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Superconductivity in the three-band model of cuprates: Variational wave function study
and relation to the single-band case
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The d-wave superconductivity (SC) is analyzed within the three-band d-p model with the use of the
diagrammatic expansion of the Gutzwiller wave function method (DE-GWF). The determined stability regime
of the superconducting state appears in the range of hole doping δ � 0.35, with the optimal doping close
to δ ≈ 0.19. The pairing amplitudes between the d orbitals due to copper and px/py orbitals due to oxygen
are analyzed together with the hybrid d-p pairing. The d-d pairing between the nearest-neighboring atomic
sites constitutes the dominant contribution to the SC phase. Moreover, it is shown that the decrease of both
the Coulomb repulsion on the copper atomic sites (Ud ) and the charge-transfer energy between the oxygen
and copper atomic sites (εd p) increases the pairing strength as it moves the system from the strong- to the
intermediate-correlation regime, where the pairing is maximized. This result is consistent with our analysis of
the ratio of changes in the hole content at the d and p orbitals due to doping, which, according to an experimental
study, increases with the increasing maximal critical temperature [cf. D. Rybicki et al., Nat. Commun. 7, 11413
(2016)]. Furthermore, the results for the three-band model are compared to those for the effective single-band
picture and similarities between the two approaches are discussed. For the sake of completeness, the normal-state
characteristics determined from the DE-GWF approach are compared with those resulting from the variational
quantum Monte Carlo method with intersite correlations included through the appropriate Jastrow factors.
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I. INTRODUCTION

A complete theoretical description of unconventional su-
perconductivity (SC) in the copper-based materials has long
been the subject of debate and still remains an open issue. The
main question concerns the microscopic mechanism which
can lead to high-temperature superconductivity, as well as
the determination of a proper minimal model which would
capture its principal properties. Since the cuprates belong to
the group of strongly correlated electron systems, the appli-
cation of standard density functional theory (DFT) ab initio
calculations seems questionable. On the other hand, methods
dedicated specifically to the description of strong electron
correlations are involved and their application to significantly
simplified models appears as the only feasible approach so far.

It is believed that the copper-oxygen planes, which are
common to the whole cuprate family, are instrumental for the
formation of the SC phase when the antiferromagnetic charge-
transfer insulating parent compound is doped with either
electrons or holes [1–3]. Therefore, a significant effort has
been devoted to determine which of the copper and oxygen
orbitals should be taken into account in the appropriate mini-
mal model. The simplest and most commonly used approach
incorporates the copper and oxygen degrees of freedom into
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a single-band picture with the Zhang-Rice singlets (ZRSs)
[3] playing the role of quasiparticles. In this respect, both
Hubbard and t-J models have been intensively investigated
[4,5]. Within such an approach the Coulomb repulsion is
regarded as the largest parameter in the system that leads to
the SC phase due to strong electronic correlations without
any explicitly attractive interaction. However, alternative ap-
proaches within the weak-coupling scenario, such as the spin-
fluctuation-induced pairing, also have been discussed [6],
partially in the form adopted for the strong-correlation regime
[7]. The strong-correlation-induced SC phase within the t-J
model occurs already at the renormalized mean-field theory
(RMFT) level [8], whereas for the case of the Hubbard model
one has to include the correlation effects beyond the RMFT
for the pairing to occur [9–11]. The single-band approach,
which combines the features of both t-J and Hubbard models,
is the so-called t-J-U model [12–17]. For the latter, we have
obtained a very good agreement between theoretical results
and the principal experimental observations concerning the
pure d-wave SC state [12].

In spite of definite successes of the single-band picture,
particular factors influencing the correlation-induced SC state
in the Cu-O planes still have not been resolved within that
approach. Namely, the doped holes preferentially reside on
the oxygen orbitals and a proper partition of the carriers
among the Cu and O sites seems to be essential in maxi-
mizing the critical temperature TC [18,19]. In connection to
that it has been also argued that the value of the maximal
critical temperature is significantly influenced by the value of
the charge-transfer gap [20,21], which is determined by the
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energy distance between the copper and oxygen atomic levels.
Under these circumstances an explicit inclusion of the oxygen
degrees of freedom should be considered as an important
ingredient to be included in any minimal model of hole-
doping-induced superconductivity. The simplest model which
takes this into account is the three-band model consisting of
the 3dx2−y2 orbital due to copper hybridized with 2px and 2py

orbitals due to oxygen. So far, the application of the dynamical
mean-field theory (DMFT) [22,23], variational wave function
approach [24], as well as of determinant quantum Monte
Carlo [25] methods has led to a reproduction of the charge-
transfer insulating phase for the half-filled situation, which
corresponds to five valence electrons per CuO2

2− complex.
Moreover, the appearance of the magnetically ordered [an-
tiferromagnetic (AF)/spin density wave (SDW)] states and
superconductivity has been studied with the use of variational
wave functions [26–29]. The domelike behavior of the SC am-
plitude as a function of doping, as well as the anticorrelation
between the charge-transfer energy value and the maximal
TC have been reported with the use of the cluster DMFT
calculations [20].

Here, we apply the approach based on the Gutzwiller-
and Jastrow-type wave functions to study both the selected
normal-state characteristics and the paired state within the
three-band (d-p) model. The methods in use are as follows: (i)
the diagrammatic expansion of the Gutzwiller wave function
(DE-GWF) and (ii) the variational quantum Monte Carlo
(VMC) with Jastrow correlations. We analyze the pairing
amplitudes among the d and px/py orbitals, as well as the
hybrid d-p pairing to determine which states constitute the
dominant contribution to the superconducting state. We also
show that the Gutzwiller-type variational wave function cap-
tures the domelike behavior of the dominant SC amplitude as
a function of hole doping. Furthermore, the influence of the
charge-transfer energy and the Coulomb repulsion on both the
pairing strength and relative occupancy on the d and p orbitals
is discussed in the context of experimental observations for the
cuprates [19,21]. Throughout our analysis we focus also on
comparing the single- and three-band pictures and discuss to
what extent the former is efficient in describing the SC phase
by relating directly the corresponding macroproperties.

