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In this paper, we investigate the mechanical properties, electronic band structure, lattice dynamics, and
electron-phonon interaction in δ-NbN, ε-NbN, WC-NbN, and δ′-NbN by performing systematic ab initio
calculations based on density functional theory with the generalized gradient approximation. We find that all
the four structures are mechanically stable with ε-NbN being the ground-state structure. The calculated elastic
constants, which agree well with available experimental data, demonstrate that all four NbN polytypes are hard
materials with bulk moduli being close to that of boron nitride. The calculated electronic band structures show
that all four polytypes are metallic with the Nb d-orbital dominated energy bands near the Fermi level (EF ). The
calculated phonon dispersion relations of δ-NbN are in good agreement with neutron scattering experiments.
The electron-phonon coupling (λ) in δ-NbN (λ = 0.98) is much stronger than in ε-NbN (λ = 0.16), WC-NbN
(λ = 0.11), and δ′-NbN (λ = 0.17). This results in a much higher superconducting transition temperature
(Tc = 18.2 K) than in ε-NbN, WC-NbN, and δ′-NbN (Tc � 1.0 K). The stronger λ and higher Tc in δ-NbN
are attributed to its large density of states at EF and small Debye temperature. The calculated Tc of δ-NbN is
in good agreement with the experimental values. However, the predicted Tc of ε-NbN is much smaller than
the recent experiment (11.6 K) but agrees well with the earlier experiment, suggesting further experiments on
single-phase samples. Finally, the calculated relativistic band structures reveal that all four NbN polytypes are
topological metals. Specifically, ε-NbN and δ′-NbN are type-I Dirac metals whereas δ-NbN is type-II Dirac
metal, while WC-NbN is an emergent topological metal that has rare triply degenerate nodes. All these results
indicate that all the four NbN polytypes should be hard superconductors with nontrivial band topology that would
provide valuable opportunities for studying fascinating phenomena arising from the interplay of band topology
and superconductivity.

DOI: 10.1103/PhysRevB.99.104508

I. INTRODUCTION

Ever since superconductivity was discovered in the early
20th century by Kammerlingh Onnes, the quest for discov-
ering materials with higher transition temperature has al-
ways been challenging and hence has continued receiving
unrelenting attention. Excitingly, hydrogen sulfide was re-
cently demonstrated to have a superconducting transition at
203 K under high pressure [1]. Furthermore, yttrium-based
hydrogen clathrate structures were predicted to exhibit room-
temperature superconductivity with a transition temperature
of 303 K under pressure of 400 GPa [2]. In the meantime,
materials that show both topological properties and super-
conductivity have recently received intensive interest because
of possible realization of exotic Majorana fermions, particles
coinciding with their own antiparticles, in such condensed
matter systems [3]. Therefore, it is highly motivated to in-
vestigate the materials that have topological properties and
superconductivity. In this paper, we pay attention to transition
metal nitrides (TMNs) in which some of them are good su-
perconducting materials with transition temperature ranging
from Tc = 8 K for TaN [4] to Tc = 17 K for δ-NbN [5,6] and
others are topological metals [7].

It is well known that TMNs are good candidates for
technological applications because of their superior mechan-
ical, electronic, and superconducting properties [8]. They

have been widely used as microelectronic devices, protective-
resistant coatings, high-pressure devices, etc. [9]. While most
of the TMNs crystallize in a cubic structure, there are, for ex-
ample, group V nitrides with different polymorphic structures
[10–14]. Out of group V TMNs, niobium nitride NbN has four
polymorphic structures, namely, cubic NbN (δ-NbN, NaCl
structure) [10,11], hexagonal NbN [AsNi type (δ′-phase) [12],
tungsten carbide (WC) type [13], and ε-phase [14]. Due to
its notable mechanical properties and existence in various
polytypes, NbN has received considerable attention in recent
years [15–17]. Chen et al. studied the mechanical properties
of δ-NbN by Vickers indentation method and found that it has
bulk modulus comparable to that of hard materials such as
cubic boron nitride and close to that of sapphire [9]. The elec-
tronic structure was studied theoretically by means of plane-
wave nonlocal pseudopotential method [18], linear muffin-tin
orbital method [19], and linearized augmented plane-wave
method [20,21]. Christensen et al. measured the phonon
dispersion of δ-NbN0.93 by inelastic neutron scattering and
found that anomalies exist in acoustic phonon branches at X
point in the Brillouin zone [22]. Theoretical studies based on
density functional theory revealed that the phonon dispersion
of δ-NbN indeed shows soft modes at X point which lead
to lattice instability of the structure similar to other nitrides
such as VN and HfN in their cubic form [23–27]. However,
ab initio calculations on the superconducting properties of
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δ-NbN are relatively less addressed in the literature compared
to other transition metal nitrides [15,19,23]. Here, we perform
systematic ab initio calculations on the mechanical properties,
electronic structure, lattice dynamics, electron-phonon cou-
pling, and superconducting properties of δ-NbN.

