
calculated from the GL free energy, with set I (a) and set II (b) for
strong-coupling corrections.

energy in the magnetic field H = Hez. The order parameter
of the B phase is modified as

A(B) =
⎛
⎝�⊥ 0 0

0 �⊥ 0
0 0 �‖

⎞
⎠, (11)

where

�⊥ = �B

√
1 + β12gm

αβ345
H2,

�‖ = �B

√
1 − (2β12 + β345)gm

αβ345
H2, (12)

and the corresponding energy density is

f 0
B = −3α2

2β ′

[
1 − 2gmH2

3α
+ (2β12 + β345)g2

mH4

3α2β345

]
. (13)

This energy is compared with that of the bulk A phase char-
acterized by A(A) = �Ad̂(m̂ + in̂) with arbitrary unit vectors
d̂, m̂, and n̂ such that m̂ · n̂ = 0. By choosing d̂ = êx, m̂ = êx,
and n̂ = êy, the energy does not depend on the magnetic field;
the order parameter and energy density are then given by

�A =
√

α

4β245
, f 0

A = − α2

4β245
. (14)

By comparing the energies f 0
B and f 0

A, we obtain the bulk
phase diagram in the p-H plane as shown in Fig. 2. We see
qualitatively similar phase diagrams for both data sets of the
strong-coupling correction, where the B phase is stable at low
pressure and low magnetic field. The area of the stable region
of the B phase for set II is smaller than that for set I. Below
we confine ourselves within the range H � 0.4H0 in which
the bulk B phase is still the local energy minimum at high
pressure.

C. Numerics and boundary condition

We compute the order parameters of vortex states by
minimizing the total free energy,

F =
∫

dr( fB + fG + fM) (15)

with the vortex boundary condition. To this end, we evolve the
order parameter through the relation

∂Aμi

∂τ
= − δF

δA∗
μi

(16)

in two-dimensional Cartesian coordinates, assuming homo-
geneity along the z direction. Equation (16) is known as the
time-dependent GL equation; from a suitable initial state,
the order parameter converges to the solution of the energy
minimum by time-evolving Eq. (16). Here, τ is called the
imaginary time. Axisymmetry cannot be assumed a priori
because the d vortex breaks it spontaneously.

We use the temperature-dependent coherence length
ξ (t ) = √

K/α(t ), �B in Eq. (9), and | f 0
B | in Eq. (10) to

scale the length, the order parameter, and the energy density,
respectively. Then, the dimensionless order parameter and the
free energy is written as Ãμi = Aμi/

√
α(t )/β ′ and

F̃ ≡ F∣∣ f 0
B

∣∣ξ 2(t )
=

∫
d r̃

2

3
( f̃B + f̃G + f̃M), (17)

respectively, where tildes denote the dimensionless variables.
Also, by scaling the magnetic field as H = H0H̃ , the energy
density on the right hand side of Eq. (17) can be written by
just replacing the coefficients in Eqs. (2), (4), and (6) as

α → 1, β j → β j

β ′ = βwc
j + �β j

β ′ ,

K → 1, gm → gm(p)

gm(0)
≈ 1. (18)

Then, all physical quantities become dimensionless.
We take a system size for numerical simulations as x̃, ỹ ∈

[−50, 50] with a 500 × 500 numerical grid. Although we
solve Eq. (16) in the xy coordinates, we impose the Dirichlet
boundary condition for the vortex structure on the cylinder
with the radius R̃ = 50. The boundary condition is taken
as limr̃→R̃ Ãμi(r̃, θ ) = Îeiθ , where (r̃, θ ) is the dimensionless
polar coordinate. This means that far from the vortex core at
the center, the order parameter approaches the bulk value with
unit phase winding. However, as shown by Hasegawa [22],
the asymptotic form of the off-diagonal components of Ãμi,
some of which occupy the vortex core, decays slowly as ∼r−1,
and we have to take a large system size to ensure the validity
of this boundary condition. We confirm that R̃ = 50 is large
enough to ignore the finite size effect on the vortex energy.
Furthermore we avoid the unfavorable boundary contribution
to the vortex energy by integrating Eq. (17) within the region
R̃ � 40 when calculating the total energy.