In the following section we present the details of the theo-
retical model and the applied calculation methods. In Sec. III
we first analyze the normal-state characteristics with the use
of both VMC and DE-GWF approaches. Next, we move to
a detailed analysis of the paired state within the DE-GWF
method and compare our results with these for the single-band
case. The conclusions are deferred to Sec. IV.

II. MODEL AND METHODS

We start from the three-band d-p model of the form

Ĥ =
∑

〈il, jl ′〉
t ll ′
il ĉ†

ilσ ĉ jl ′σ +
∑

il

(εl − μ)n̂il +
∑

il

Ul n̂il↑n̂il↓,

(1)

where ĉ†
ilσ (ĉilσ ) creates (annihilates) the electron with spin

σ at the ith atomic site corresponding to an orbital denoted
by l ∈ {d, px, py} and 〈il, jl ′〉 means that the summation is

FIG. 1. The hopping parameters between the three types of or-
bitals in the model and the corresponding sign convention for the
antibonding orbital structure. The dx2−y2 orbital is centered at the
copper site and the px/py orbitals are centered at the oxygen sites.

carried out only for the interorbital nearest-neighbor hop-
pings (cf. Fig. 1). Note that the p orbitals are located at
the oxygen atomic sites which reside in between every two
nearest-neighbor copper sites containing the d orbital states
(cf. Fig. 1). The wave function phase convention has been
taken in the electron representation and is provided in Fig. 1.
The second term of the Hamiltonian corresponds to the d and
px/py atomic levels (εpx = εpy ≡ εp, εd − εp ≡ εd p), together
with the chemical potential contribution. The interaction pa-
rameters Ud and Upx = Upy ≡ Up correspond to the intrasite
Coulomb repulsion between two electrons with opposite spins
located on the d and px/py orbitals, respectively.

Hamiltonian (1) expresses an effective description of the
Cu-O planes of the copper-based compounds. The values of
the hopping and interaction parameters have been evaluated
in earlier analyses within the DFT approach [30,31], as well
as cluster calculations compared with x-ray photoelectron
spectroscopy (XPS) or Auger measurements [32–34]. A more
recent analysis with the use of an ab initio GW and DFT
combination has led to similar values of model parameters
obtained within a single scheme [35] which does not suffer
from the so-called double counting interaction problem.

The electronic structure corresponding to the single-
particle part of Hamiltonian (1), with typical values of the
bare hopping parameters td p = 1.13 eV, tpp = 0.49 eV, and
the charge-transfer energy εd p = 3.57 eV, is shown in Fig. 2
and consists of a hybridized d p antibonding band (red solid
line), which crosses the Fermi surface and two fully filled
low-energy bands (blue and green solid lines). The typical
values of the interaction parameter Ud (Up) range between
8 and 10.5 eV (4 and 6 eV), depending on the particular
approach [30,31,35]. As the value of Ud is significant, the
system should be analyzed with the use of a method dedicated
to capturing the many-body effects resulting from strong elec-
tronic correlations. In our analysis we use two methods, which
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FIG. 2. The electronic structure of the single-particle part of
Hamiltonian (1) with parameters td p = 1.13 eV, tpp = 0.49 eV, and
εd p = 3.57 eV (cf. Fig. 1). The Fermi energy has been taken as the
reference value (E = 0) on the vertical axis, and corresponds to the
case of five electrons per CuO2 complex, which is referred to as the
half-filled situation.

are based on the variational wave functions, namely, the DE-
GWF method which allows us to determine the full Gutzwiller
wave function solution for an infinite system, and the VMC
approach applied for a system of limited size with both the
on-site Gutzwiller and intersite Jastrow factors included. To
emphasize the effect of strong electronic correlations, the
Hartree-Fock results are also provided for comparison.

A. Three-band d-p model within the diagrammatic
expansion of the Gutzwiller wave function

A description of the DE-GWF method as applied to the
analysis of the SC phase within the single-band t-J , Hubbard,
and t-J-U models is provided in Refs. [12,36,37]. The method
has been also recently used to study SC in the Anderson lattice
model [38] (with reference to the heavy-fermion systems), as
well as ferromagnetism and Fermi surface deformations in the
two-band Hubbard model [39]. Here, we show some details of
the calculation scheme as applied to the three-band d-p model
of superconductivity in the cuprates.

The Gutzwiller-type projected many-particle wave func-
tion is taken in the form

|�G〉 ≡ P̂|�0〉 =
∏

il

P̂il |�0〉, (2)

where |�0〉 represents the wave function of an uncorrelated
SC state. The main difference between the present application
and that of the single-band case is that here the situation is
orbital dependent, i.e.,

P̂il ≡
∑

�

λ�|il |�〉il il〈�|, (3)

with λ�|il being the set of variational parameters determining
the relative weights corresponding to |�〉il , which represent
states of the local basis on the atomic sites with the three types
of orbitals (l ∈ {d, px, py}),

|�〉il ∈ {|∅〉il , | ↑〉il , | ↓〉il , | ↑↓〉il}. (4)

The consecutive states represent the empty, singly, and doubly
occupied local configurations, respectively. As can be seen,

the variational parameters, which tune the local electronic
configurations in the resulting wave function, are orbital de-
pendent.