The crystal structure of hexagonal ε-NbN was first reported
by Terao et al. [14]. In light of superconductivity of δ-NbN,
it is prevalent to search for superconductivity in ε-NbN.
However, the experiments by Oya et al. [28] concluded
that the hexagonal ε-NbN does not exhibit superconductivity
above 1.77 K. On the other hand, the recent experiments on
magnetization and electrical resistivity of ε-NbN claimed the
existence of superconductivity with transition temperature as
high as ∼11.6 K [16]. Clearly, there is a controversy about the
superconductivity in ε-NbN, which thus requires theoretical
calculations for better understanding of the system as well
as further experiments. In this study, we aim to study the
superconducting properties of ε-NbN by performing ab initio
density functional theory calculations. The electronic band
structure, density of states, and phonon dispersion of ε-NbN
are calculated which are then used to study the electron-
phonon coupling and superconductivity in ε-NbN. Moreover,
the ultrasonic experiments on ε-NbN revealed that the mate-
rial has superior mechanical properties compared to δ-NbN
and the structure is stable up to pressures of 20 GPa [16].
Therefore, we also calculate the elastic properties of ε-NbN
and compare them with that of δ-NbN.

Very recently, Chang et al. [7] predicted that materials
that crystallize in the hexagonal WC structure could host an
exotic topological phase that goes beyond Dirac and Weyl
semimetals and features triply degenerate nodal points along
the kz direction (�-A symmetry lines) in the Brillouin zone.
Indeed, these triply degenerate nodal points were recently
observed experimentally in topological semimetal MoP [29].
Since NbN also exists in WC structure and WC structure was
found to be energetically more stable than the cubic structure
δ-NbN [25,30], WC-NbN could well be another material that
could show the new topological properties [7,31]. Therefore,
it would be worthwhile to carry out a detailed analysis of the
electronic band structure of WC-NbN.

There are some theoretical reports available on the phonon
dispersion [24,25] and electronic structure of WC-NbN
[30,32]. However, ab initio studies on the superconducting
properties of the hexagonal WC-NbN are still lacking in
the literature [24,25,30,32]. Furthermore, NbN also exists in
hexagonal anti-NiAs type structure (δ′-NbN) [12] which re-
ceived less attention in the previous literature [15,16]. In par-
ticular, there are no theoretical studies available on the elec-
tronic structure, elastic and superconducting properties of this
structure [24,25,33]. Therefore, a comparative study of the
superconducting properties of all the four polytypes of NbN is
required. In this work, we systematically investigate the elec-
tronic structure, mechanical properties, phonon dispersion,
and electron-phonon interactions of all the four polytypes
of NbN by performing ab initio calculations. In general, for
conventional superconductors with dominant electron-phonon
interactions, the superconductivity properties can be analyzed
through calculating the Eliashberg spectral function α2F (ω).
Hence, we calculate the α2F (ω) function along with phonon
dispersion and phonon density of states for the four polytypes.

FIG. 1. Crystal structures of (a) δ-NbN, (b) ε-NbN, (c) WC-
NbN, and (d) δ′-NbN. The corresponding Brillouin zones of cubic
δ-NbN as well as hexagonal ε-NbN, WC-NbN, and δ′-NbN are
schematically shown in (e) and (f), respectively. The N-D-P-N and
S-D-T-S k-point paths shown in (e) and (f), respectively, are on the
planes passing through the Dirac points D (see Fig. 4 below).

Then, by using Allen-Dynes formula, the superconducting
transition temperatures for the four structures are calculated.

The rest of this paper is organized as follows. In Sec. II,
we introduce the crystal structures and also theory of super-
conductivity along with the theoretical methods and compu-
tational details used in this study. The calculated physical
properties of these NbN polytypes are presented and analyzed
in Sec. III. Finally, we give a summary of the conclusions
drawn from this work in Sec. IV.