D. Vortex state without a magnetic field

Here, we briefly review the vortex state without a magnetic
field. Typically, there are three types of solutions, known as
the o vortex, the v vortex, and the d vortex. Thuneberg ana-
lyzed these vortex states and calculated their energies within
the GL theory with β values obtained from set I [10,11]. Here,
we calculate them not only with set I but also with set II,
obtaining qualitatively similar results for both data sets; the
typical spatial profiles of the order parameters for set II are
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FIG. 3. (Left) Typical radial profiles of the order parameters for
(a) the o vortex, (b) the v vortex, and (c) the d vortex. Here the
strong-coupling correction set II is employed and the pressure is set
to 3.0 MPa. Because the d vortex is not axisymmetric, we show
the profiles along the x and y axes as (c-x) and (c-y), respectively.
Diagonal components of (Ãμi ) are shown in solid curves, while off-
diagonal ones in dashed curves. (Right) Corresponding 2D profiles
of the pair density

∑
μ,i |Ãμi|2.

shown in Fig. 3 and the vortex energy as a function of p is
shown in Fig. 4.

The o vortex has an axisymmetric structure and the core is
not filled with any superfluid components. The v vortex is also
axisymmetric but has a core filled mainly with the A-phase
components Re(Ãzx ) and Im(Ãzy), whose amplitudes take the

FIG. 4. Free energies of the three vortex states without a mag-
netic field as functions of the pressure p for set I (a) and set II (b).
The energies of the o, v, and d vortices are shown by curves with red
circles, blue triangles, and green squares, respectively. The bulk A-B
phase boundary is taken from Fig. 2.

same value at the origin. There are also minor components
Re(Ãxz ) and Im(Ãyz ) filling the vortex core, which are known
as the β phase. The fraction of the A-phase component in-
creases as the pressure increases.

The d vortex is a nonaxisymmetric vortex as seen in
Figs. 3(c-x) and (c-y), where the profiles are different along
the x̃ direction and ỹ direction. The core components are
Re(Ãzx ) and Re(Ãxz ), corresponding to the planar phase char-
acterized by Ã = �̃pR(n̂, φ)(I − ŵwwŵww) with n̂ = ŵww = ey and
φ = π/2 [11]. In this case, there appear double vortex cores
along the y direction. The vortex energy is calculated by
subtracting F̃bulk and F̃hyd from the total free energy F̃ in
Eq. (17) as

F̃vortex = F̃ − F̃bulk − F̃hyd. (19)

Here, F̃bulk = 1 × S is the bulk free energy with the system
area S and Fhyd = ∫

dr
∑

k ρkv
2
k /2 is a hydrodynamic ki-

netic energy caused by vortex flow. The energy Fhyd can be
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calculated by combining the relation jk = ρkvsk (k = x, y, z)
for the superfluid density ρk and the current density

jk = 4m3K

h̄
Im[A∗

μk∂ jAμ j + A∗
μ j∂kAμ j + A∗

μ j∂ jAμk]. (20)

The dimensionless form of Fhyd is F̃hyd = (20π/3) ln[R/ξ (t )]
with the radius R of the cylinder, where the lower bound of
the integral has been taken as ξ (t ).

For set I, we reproduce the results of Thuneberg [10,11] as
seen in Fig. 4(a) and confirm the validity of our calculation.
The o vortex is always the highest energy configuration. For
low pressures, the d vortex is the most stable vortex state,
while the v vortex is most stable above p � 2.7 MPa. In
our two-dimensional calculation without axisymmetry, the
v vortex is energetically unstable for low pressures below
1.25 MPa and it decays to the d vortex. Similar behavior has
also been mentioned by Thuneberg [11].

Figure 4(b) shows the energy of the vortex states for
set II. Although the result qualitatively agrees with that in
Fig. 4(a), we confirm quantitative differences. Especially, the
critical pressure for the transition between the v vortex and
the d vortex is remarkably reduced to ≈2.0 MPa, compared
to that of ≈2.7 MPa seen in Fig. 4(a). Thus the results for
set II explains the experimental observation of the vortex-core
transition [3,10] for T � Tc more accurately than those for set
I. Note that the transition pressure of the v and the d vortices
is close to the boundary of the bulk AB transition for both set
I and set II.