To simplify significantly the calculations and improve the
convergence, one can impose the condition [40,41]

P̂2
il ≡ 1 + xil d̂

HF
il , (5)

where xil is yet another variational parameter and d̂HF
il =

n̂HF
il↑n̂HF

il↓, n̂HF
ilσ ≡ n̂ilσ − nl0, with nl0 ≡ 〈�0|n̂ilσ |�0〉. By using

Eqs. (3) and (5) one can express the parameters λ�|il with the
use of xil . Since we are considering a spatially homogeneous
state, the i site index in the variational parameters λ�|il and xil

can be dropped. Moreover, the oxygen orbitals px and py are
equivalent, which allows us to take λ�|px = λ�|py ≡ λ�|p and
xpx = xpy ≡ xp. However, the Coulomb repulsion Ud is differ-
ent from Up and the occupancy of the d and p orbitals also,
which means that λ�|d 
= λ�|p and xd 
= xp. In order to sim-
plify further the calculations, one can take xp ≡ 0, for which
P̂ipx = P̂ipy ≡ 1, and then only the copper atomic sites are
affected by the correlation operator P̂. Such an approximation
is justified by the fact that the Coulomb repulsion among the
p orbitals is significantly weaker than that corresponding to
the d orbitals (Ud > Up). In Appendix A we show that for the
parameter regime appropriate for the cuprates such an approx-
imation does not change significantly the obtained results.

In the next step one has to express the expectation values
of all the terms appearing in Hamiltonian (1) in the correlated
state |�G〉. For example, for the hopping term the correspond-
ing expectation value takes the form

〈�G|ĉ†
ilσ ĉ jl ′σ |�G〉

=
∞∑

k=0

1

k!

∑
m1 f1...mk fk

′
xkd

d x
kp
p

〈
c̃†

ilσ c̃ jlσ d̂HF
m1 f1

...d̂HF
mk fk

〉
0 , (6)

where d̂HF
∅

≡ 0, c̃(†)
ilσ ≡ P̂il ĉ

(†)
ilσ P̂il , and the index m corresponds

to lattice sites, whereas f enumerates the orbitals. The primed
summation on the right-hand side is restricted to (lh, mh) 
=
(lh′ , mh′ ), (lh, mh) 
= (i, l ), and (lh, mh) 
= ( j, l ′) for all h, h′.
The powers kd (kp) express how many times the indices fh on
the right-hand side of Eq. (6) have the value corresponding
to the d (p) orbital. For a given k, they fulfill the relation
kd + kp = k. The maximal k, for which the terms in Eq. (6) are
taken into account, represents the order of calculations. Simi-
lar expressions can be derived for the case of the Coulomb re-
pulsion terms [12]. It has been shown [37,40,42] that the first
four to six terms of the expansion lead to a sufficient accuracy
of the method. In the subsequent analysis the calculations have
been carried out in the third order of the expansion.

Note that the expectation values on the right-hand side
of Eq. (6) are taken in the uncorrelated state, 〈· · · 〉0 ≡
〈�0| · · · |�0〉, which allows us to carry out the Wicks de-
composition in direct space. As a result, one obtains the
system energy in the correlated state expressed in terms of the
variational parameters xd , xp and the uncorrelated expressions
of hopping and pairing terms, Pi jll ′′σ ≡ 〈ĉ†

ilσ ĉ jσ 〉0 and Si jll ′ ≡
〈ĉ†

il↑ĉ†
jl ′↓〉0, respectively.

To determine explicitly the values of Pi jll ′′σ and Si jll ′′σ ,
as well as the variational parameters, the grand canonical
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potential F = 〈Ĥ〉G − μG〈n̂〉G is minimized, where 〈ô〉G ≡
〈�G|ô|�G〉G/〈�G|�G〉G, and μG, is the chemical potential.
The minimization condition can be cast into the form of a
Schrödinger equation with the effective Hamiltonian [36,37]

Ĥeff =
∑
i jll ′σ

′
t eff
i jll ′ ĉ

†
ilσ ĉ jl ′σ +

∑
ilσ

εeff
il n̂ilσ

+
∑
i jll ′

(
�eff

i jll ′ ĉ
†
il↑ĉ†

jl ′↓ + H.c.
)
, (7)

where the primed summation means i 
= j and the effective
hopping, effective superconducting gap, and effective atomic
level parameters are defined through the relations

t eff
i jll ′ ≡ ∂F

∂Pi jll ′σ
, �eff

i jll ′ ≡ ∂F
∂Si jll ′

, εeff
il ≡ ∂F

∂n0
ilσ

. (8)

As one can see, the effective Hamiltonian contains both in-
traorbital (l = l ′) and interorbital (l 
= l ′) pairing amplitudes.
Nevertheless, all the amplitudes possess d-wave symmetry
and no on-site pairing appears. Such a choice is dictated by
the experimental findings, according to which the d-wave
symmetry of the SC gap is in fact realized in the cuprates
[43–46]. The above real-space representation of Eq. (7) can
be transformed into reciprocal space and diagonalized through
the 6 × 6 generalized Bogoliubov–de Gennes transformation,
on the basis of which the self-consistent equations for the
pairing and hopping expectation values can be derived. Within
such a scheme, the minimization over the variational param-
eters xd and xp has to be incorporated into the procedure of
solving the self-consistent equations.

After all the hopping and pairing lines, together with the
variational parameters, are determined, one can calculate next
the values of the superconducting pairing amplitudes between
particular sites in the correlated state |�G〉. In the subse-
quent section we are going to analyze both the SC pairing
amplitudes and the effective gap parameters for the case of
intraorbital (d-d , px-px, and py-py) and interorbital (d-px,
d-py, and px-py) pairings between various nearest neighbors
in the Cu-O plane. The notation is

�
f
ll ′ ≡ 〈ĉ†

il↑ĉ†
jl ′↓〉G, �

f
eff,ll ′ ≡ ∂F/∂Si j,ll ′ , (9)

where the f superscript defines nearest neighbors of a given
type. For example, for the case of d-d pairing the SC am-
plitudes and effective gaps up to the fourth neighbor are
determined to be �1

dd , �3
dd , �4

dd , �1
eff,dd , �3

eff,dd , and �4
eff,dd .

The second d-d neighbor is excluded, since we are assuming
d-wave symmetry. All the correlated pairing amplitudes taken
into account in the calculations are marked in Fig. 3. In
our notation �

f
px px (� f

py py ) corresponds to the px-px (py-py)

pairing in the (1,0) [(0,1)] direction, whereas �
f ′
px px (� f ′

py py )
to the px-px (py-py) pairing in the (0,1) [(1,0)] direction. The
px-px and py-py pairing in the (1,0) and (0,1) direction can
have different values due to the orientational character of
the orbitals. However, the corresponding relation is fulfilled,
�

f
px px = �

f ′
py py . This remark applies also to the effective gap

parameters which are not marked in Fig. 3 for the sake of
clarity.