II. CRYSTAL STRUCTURES AND
COMPUTATIONAL METHODS

The crystal structure of δ-NbN is cubic with Fm3̄m space
group and contains one formula unit (f.u.) per cell [10,11]. Nb
occupies the position (0, 0, 0) and N is at ( 1

2 , 1
2 , 1

2 ). ε-NbN
[14], WC-NbN [13], and δ′-NbN [12] crystallize in hexagonal
structures with P63/mmc, P6̄m2, and P63/mmc space groups,
respectively. The unit cell of ε-NbN contains four f.u. with Nb
at ( 1

3 , 2
3 , 1

4 ) and N at (0, 0, 1
2 ) and (0, 0, 1

4 ). For WC-NbN, the
unit cell contains one f.u. with Nb occupying (0, 0, 0) and N
at ( 1

3 , 2
3 , 1

2 ). In the case of δ′-NbN, the unit cell contains two
f.u. with Nb at ( 1

3 , 2
3 , 1

4 ) and N at (0, 0, 0). The four crystal
structures are shown in Fig. 1.

Ab initio density functional theory (DFT) calculations
are carried out with the generalized gradient approximation
(GGA) [34]. The electronic structure calculations are per-
formed with the accurate projector-augmented wave method
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[35–37] as implemented in the Vienna ab initio simulation
package (VASP). For the Brillouin zone integration with the
tetrahedron method, �-centered k-point meshes of 12 ×
12 × 12, 12 × 12 × 4, 12 × 12 × 16, and 12 × 12 × 6
are used, respectively, for δ-NbN, ε-NbN, WC-NbN, and
δ′-NbN. A large plane-wave cutoff energy of 500 eV is used
throughout. The electronic density of states is calculated by
using denser k-point meshes of 16 × 16 × 16 for δ-NbN,
18 × 18 × 6 for ε-NbN, 18 × 18 × 22 for WC-NbN, and
18 × 18 × 9 for δ′-NbN. A small total energy convergence
criterion of 10−6 eV is used for all the calculations.

The elastic constants of the NbN polytypes are determined
by using the linear response stress-strain method, as imple-
mented in the VASP code [38]. For a crystal under a small strain
(εkl ), the corresponding stress (σi j) is given by Hooke’s law

σi j = Ci jklεkl , (1)

where Ci jkl is the elastic tensor that comprises the elastic con-
stants of the crystal. When the symmetry of the crystal is taken
into consideration, the total number of elastic constants can be
reduced from 81. In particular, a cubic structure has only three
elastic constants of C11, C12, and C44, and a hexagonal struc-
ture has five independent elastic constants of C11, C12, C13,
C33, and C44 [39,40]. The bulk modulus B and shear modulus
G are related to the elastic constants via B = 1

3 (C11 + 2C12)
and G = 1

5 (3C44 + C11 − C12) for cubic crystals. For hexag-
onal crystals, they are given by B = 2

9 (C11 + C12 + 2C13 +
1
2C33) and G = 1

30 (12C44 + 7C11 − 5C12 + 2C33 − 4C13). The
Young’s modulus Y is related to B and G by Y = 9BG/

(3B + G).
The strength of the electron-phonon coupling in a crystal

is measured by the electron-phonon coupling constant (λ)
which can be extracted from the Eliashberg spectral function
[α2F (ω)] via [41,42]

λ = 2
∫

α2F (ω)

ω
dω. (2)

The Eliashberg spectral function is given by

α2F (ω) = 1

2πN (εF )

∑
q j

γq j

ωq j
δ(h̄ω − h̄ωq j ), (3)

where N (εF ) is the electronic density of states at the Fermi
level (εF ), γq j is the phonon linewidth due to electron-phonon
scattering, ωq j is the phonon frequency of branch index j
at wave vector q. Using the value of λ, one can estimate
the superconducting transition temperature Tc via McMillan-
Allen-Dynes formula [41,42]

Tc = ωlog

1.2
exp

[ −1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
, (4)

where ωlog is logarithmic average phonon frequency and μ∗ is
the averaged screened electron-electron interaction.

In this study, the phonon dispersions, phonon density of
states, and electron-phonon interactions are computed using
the density functional perturbation theory [43], as imple-
mented in the QUANTUM ESPRESSO code [44]. All the cal-
culations are performed using the scalar-relativistic norm-
conserving pseudopotentials. The plane-wave cutoff energy is
set to 42 Ry for all the four structures of NbN. The electronic

TABLE I. Theoretical equilibrium lattice constants (a, c, c/a),
volume (V ), and total energy (Et ) of δ-NbN, ε-NbN, WC-NbN, and
δ′-NbN compared with the experimental data [10–14].