III. VORTEX STATE IN MAGNETIC FIELD

In this section, we consider the effect of a magnetic field
H on the vortex states. We address two situations: one with
the parallel magnetic field H = Hez, and the other with the
perpendicular magnetic field H = Hex.

A. Parallel magnetic field

Here we consider the vortices under a magnetic field along
the z axis. The effect of the axial magnetic field can be under-
stood by examining the free energy functional. The quadratic
magnetic-field term Eq. (6) for H = Hez is written as f̃M =
H̃2 ∑

i |Ãzi|2. Thus the population of the core components
whose spin is along the z direction in the v and d vortices
should be suppressed to reduce the energy cost. Then, it is not
trivial to tell which vortex state has the lowest energy.

To obtain the vortex solution under the magnetic field, we
should fix the boundary condition, i.e., the proper choice of
R(n̂, φ) at the boundary. In the bulk region, by taking account
of the quadratic magnetic energy and the dipole-dipole energy,
the n̂ should be parallel to H , since the combination of
these energies gives an energy contribution ∝ −(n̂ · H )2 [11].
Also, the dipole-dipole energy fixes φ = arccos(−1/4). Since
the vortices are along the z axis in our problem, the vortex
structures including the core components as well as the vortex
energies are not affected by the rotation R(ẑ, φ) of the order
parameter at the boundary. Thus we set the bulk amplitude
with φ = 0 as the Dirichlet boundary condition at r = R, and

write the order parameter at the boundary as

Ã(B) =
⎛
⎝�̃⊥ 0 0

0 �̃⊥ 0
0 0 �̃‖

⎞
⎠eiθ , (21)

where �̃⊥ and �̃‖ are given by Eqs. (12). The vortex energy
Eq. (19) is calculated in a similar way as that described in
Sec. II D. Here, F̃bulk is evaluated from the spatial integral of
Eq. (13) and F̃hyd = (4π/3)(4�̃2

⊥ + �̃2
‖) ln(R/ξ (t )).

Figure 5 shows the vortex free energy F̃vortex of the three
vortex states as a function of pressure for several H̃ . The main
feature of Fig. 5 for both sets of the strong-coupling correction
is that the d vortex is the most preferable structure under the
magnetic field. The v vortex has a local minimum only in the
high-pressure region, which shrinks and eventually disappears
as the magnetic field strength increases; the initial v vortex
relaxes to the d vortex through the evolution of Eq. (16) when
the v vortex is unstable. The o vortex is always the highest
energy state, being metastable in all situations. Although we
solved Eq. (16) with other initial configurations, the final
states of the imaginary time evolution are always one of the
three vortices.

Let us see the details of the magnetic field dependence of
the v- and the d-vortices in the high pressure region. The free
energy of the v vortex increases with H , while that of the d
vortex decreases, as shown in Fig. 5(d). This inverts the en-
ergetic stability of the two vortex states at a critical magnetic
field. Figure 6 shows the phase diagram of the stability of the
v and d vortices. In addition to the above critical magnetic
field, there is another one which gives metastability of the v

vortex. These critical magnetic fields monotonically increase
with the pressure.

The p-dependence of the critical magnetic field can be
qualitatively understood by comparing the free energy of the
bulk A phase and that of the planar phase. The vortex core
is filled with these phases. For the A phase in the core of
the v vortex, described by Re(Ãzx ) = Im(Ãzy) ≡ �̃A1, the bulk
amplitude and the minimized energy are given by

�̃2
A1 = β ′(1 − H̃2)

4β245
,

f̃ H
A = −β ′(1 − H̃ )2

6β245
. (22)

Here, we ignore the minor β-phase components for simplicity.
For the planar phase in the d vortex, we take the components
Re(Ãzx ) ≡ �̃p1 and Re(Ãxz ) ≡ −�̃p2, and the bulk amplitude
and the minimized energy are

�̃2
p1 = β ′[β345 − H̃2(β12 + β345)]

2β345(2β12 + β345)
,

�̃2
p2 = β ′(β12H̃2 + β345)

2β345(2β12 + β345)
, (23)

f̃ H
p = −β ′[β345(2 − 2H̃2 + H̃4) + β12H̃4]

6β345(2β12 + β345)
.