FIG. 3. The component pairing amplitudes in the correlated state
|�G〉 that are taken into account within our scheme. The superscripts
correspond to pairing between consecutive nearest neighbors of
a given type (d-d , d-p, px-px , py-py, py-px). The effective gap
parameters of corresponding types are also analyzed here, but are
not marked for the sake of clarity.

B. Variational Monte Carlo scheme:
Application to the three-band d-p model

As a supplementary method which validates the results
obtained by means of the DE-GWF formalism for the nor-
mal (non-SC) state, we exploit the variational Monte Carlo
approach (VMC). The main advantage of VMC relies on the
straightforward inclusion of the interelectronic correlations in
the wave function optimization scheme. In our situation this
is performed in the standard manner, i.e., by using the Jastrow
correlation operator P̂J , defined as

P̂J ≡ exp

⎛
⎝−1

2

∑
i j,μν

λ
μν
i j n̂μ

i n̂ν
j

⎞
⎠, (10)
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FIG. 4. The Jastrow variational parameters considered in the
VMC analysis. Site-orbital indices are labeled as indicated.

where P̂J with μ, ν ∈ {d, px, py} acts as before on the uncor-
related state |�0〉, and {λμν

i j } are the variational parameters,
which are optimized via the VMC scheme. The details of
the VMC procedure may be found in Refs. [47,48]. Here,
we have employed the self-developed code [49], which has
been recently applied in the variance optimization scheme for
the analysis of the molecular hydrogen metallization [50]. In
this study, the energy optimization is carried out, since it is
considered to be more robust in conjunction with the stochas-
tic reconfiguration (SR) [47] technique. As VMC operates
in real space, the considered systems are finite clusters. To
minimize the influence of the size factor, we have imposed
periodic boundary conditions (PBCs) in our calculations. We
have selected variational parameters to obtain the essential
properties of the normal state. Moreover, we found out that
the inclusion of particular types of parameters affects the
numerical stability of the whole optimization procedure. This
is the case with the nearest-neighbor d-p variational parameter
λ

d p
i j . Eventually, after a number of testing simulations we

decided to limit ourselves to the parameters presented in Fig. 4
(note that we provided the relabeling of the Jastrow variational
parameters for the sake of brevity). We find this selection
as a compromise between reliability (i.e., trial wave function
flexibility) and numerical stability.

III. RESULTS AND DISCUSSION

In this section we study both the principal normal-state
characteristics and d-wave superconductivity for the case of
the three-band d-p model with either electron or hole doping.
In all the figures the zero doping (δ = 0) case corresponds to
the parent compound for which each CuO2 complex is occu-
pied by five electrons (ntot = 5). Such a situation is going to be
referred to as that of half filling. The δ > 0 (δ < 0) situation
refers to the hole (electron) doping with ntot < 5 (ntot > 5).
If not stated otherwise, we set the hopping parameters and
charge-transfer energy to td p = 1.13 eV, tpp = 0.49 eV, and
εd p = 3.57 eV. The interaction parameters Ud and Up are
specified explicitly in each analyzed case.

A. Normal-state characteristics

In Figs. 5 and 6 we show the orbital-resolved dou-
ble occupancies d2

d = 〈n̂id↑n̂id↓〉G and d2
p = 〈n̂ipx↑n̂ipx↓〉G =

0
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FIG. 5. (a) Orbital-resolved double occupancies and (b) com-
ponent electron concentrations as a function of doping for Ud =
7.85 eV and Up = 4.1 eV, for three different methods: DE-GWF,
VMC, and HF. For δ > 0 (δ < 0) we have the hole- (electron-) doped
case with ntot < 5 (ntot > 5).

〈n̂ipy↑n̂ipy↓〉G, electron concentrations nd and np, as well as the
ground-state energy, all as a function of doping. For compar-
ison, the calculations have been carried out by the DE-GWF
and VMC methods which take into account the correlation
effects, as well as the Hartree-Fock (HF) approximation which
disregards them. It should be noted that the VMC method
includes both intra- and interside correlation operators for
system sizes of 4 × 4 CuO2 complexes, whereas within the
DE-GWF approach we carry out calculations for an infinite
system. However, for the latter approach only the on-site

−4

−3

−2

−1

0

1

−1 −0.5 0 0.5 1

E
G

[e
V

]

doping, δ

DE-GWF
VMC

HF

FIG. 6. Ground-state energy as a function of doping for Ud =
7.85 eV and Up = 4.1 eV for three different methods: DE-GWF,
VMC, and HF. For δ > 0 (δ < 0) we have the hole- (electron-) doped
case with ntot < 5 (ntot > 5).
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Gutzwiller operator for the copper atomic sites is introduced
(cf. Sec. II). As one can see, in spite of the formal differences,
both methods provide very similar results with a characteristic
kink in both the double occupancies and electron concen-
tration that appears at half filling. Within the Hartree-Fock
approach such a kink is absent and a smooth behavior is
observed when passing through the δ = 0 point, indicating
that the kinks result from the correlations. Obviously, HF
calculations lead to a visibly higher system energy than that in
the DE-GWF and VMC methods (cf. Fig. 6). As one can see,
in the hole-doped range (δ > 0) we have nd � 1 and, due to
the high value of Ud , the double occupancies at d orbitals are
kept relatively small and weakly dependent on the doping. As
we increase the number of particles above ntot = 5 (electron
doping, δ < 0), the oxygen orbitals are almost completely full,
np ≈ 2 with d2

p ≈ 1, and the remaining electrons are forced to
occupy the copper orbitals, resulting in a visible change of
slope in d2

d and nd . A similar effect, obtained here by the use
of variational wave functions, has also been reported within
the determinant quantum Monte Carlo approach [25], as well
as in DMFT calculations [22].