Phase a (Å) c (Å) c/a V (Å
3
/f.u.) Et (eV/f.u.)

δ-NbN 4.425 4.425 1.000 21.67 −20.1228
Expt.a 4.391 4.391 1.000 21.16
ε-NbN 2.974 11.332 3.810 21.70 −20.5390
Expt.b 2.96 11.27 3.807 21.38
WC-NbN 2.952 2.872 0.972 21.68 −20.5049
Expt.c 2.951 2.772 0.939 20.91
δ′-NbN 2.981 5.586 1.873 21.50 −20.4705
Expt.d 2.967 5.538 1.866 21.11

aReferences [10,11] (experiment).
bReference [14] (experiment).
cReference [13] (experiment).
dReference [12] (experiment).

charge density is expanded up to 168 Ry. A Gaussian broad-
ening of 0.02 Ry is used for all the calculations except for
δ-NbN, where we consider a range of values between 0.02
to 0.18 Ry. The phonon calculations are performed with q
grids of 6 × 6 × 6, 6 × 6 × 3, 6 × 6 × 8, and 6 × 6 ×
4 for δ-NbN, ε-NbN, WC-NbN and δ′-NbN, respectively.
The hole-doping calculations are carried out by changing the
total number of electrons in one unit cell and repeating the
calculations for each doping concentration.

III. RESULTS AND DISCUSSION

A. Mechanical properties

As the first step, we determine theoretically the equilibrium
lattice constants of δ-NbN, ε-NbN, WC-NbN, and δ′-NbN. In
Table I, we list the calculated lattice constants together with
the available experimental data [10–14]. The calculated lattice
constants are found to be in good agreement (within 1%) with
the corresponding experimental data, although the equilibrium
volumes are slightly larger than the experimental ones, due
to the fact that the GGA calculations tend to overestimate
the equilibrium lattice constants [45]. Table I also shows
that ε-NbN is the ground-state structure while δ-NbN, WC-
NbN, and δ′-NbN structures are, respectively, 0.416 eV/f.u.,
0.034 eV/f.u., and 0.068 eV/f.u. higher in total energy than
ε-NbN. Our obtained relative structural stabilities as well
as lattice constants agree very well with the previous GGA
calculations [25].

Elastic constants are calculated for all the four structures
of NbN, as tabulated in Table II. All the elastic constants
are found to be positive and follow the Born’s [46] me-
chanical stability criteria, i.e., C11 > 0, C11 > C12, C44 > 0
for the cubic structure, and C11 > 0, C33 > 0, C11 − C12 >

0, C44 > 0, and (C11 + 2C12)C33 − 2C2
13 > 0 for the three

hexagonal structures. Therefore, all the four structures are
mechanically stable and hold the stability against specific
deformations. This explains why all four NbN polytypes could
be prepared [10–14], even though δ-NbN, WC-NbN, and
δ′-NbN are metastable phases (Table I). The compressibility
characteristics can be related to the calculated elastic con-
stants. According to high-pressure experiments [15], ε-NbN is
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TABLE II. Calculated elastic constants (Ci j), bulk modulus (B),
shear modulus (G), and Young’s modulus (Y ) of δ-NbN, ε-NbN,
WC-NbN, and δ′-NbN compared with the available experimental
values. The theoretical bulk moduli of cubic and hexagonal diamonds
are also listed for comparison. All these quantities are in units of GPa.

C11 C12 C13 C33 C44 B G Y

δ-NbN 692 145.4 65 327 148 385
Expt.a 608 134 117 292 165
c-BNb 369
c-diamondc 443
ε-NbN 588 218 170 706 185 333 199 497
Expt.d 373.2 200.5
WC-NbN 593 235 158 812 178 344 203 508
δ′-NbN 596 228 181 642 184 334 193 485
h-BNe 335
h-diamondf 447

aReference [9] (experiment).
bReference [51] (ab initio calculation).
cReference [52] (ab initio calculation).
dReference [16] (experiment).
eReference [53] (ab initio calculation).
fReference [54] (ab initio calculation).

more compressible along the a axis than c axis. In consistence
with this experimental result, Table II shows that for ε-NbN,
the value of C33 is larger than C11, indicating that the material
is harder to compress along the c axis. The similar trend is
also found in the other hexagonal structures WC-NbN and
δ′-NbN. In the case of δ-NbN, the ordering of the calculated
elastic constants of C11 > C12 > C44 is also consistent with
the experimental one reported in Ref. [9]. Our calculated elas-
tic constants of δ-NbN and WC-NbN are in good agreement
with previous GGA calculations [30,47–50]. However, there
is no theoretical report on the GGA elastic constants of ε-NbN
and δ′-NbN.