For a given pressure, f̃ H
p becomes lower than f̃ H

A at a certain
magnetic field, which is shown by a thin dashed curve in
the phase diagram of Fig. 6. The dashed curve has a similar
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FIG. 5. Free energies of the three vortex states as functions of
pressure p for set I (left panels) and set II (right panels). The
magnitude of the magnetic field is (a) H̃ = 0.1, (b) 0.2, and (c) 0.3.
The energies of the o, v, and d vortices are shown by curves with
red circles, blue triangles, and green squares, respectively. The bulk
A-B phase boundary is taken from Fig. 2. The figures (d) show
the free energies of the v and d vortices as functions of H̃ in the
high-pressure region; we show the plots with p = 3.0 MPa for set I
and with p = 3.0 and 3.4 MPa for set II.

pressure dependence as the critical magnetic fields described
above. Thus we expect that the occupation of the planar-phase
component is energetically more favorable than the A-phase
component in the vortex core in the presence of a parallel
magnetic field.

B. Perpendicular magnetic field

We turn to the analysis on the vortices in the perpendicular
magnetic field. Let us consider H = Hex. Then, the magnetic

FIG. 6. p-H phase diagram of the stable v- and d-vortex states
for (a) set I and (b) set II of the strong-coupling corrections. The
regions of the phase diagram are separated into (i) v vortex is
unstable and d vortex is stable, (ii) v vortex is metastable and d
vortex is stable, (iii) v vortex is stable and d vortex is metastable.
The (red) thin-dashed curve represents the phase boundary of the
bulk A phase and bulk planar phase, which is obtained by comparing
the free energies in Eqs. (22) and (23).

free energy written as f̃M = H̃2 ∑ |Ãxi|2 leads to suppression
of the components |Ãxi|. Here, we should take the boundary
condition

R(x̂, φ)Ã(B)eiθ =
⎛
⎝�̃‖ 0 0

0 �̃⊥ cos φ −�̃⊥ sin φ

0 �̃⊥ sin φ �̃⊥ cos φ

⎞
⎠eiθ (24)

at the boundary r = R, where Ã(B) = diag(�̃‖, �̃⊥, �̃⊥) with
Eq. (12). Then, it is not trivial how the rotation angle φ

at the boundary affects the vortex structures, because the
components Ãyz and Ãzy appearing in the vortex cores are
influenced by the choice of the angle φ. More precisely, when
φ �= 0, not only the components Ãyy and Ãzz but also Ãyz

and Ãzy should have zeros around the origin for the nonzero
winding number. We confirm that the character of all vortices
is independent of φ as shown later; the internal structure of the
vortex core adjusts to the given boundary condition without
changing the free energy.

Here, we analyze the vortex structure by employing the
boundary condition (24) with φ = 0. There are two main
effects of H = Hex on the core structures. One is the stabi-
lization of the v vortex. The other is to lock the orientation of
the double cores of the d vortex along the x or y direction;
we refer to the former and the latter as dx vortex and dy

vortex, respectively. Figure 7 shows the vortex energy F̃vortex

as a function of the pressure, while Fig. 8 depicts a magnified
view of Fig. 7 in the vicinity of the transition point by taking
only the energies of the v, dx, and dy vortices. For H̃ = 0.1,
the qualitative stability properties of the vortex states are
not changed from those for H̃ = 0. However, the energy of
the dx vortex is slightly lower than that of the dy vortex.
With increasing the magnetic field to H̃ = 0.2, the stability
region of the v vortex extends to the lower pressure region.
Also, the dy vortex becomes unstable in the high pressure
region, decaying into the symmetric v vortex. Above H̃ = 0.2,
the dy vortex continuously transforms to the v vortex as p
increases. No hysteresis is observed in this transition. The
dx vortex is stable in the low-pressure region and survives
as a metastable state for higher pressures. With increasing to
H̃ = 0.3, although the dx vortex exists as a metastable state in
the low pressure region, the v vortex becomes the most stable
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FIG. 7. Free energies of the vortex states in the presence of a
magnetic field perpendicular to the vortex axis as a function of
the pressure p for set I (left panels) and set II (right panels). The
magnitude of the magnetic field is (a) H̃ = 0.1, (b) 0.2, and (c) 0.3.
The energies of the o, v, dy, and dx vortices are shown by curves with
red circles, blue triangles, green squares, and yellow green diamonds,
respectively. The bulk A-B phase boundary is taken from Fig. 2.

state. For higher pressures (above 3.25 MPa for set I and 2.25
MPa for set II), the vortex state is unstable to become the bulk
A phase without vorticity. Similarly to the results in Sec. III A,
the o vortex is always metastable.