It has been argued in Ref. [19] that the ratio of respec-
tive changes in the hole content on the d and p orbitals
(ρ = �ñd/2�ñp, where ñd = 2 − nd , ñp = 2 − np), as one
increases the number of carriers, is a family property (cf.
Fig. 2 in Ref. [19]). Moreover, it appears that for the case
of hole-doped compounds the smaller ρ is, the smaller is the
maximal critical temperature of a given group of compounds.
In Fig. 7 we draw the ñd vs ñp plot which illustrates the
local charge distribution on the (ñd , 2ñp) plane. The parameter
ρ within either the hole- or electron-doping regime can be
extracted from the slope of the ñd (2ñp) dependence and the
horizontal axis. The yellow solid line in the figure represents
the parent compound (one hole per CuO2 complex when
ñd + 2ñp = 1), the upper-right half of the (2ñp, ñd ) plane cor-
responds to hole doping, and the lower-left to electron doping.
As one can see, by comparing the DE-GWF/VMC results with
those corresponding from the HF approach, the value of ρ

in the hole-doped regime is significantly suppressed by the
correlation effects taken into account by the variational wave
functions. Namely, for DE-GWF/VMC we obtain ρ ≈ 0.72,
while for HF the result is ρ ≈ 2.0. The experimental values
are in the regime ρ < 1 [19], reaching even 0.2 for La-214. We
conclude that the low values of ρ for the hole-doped cuprates
are a signature of strong electron correlations.

In Fig. 7(b) we show the ñd (2ñp) dependence in the hole-
doped region for different values of the model parameters
according to DE-GWF (solid line) and VMC (circles). For
each set of parameters the approximate value of ρ is deter-
mined by fitting the linear plot to our VMC results. As one
can see, a reduction of εd p by 2 eV, with all other parameters
fixed, does not lead to any significant increase of ρ (black
and green data set). Nevertheless, the plot is shifted towards
lower ñd and higher ñp values. A similar result, but with
an additional increase of the ρ parameter, is obtained by
lowering the Ud value (violet, black, and blue data sets). As
shown experimentally, both of these effects are related to an
enhancement of the critical temperature in the cuprates [19].
Obviously, in a realistic situation, Ud and εd p vary between
different compounds. According to the recent ab initio cal-
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FIG. 7. (a) Hole content distribution in the (ñd , 2ñp) plane cal-
culated according to the DE-GWF, VMC, and HF methods for
Ud = 7.85 and Up = 4.1 eV. Different points of the plots refer to
different values of doping (δ). The solid dark blue line corresponds
to the parent compound δ = 0, and the upper-right (lower-left) half
of the plane refers to the hole-doped (electron-doped) case. (b) Hole
content distribution between the d and p orbitals for different sets of
model parameters for the hole-doped situation within the DE-GWF
(solid lines) and VMC (circles) methods. For each set the charge
distribution ratio, ρ = �ñd/2�ñp, has been determined by fitting a
linear plot to the VMC data.

culations [35] for the two systems with significantly different
maximal critical temperatures (HgBa2CuO4 with TC ≈ 90 K
and La2CuO4 with TC ≈ 40 K), both the lower Ud and εd p

values correspond to the compound with a higher maximal TC .
This issue is discussed further below, where the paired phase
is analyzed in detail.

B. Superconducting gaps in the three-band model
and their single-band correspondent

In this section we focus on the analysis of a paired state
within the three-band model for the case of hole doping (δ >

0) within the DE-GWF method. In Figs. 8(a), 8(c) and 8(d)
we show the doping dependences of the intra- and interorbital
pairing amplitudes in the correlated state [cf. Fig. 3 and
Eq. (9)]. As one can see, the dominant contribution to the
superconducting state results from the pairing between the
d orbitals residing on the nearest-neighbor copper atomic
sites [�1

dd in Fig. 8(a)]. The �1
dd (δ) function reproduces the

domelike behavior with the maximum value corresponding
to the optimal doping, δ ≈ 0.19. The maximal values of all
the other pairing amplitudes in Figs. 8(a), 8(c) and 8(d)
represent at most 20% of that corresponding to �1

dd . Note that
even though the nearest-neighbor mixed d-p (�1

d p) amplitude
corresponds to pairing between atomic sites which are twice
as close to each other as for the case of �1

dd , the latter plays the
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FIG. 8. Pairing amplitudes between (a) d-d , (c) p-p, and (d) d-p
atomic sites as a function of doping for Ud = 10.3 eV, Up = 4.1 eV
[cf. Fig. 3 and Eq. (9)]. Additionally, in (a) we show the quasiparticle
gap amplitude (�qp) which is defined in the main text. In (b) we show
the first-, third-, and fourth-nearest-neighbor pairing amplitudes for
the case of a single-band Hubbard model with t = −0.35 eV, t ′ =
0.25|t |, and U = 6 eV.

most important role. It is due to the fact that large Ud generates
the electron correlations which in turn lead to the paired
state. Therefore, the nearest-neighbor sites with the largest
Coulomb repulsion constitute the dominant contribution.

For the sake of comparison, in Fig. 8(b), we show the
analogous results for the case of a single-band Hubbard model
on a square lattice with typical values of the model parameters
corresponding to the cuprates, t = −0.35 eV, t ′ = 0.25|t |,
and U = 6 eV, which refer to the nearest- and next-nearest-
neighbor hopping and the on-site Coulomb repulsion, respec-
tively. We plot the SC amplitudes for the first-, third-, and
fourth-nearest neighbors (second is zero due to the d-wave
symmetry of the SC state). Note that the doping dependences
of the SC amplitudes are quite similar to those corresponding
to the d orbitals in the three-band case [cf. Figs. 8(a) and 8(b)].
These two figures speak to the validity of the single-band
picture as far as the SC amplitudes are concerned.

Additionally, in the three-band case we calculate the SC
amplitude �qp = 〈α̂†

i↑α̂
†
j↓〉G [Fig. 8(a)], where α̂

†
iσ are the

quasiparticle operators for the hybridized antibonding band
which crosses the Fermi surface in the normal state (red
solid line in Fig. 2). This is the most representative pairing
amplitude in the three-band model since the SC gap is formed
around the Fermi surface and the mentioned hybridized band
becomes gapped in the SC phase. Since �1

dd has the dominant
contribution to the paired state, the behavior of �qp is mostly
determined by the former, as can be clearly seen in Fig. 8(a).

In the three-band case, we have not obtained convergence
close to the half-filled situation for Ud = 10.3 eV. This is the
reason why the plots in Fig. 8 are drawn only down to δ ≈
0.06. It is not clear if the SC pairing amplitudes drop to zero,
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FIG. 9. The nearest-neighbor d-d pairing amplitude for the case
of half filling, δ = 0, as a function of Ud for Up = 4.1 eV. For Ud �
10 eV the convergence could not be reached and the critical value of
Ud for which �dd is suppressed is evaluated by carrying out a linear
extrapolation which leads to the critical value U c

d ≈ 13 eV.

as we reach the half-filled situation. In Fig. 9 we show the
dominant �1

dd amplitude for δ = 0 as a function of Ud up to
the highest value of Ud for which the convergence could be
obtained. By carrying out a linear extrapolation to the high-
Ud region we estimate that the SC amplitude is completely
suppressed above the upper critical value Ud = U c

d ≈ 13 eV.
In Fig. 10 we display the effective SC gaps as a function

of doping, both for the three-band [Figs. 10(a) and 10(b)]
and single-band cases [Fig. 10(c)] for the same values of
model parameters as those selected in Fig. 8. As one could
expect, also here the dominant contribution comes from the
nearest-neighbor d-d pairing. However, in contrast to the
pairing amplitudes shown in Fig. 8, the dominant effective
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FIG. 10. Effective superconducting gaps between (a) d-d and
(b) d-p orbitals as a function of doping for Ud = 10.3 eV, Up =
4.1 eV [cf. Fig. 3 and Eq. (9)]. The calculated p-p effective gaps are
zero. In (c) we show the first-, third-, and fourth-nearest-neighbor
effective gaps for the case of a single-band Hubbard model with
t = −0.35 eV, t ′ = 0.25|t |, and U = 6 eV.
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FIG. 11. Quasiparticle dispersion relations in the SC state for
δ = 0.24 and for the same model parameters as in Figs. 8 and 10.

gap increases as one approaches the half-filled situation. Such
a behavior has also been reported for the case of a single-
band Hubbard model analyzed within the VMC approach
[9] and for the DE-GWF calculations for the single-band
t-J [37] and t-J-U [14] models. It should be noted that the
effective SC gaps within the p-orbital sector are zero even
though the corresponding pairing correlations have nonzero
values [cf. Figs. 8(c) and 8(d)]. This is because electrons
residing on p orbitals are not significantly correlated due to
the small value of Up in comparison to Ud . Therefore, the
pairing correlations between the p orbitals are induced by
the appearance of both d-d and d-p pairings, in a manner
analogous to the proximity effect in superconductor–normal-
metal heterostructures. However, such induced p-p pairing
correlations do not contribute to the spectral gap, meaning
that �eff,pp ≡ 0. The quasiparticle dispersion relations which
result from the effective Hamiltonian (7) for the SC phase
and for selected values of doping (δ = 0.24) are shown in
Fig. 11. As one can see, the antibonding hybridized band (red
solid line) is gapped apart from the nodal point between �

and M due to the d-wave symmetry of the SC gap. A similar
band structure appears for other dopings. This quasiparticle
structure can be compared with that for bare bands in the
normal state, which is depicted in Fig. 2.

C. Overall behavior and phase diagram

Next, we turn to the analysis of the question how the values
of the Ud and εd p parameters influence the details of the SC
state. In Fig. 12 we show the maps of quasiparticle pairing
amplitude in (Ud , δ) space for two selected values of εd p

which differ by 2 eV. Both of them can be regarded as realistic
for selected cuprates. Again, the maps resemble those for the
single-band Hubbard or t-J-U models (cf. Figs. 3 and 4 in
Ref. [12]), with the paired phase appearing for high enough
values of the Coulomb interaction and confined to the region
with δ � 0.35.

Also, in both single- and three-band cases one can single
out three distinct regions: (i) a weak-correlation regime (low
U or Ud ) for which the pairing amplitude increases with
increasing U or Ud ; (ii) the intermediate-correlation regime
placed around the maximum of the pairing amplitude as a
function of U or Ud ; and (iii) the strong-correlation regime,
with large U or Ud in which the pairing amplitude is decreas-
ing back with increasing U or Ud . In the single-band approach
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FIG. 12. The quasiparticle superconducting gap �qp as a func-
tion of doping and Coulomb repulsion on the d orbitals for (a)
εd p = 3.2 eV and (b) εd p = 1.2 eV; Up = 4.1 eV. (c) �qp(Ud ) plots
for δ = 0.15 and for the two values of εd p, as for (a) and (b).
The irregular region with �qp = 0 for high values of Ud close to
δ = 0 in (a) is where we could not achieve convergence within our
computational scheme.

the intermediate-correlation regime appears close to U ≈ W ,
where W is the bare bandwidth. It is not clear what parameter
determines the corresponding critical value of Ud in the three-
band case. From our analysis we can see that in the three-band
model the sequence of the three regimes may be shifted on
the Ud axis by changing εd p, which does not have its analog
in the single-band case. In Fig. 12(c) we illustrate that effect
by drawing �qp vs δ for two values of εd p, which differ by
2 eV. As one can see, the maximal value of �qp as a function
of Ud is shifted also by about 2 eV. However, the correspond-
ing change of the hybridized antibonding bandwidth is only
≈1 eV. Such a situation can be understood by looking at the
energy change corresponding to the electron transfer from the
oxygen atomic site to the nearest-neighbor copper atomic site
for the parent compound. It is equal to �E = Ud − Up + εd p

and corresponds to the lowest-energy excitation. The value of
�E should be considered as that determining the strength of
the electron correlations. By reducing εd p by 2 eV one also
reduces �E , therefore the strong-correlation regime moves
by 2 eV towards higher Ud values, which is actually seen in
Fig. 12.