In order to understand the above properties, it is useful to
consider the bulk free energy of the core components. The
order parameter of the planar phase in the d vortex and the
rotation angle ϕ of the orientation of the splitting double core
are related with

Ãpl =
⎛
⎝ 0 0 −�̃p2a(ϕ)

0 0 −�̃p2b(ϕ)
�̃p1a(ϕ) �̃p1b(ϕ) 0

⎞
⎠ (25)

with a(ϕ) = cos2 ϕ − i sin ϕ cos ϕ and b(ϕ) = − sin ϕ cos ϕ

+ i sin2 ϕ. Here, ϕ = 0 and π/2 correspond to the dy and dx

vortices, respectively, where the profiles of the order parame-
ters are shown in Fig. 3(c) for the dy vortex and Fig. 9 for the
dx vortex. Then, the bulk free energy fB is independent of ϕ

but the quadratic magnetic free energy for H = Hex is written
as f̃M = α�̃2

p2H̃2 cos2 ϕ. In the bulk, the magnetic free energy
is minimized for ϕ = π/2. This feature is consistent with our

FIG. 8. Free energies of the v, dy, and dx vortex states in the
presence of a magnetic field perpendicular to the vortex axis as a
function of the pressure p for set I (left panels) and set II (right
panels) for (a) H̃ = 0.1 and (b) 0.2. The figures are the enlarged view
of Figs. 7(a) and 7(b) in the vicinity of the transition pressure.

observation in Fig. 8. We confirm that, through the imaginary
time evolution from the initial states with 0 < ϕ < π/2, the
solutions always converge to those with ϕ = 0 or ϕ = π/2.
This implies that there is an energy barrier between dx and dy

vortices and the barrier originates from f̃G.
The continuous structural change between the dy vortex

and the v vortex can be analyzed by carefully examining

FIG. 9. Typical radial profiles of the order parameter (left) and
the 2D profile of the pair density

∑
μ,i |Ãμi|2 (right) of the dx vortex

for p = 3.0 MPa and H̃ = 0.2.
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FIG. 10. Transition from the dy vortex to the v vortex as p is
varied. In (a), the difference Re(Ãzx ) − Im(Ãzy) at the origin x = y =
0 is shown as a function of p for H̃ = 0.1, 0.2, 0.3. The left and the
right panels correspond to set I and set II, respectively. The panels in
(b) show the contour plots of the pair density

∑
μ,i |Ãμi|2 for H̃ = 0.3

and p = 0, 0.25, and 0.5 MPa from left to right with set II.

the core components. For the boundary condition (24) with
φ = 0, the distribution of Re(Ãxz) and Re(Ãzx) in the v and dy

vortices are similar to each other, which allows the continuous
transformation between the two structures. The angle ϕ of the
double core has to be rotated by π/2 for the dx vortex to
have similar distributions of Re(Ãxz) and Re(Ãzx) with those
in the v vortex. This is prohibited by the energy barrier stated
above and ensures the presence of the metastable dx vortex
in the high pressure region as seen in Figs. 7 and 8. The
change from the dy vortex to the v vortex can be understood

by examining the core components at the origin. Figure 10(a)
shows the difference Re(Ãzx ) − Im(Ãzy) at the origin as a
function of the pressure; the finite difference implies the dy

vortex with the planar phase core, while the zero difference
signifies the v vortex with the A-phase core. For H̃ = 0.1,
there is a hysteresis of the transition between the two vortex
states. As H̃ is increased to 0.2, there appears a jump of
the difference without hysteresis. For H̃ = 0.3, the difference
monotonically decreases as p increases, where the continuous
change from the dy vortex to the v vortex takes place as p
increases, as shown in Fig. 10(b). We should note that for
H �= 0 the v vortex has the finite difference Re(Ãzx ) − Im(Ãzy)
in the core components, which should be referred to as the
nonaxisymmetric v vortex.