Since the high-temperature superconductors are placed in
the strong-correlation regime, but close to the intermediate
one, the decrease of both Ud and εd p results in a shift towards
the intermediate regime, where the higher values of the pairing
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amplitudes appear. Such a conclusion is in agreement with our
analysis of the hole content distribution [ñd (2ñp)], according
to which for lower values of Ud and εd p the ρ parameter
increases together with the decrease of copper-hole content,
in favor of the oxygen-hole content for the parent compound.
It has been reported experimentally that such changes corre-
spond to an enhancement of the maximal value of TC [19].

We have encountered technical problems with the conver-
gence of our computational scheme for the electron-doped
regime δ < 0. At present, we are able to calculate only a small
part of that side of the phase diagram. Such incomplete results
are not shown here. In general, one expects that the SC state
should be less pronounced for δ < 0, as seen in experiment
[51] and reproduced within the single-band approach [14].
Note that for the case of electron doping the oxygen atomic
sites are practically fully occupied, as seen in Fig. 5 (np ≈ 2
and d2

p ≈ 1). Therefore, the doped electrons go mainly into
the copper d orbitals and the oxygen degrees of freedom
are frozen. In such a situation, the electron-hole asymmetry
obtained within the single-band case is expected to be approx-
imately correct in the d-p model.

For the sake of completeness, in Fig. 13 we plot the super-
conducting condensation energy (�Ec) and the kinetic energy
change at the SC transition (�Ekin). The latter is defined in the
following manner,

�Ekin ≡ ESC
G|0 − EPM

G|0 , EG|0 ≡ 1

N

∑
i jσ

′
ti j〈ĉ†

iσ ĉ jσ 〉G, (11)

where the kinetic energy difference is taken between the
superconducting (SC) and normal paramagnetic (PM) states.
The condensation energy, corresponding to the total ground-
state-energy difference, �Ec ≡ ESC

G − EPM
G , should be neg-

ative for the SC phase to be stable, which is indeed the
case (cf. green solid line in Fig. 13). However, the values of
�Ekin are positive (red solid line in Fig. 13), which means
that the transition to the SC state is driven by the Coulomb
interaction energy. Positive values of �Ekin are also known
from the BCS theory of conventional superconductors. The
same situation takes place in the single-band Hubbard model
for U � W [12]. However, in the latter model also negative
values of �Ekin are reported (non-BCS behavior) in the wide
doping range after increasing the U parameter [cf. Fig. 3(a)
in Ref. [12]]. Unfortunately, for the three-band-model case,
we have encountered problems with convergence for large Ud

values. Therefore, we have not been able to verify if also in the
present case the negative values of �Ekin can appear for large
enough Ud . Note that it has been reported experimentally that
in the cuprates the transition between positive and negative
values of �Ekin appears close to the optimal doping [12], with
�Ekin < 0 for the underdoped samples. This feature, which
neither appears here nor for the single-band Hubbard model
case, can be reproduced very well within the so-called t-J-U
model [12]. In this context, it is worth mentioning that a natu-
ral extension of the t-J-U model to the three-band situation
would involve inclusion of both the intersite Kondo (d-p)
and kinetic (d-d) exchange interactions. Such a model would
comprise explicitly the dynamic intersite correlations into our
Gutzwiller-type wave function with intrasite projections only.
Then, the starting model would take the form of a mixed
three-band+Emery-Reiter model [4].

IV. CONCLUSIONS AND OUTLOOK

By analyzing the normal-state characteristics we have
shown that the correlation effects taken into account by either
a Gutzwiller- or Jastrow-type variational wave function lead to
kinks in the orbitally resolved double occupancy and electron
concentration for half filling in the three-band d-p model
(cf. Fig. 5), which have also been reported by other methods
[22,25] dedicated to strongly correlated systems, and do not
appear in the Hartree-Fock approximation. In this respect, the
correlations alter significantly the role of the ρ parameter,
reducing it in the hole-doped regime and increasing its value
for the case of electron doping (cf. Fig. 7). Therefore, the
low values of ρ measured in the hole-doped cuprates with the
lowest experimentally determined ρ ≈ 0.2 (for La-214) [19]
should be considered as a signature of strong electron cor-
relations. The values of ρ obtained here (ρ ≈ 0.7-1.0) within
DE-GWF/VMC calculations correspond to those observed for
Bi-, Hg-, and Tl-based cuprate compounds [19].

We have analyzed the paired phase in the three-band d-p
model with the use of the DE-GWF method and have shown
that due to the electron correlation effects, the SC state is
stable in the doping region δ � 0.35, with the maximal value
of the dominant d-d pairing amplitude appearing at δ ≈ 0.19
(optimal doping). Those values correspond well with those
determined in the single-band calculations [12,37] and in
numerous experimental situations for the cuprates [2].

Within the three-band model the dominant contribution to
the SC state emerges from the pairing between the nearest-
neighbor d-d atomic sites, which also reflects primarily the
behavior of the quasiparticle gap in the antibonding hy-
bridized band. The calculated pairing amplitudes between the
copper atomic sites trace the corresponding nearest-neighbor
gaps for the square lattice treated within the single-band
Hubbard model [cf. Figs. 8(a) and 8(b)]. Such a connec-
tion is also reproduced for the calculated effective gaps [cf.
Figs. 10(a) and 10(c)]. Another similarity between the single-
and three-band models is the characteristic behavior of the
pairing amplitude as a function of both δ and Ud (U for the
single-band case), with the weakly, intermediate, and strongly
correlated regimes visible (cf. Fig. 12 here and Figs. 3 and
4 in Ref. [12]). Note that the close relation between the
relevant subbands of the three- and single-band models has
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been reported in Ref. [52] with the use of a composite operator
method. However, that analysis did not include the paired
states. On the other hand, the differences between the single-
and three-band pictures of the cuprates with respect to the
strength of spin fluctuations, as well as their relation to the
pairing mechanism, have been singled out in Refs. [53,54].

In spite of the mentioned similarities there are some aspects
of high-TC cuprates that cannot be analyzed within the single-
band approach. Namely, the charge-transfer energy (εd p),
which does not possess its correspondent in the single-band
case, tunes the strength of the correlations. For smaller εd p

values the correlations seem to be suppressed, which means
that a stronger Coulomb repulsion (Ud ) is necessary to induce
the SC state. Also, since the copper-based materials are placed
in the strongly correlated regime close to the intermediate one,
it results from our analysis that by decreasing εd p and Ud one
moves towards the intermediate-correlation regime, where the
values of the pairing amplitudes are higher. This in turn may
lead to a higher critical temperature. Such a conclusion is in
agreement with our analysis of the hole content distribution
and the experimental findings, according to which the reduc-
tion of the hole content at copper sites in favor of oxygen sites
in both the parent compound and hole-doped situation leads
to an enhancement of the maximal critical temperature [19].
At the present stage of our research the agreement with the
mentioned experiments is only qualitative, since we have not
been able to fit directly to the measured copper and oxygen
hole contents and obtain the changes of the pairing ampli-
tudes, which would correspond to the reported TC for different
cuprate compounds (cf. Fig. 2 in Ref. [19]). For example, the
experiments for La-214 report ρ ∼ 0.2, and such low values
cannot be reproduced in our theoretical approach within the
range of realistic model parameters. The fact that there is
a correlation between the apical oxygen distance and the
value of ρ suggests that to achieve a quantitative agreement
between theory and experiment, one should include those
apical oxygen states in a manner presented in Ref. [55].

According to experimental observations, the AF phase
appears in the cuprate family for very low hole doping, i.e.,
below δAF

c ≈ 0.05 [56]. Such a value has been reproduced
by some of the theoretical investigations within both the
single- and three-band pictures [11,20,57]. As we show in
Appendix B, the dominant spin-spin correlation, which cor-
responds to the Q = (π, π ) ordering vector, is reproduced
within our approach for δ = 0. Due to small experimental
critical doping δAF

c , the region in which a possible interplay
between SC and AF appears should not be significant in
comparison with the SC stability range (up to δ ≈ 0.3–0.4).
Therefore, since we are mainly focused on the paired phase
characteristics, we did not include the AF and SC orderings
simultaneously in our analysis. As we have shown here, the
dominant contribution to the pairing comes from the nearest-
neighbor d orbitals, the same orbitals on which a staggered
magnetic structure is formed in the AF state. As a conse-
quence, the presented results, which correspond to the SC
state, should be modified by the appearance of the AF ordering
in the region close to half filling. In particular, as shown in
the single-band picture, it may induce a minor spin-triplet
component to the pairing [11,42,58]. When it comes to the
three-band calculations some of the analysis did not report

a significant coexistence region [20]. On the other hand, the
AF+SC phase appeared as stable in other reports, for which
the δAF

c value turned out to be larger than the experimental
one [29]. This issue requires a separate analysis.

At the end, it should be noted that the VMC calculations
have been carried out for limited systems consisting of 4 × 4
CuO2 complexes, whereas the DE-GWF method allows for
an analysis of infinite systems. Also, within the DE-GWF
approach, we included only an on-site correlation operator
acting on the copper atomic sites, whereas within the VMC
calculations a more involved wave function has been applied
with the intersite Jastrow factors. In spite of those differences,
the agreement between the two methods is very good (cf.
Figs. 5 and 7). This last feature speaks again for the dominant
role of the Cu d electrons.
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APPENDIX A

Here, we show that in a parameter regime significant for
the cuprates it is justified to apply the approximation for
which xp ≡ 0. In such a situation the correlation operator from
Eq. (3) acts only on the copper atomic sites, which simplifies
significantly the calculations. Nevertheless, the electron cor-
relations, which result from the dominant interaction (Ud ) in
the system, are taken into account by minimizing the system
energy over xd . In Fig. 14 we show the double occupancies
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FIG. 14. Double occupancies on the (a) oxygen and (b) copper
atomic sites as a function of Up for Ud = 7.85 eV and δ = 0.2
calculated by two variants of the DE-GWF scheme. In the first one
(DE-GWF1) we fix xp ≡ 0 and minimize only over xd , whereas in
the second (DE-GWF2) the full minimization over both xd and xp is
carried out.
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The calculations have been obtained within the VMC approach for
the system containing 4 × 4 CuO2 complexes.

on the copper and oxygen atomic sites as a function of Up

calculated within the DE-GWF method by assuming either
xp ≡ 0 (DE-GWF1), or obtained by using the complete form
of the correlation operator (3), i.e., minimization over both xd

and xp (DE-GWF2). As one can see, the differences between
the two calculation schemes become visible as one increases

the value of Up. Nevertheless, for Up ≈ 4–6 eV, appropriate
for the cuprates, the results practically coincide.

APPENDIX B

In this Appendix we present the spin-spin correlation
function at the copper d orbitals for three selected ordering
vectors. The correlation function is defined as follows,

Sd (Q) = 1

N

∑
i j

eiQ·�Ri j 〈m̂id m̂ jd〉, (B1)

where �Ri j = Ri − R j is the vector connecting two Cu lattice
sites and m̂id = n̂id↑ − n̂id↓ is the magnetization on the ith
Cu lattice site. As one can see from Fig. 15, there is a
dominant tendency towards antiferromagnetic ordering with
Q = (π, π ) at half filling, which is being suppressed with
increasing hole doping. Unfortunately, by looking at the corre-
lation functions we are not able to determine the upper critical
doping for the appearance of the AF order in the system.
Nevertheless, this result is in qualitative agreement with the
one presented in Ref. [25] (Fig. 9), where the calculations
have been carried out with the use of the determinant Quantum
Monte Carlo.
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