We checked that the vortex energies are independent of
a change of the boundary condition associated with the an-
gle φ of Eq. (24). In Fig. 11, we show the profile of the
order parameters of v, dy, and dx vortices for φ = π/4.
Then, the components Ãyy, Ãyz, Ãzy, and Ãzz should have
zeros around the origin because of the boundary condition
with a phase winding, despite the fact that Ãyz and Ãzy

should occupy the vortex core in each vortex state. Fig-
ure 11 shows that zeros of the order parameter appear at
the positions displaced from the origin along the y direc-
tion. We find numerically that the total energy as well as
the total pair density

∑
μ,i |Ãμ,i|2 are invariant with respect

to φ.
Finally, our results are summarized in the p-H phase

diagram of Fig. 12. As an overall feature, with increasing
perpendicular magnetic field H̃ , the stable region of the d
vortex gradually shrinks, while that of the v vortex gradually
expands.

IV. CONCLUSION

In this paper, we study the vortex states in superfluid 3He-B
phase under magnetic fields parallel and perpendicular to the

FIG. 11. The cross section of the order parameter A along the x (top) and the y (bottom) axes for (a) the v vortex (p = 3.0 MPa), (b) the dy

vortex (p = 0.0 MPa), and (c) the dx vortex (p = 0.0 MPa) for H̃ = 0.2, obtained with the boundary condition Eq. (24) with φ = π/4. In all
cases, the distributions of the core components along the x axis have inversion symmetry at the origin, but those along the y direction do not.
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FIG. 12. p-H phase diagram of the stable v- and d vortex states
for (a) set I and (b) set II of the strong-coupling corrections. The p-H
plane is divided into (i) the dx vortex is stable and the dy vortex is
metastable, (ii) the v vortex is metastable, the dx vortex is stable, and
the dy vortex is metastable, (iii) the v vortex is stable and the dx and
dy vortices are metastable, (iv) the v vortex is stable and the dx vortex
is metastable, and (v) the v vortex is stable.

vortex axis within the GL theory. We calculate the free energy
of the o, v, and d vortices with two different sets of the
strong-coupling corrections, set I and set II, finding that the
results for set II reproduce quantitatively the experimental
data at zero magnetic fields. Under a magnetic field along the
z axis (the axis of the vortex), the v vortex, which is stable at
high pressure and zero magnetic field, becomes unstable and
decays to the d vortex. On the other hand, if the magnetic field
is applied along the x-axis, perpendicular to the axis of the
vortex, the v vortex is the most stable state at high magnetic
field. In the latter case, the anisotropic features of the vortex
structure are more remarkable, as the dx and dy vortices exist
as distinct energy minima. We estimate that these transitions
take place at H ∼ 0.2H0 ∼ 50 mT, when T = 0.9Tc, which is
observable in a suitable experimental setup [3,9,13].

The dependence of the vortex structure on the magnetic
field can be understood qualitatively by the energetic argu-
ment of the core-occupying components of the order pa-
rameter. A magnetic field applied to bulk superfluid 3He
stabilizes the A phase more than the B phase in general.

The d vortex tends to be stabilized in the presence of a
magnetic field along the z axis. Recall that the core of the
v vortex is filled with the A phase with nonvanishing order
parameter components Azi(i = x, y), which are suppressed by
the magnetic field along the z axis. This makes the v vortex
energetically unfavorable compared to the d vortex. This is
rather counterintuitive since a magnetic field stabilizes the
bulk A phase. A magnetic field along the x axis suppresses
the order parameter components Axi(i = x, y, z). The core of
the v vortex is filled with the components Azx and Azy, while
that of the dx vortex, the stable d vortex in this case, is filled
with the planar phase with dominant components ImAyz and
ImAzy. These core components are not suppressed by the per-
pendicular magnetic field. However, the v vortex is more sta-
ble than the dx vortex when the perpendicular magnetic field is
strong enough since a magnetic field energetically favors the A
phase compared to the planar phase for bulk superfluid 3He. It
is noticeable that these properties are qualitatively consistent
with the magnetic susceptibilities calculated by Thuneberg
in Ref. [11], where the d vortex has higher susceptibility in
the z direction than the v vortex and vice versa in the x (or
equivalently y) direction. Also, the d vortex has the higher
susceptibility in the orientation of the double cores. As a
further study, it would be interesting to see the effect of a
magnetic field applied at intermediate angles to the vortex
axis.
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