Table II indicates that all the four polytypes are hard
materials with their bulk moduli being comparable to that
of superhard cubic and hexagonal boron nitrides (c-BN and
h-BN). The bulk modulus of δ-NbN is only about 10% lower
than that of c-BN [51], whereas for ε-NbN, WC-NbN and
δ′-NbN, the value is nearly the same as that of hexagonal
boron nitride (h-BN) [53]. This indicates that the bonding
in NbN polytypes is similar to that of boron nitride which
is primarily covalent in nature [53]. Furthermore, the bulk
moduli of δ-NbN, ε-NbN, WC-NbN, and δ′-NbN are only
lower by about 1

4 than those of cubic diamond [52] and
hexagonal diamond [54], the hardest materials on Earth. The
reduction of about 1

4 of bulk modulus of δ-NbN, ε-NbN,
WC-NbN, and δ′-NbN could be attributed to the fact that the
bonding in the diamonds involves three-dimensional network
of atoms whereas it is almost linearly distributed between Nb
and N atoms in the NbN structures. Young’s modulus (Y) is
an important mechanical property of a crystalline material
that specifies its stiffness. The calculated Y value of the three
hexagonal structures of NbN is about 1

3 larger than that of
δ-NbN, indicating the higher stiffness character of ε-NbN,
WC-NbN, and δ′-NbN. The ductility and brittleness charac-
teristics of a crystal can be analyzed through Pugh’s criteria.
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FIG. 2. Electronic band structures of (a) δ-NbN, (b) ε-NbN,
(c) WC-NbN, and (d) δ′-NbN calculated without SOC. The green
boxes indicate the band crossings discussed in the text, and the
symmetries of the crossing bands are labeled.

Accordingly, the B/G ratio being greater than 1.75 indicates
ductile nature while being less than 1.75 resembles the brittle
nature. The calculated B/G values of 1.67 for ε-NbN, 1.69
for WC-NbN, and 1.73 for δ′-NbN suggest that the hexagonal
phases have brittle character. On the other hand, the large B/G
value of 2.20 for δ-NbN implies its ductile character. Overall,
this study shows that ε-NbN is more brittle than WC-NbN,
δ′-NbN, and δ-NbN.

B. Electronic band structure

The study of electronic band structure is required for
the detailed understanding of the physical properties of the
NbN polytypes. In Fig. 2, we display the band structures
calculated without including the spin-orbit coupling (SOC).
The associated density of states (DOS) spectra are plotted in
Fig. 3. Figures 2(a) and 2(c) show that the band structures of
δ-NbN and WC-NbN consist of three filled low-lying valence
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FIG. 3. Total and orbital-decomposed density of states (DOS) of
(a) δ-NbN, (b) ε-NbN, (c) WC-NbN, and (d) δ′-NbN.

bands and partially occupied conduction bands above them.
It can be seen from Fig. 3(a) that the three valence bands are
strongly Nb d- and N p-orbital hybridized bands while the
conduction bands are made of mainly Nb d orbital. The band
structures of ε-NbN and δ′-NbN are more complicated simply
because the number of atoms per unit cell in ε-NbN is four
times and in δ′-NbN two times that of δ-NbN and WC-NbN.
Nonetheless, we can see from Figs. 2(b) and 2(d) that there are
now 12 and 6 low-lying valence bands with a strong mixture
of Nb d and N p orbitals and above these lower conduction
bands made of mainly Nb d orbital [see Figs. 3(b) and 3(d)]
in ε-NbN and δ′-NbN, respectively.

Figure 3(a) shows that in δ-NbN, the valence bands below
−4.0 eV are strongly Nb d- and N p-orbital hybridized bands
with almost equal weights of Nb d and N p orbitals, indi-
cating strongly covalent bonding nature. Their DOS spectrum
features a prominent peak near −6.0 eV. Above −4.0 eV, the
bands consist of mainly Nb d orbital and their DOS increases
almost linearly with energy from −4.0 to 1.0 eV. This results
in a rather large DOS at the Fermi level (0.90 states/eV/f.u.).

Similarly, in ε-NbN, WC-NbN, and δ′-NbN, the valence
bands below −3.2 eV also consist of strongly Nb d and N
p orbital hybridized bands with nearly equal weights of Nb
d and N p orbitals [see Figs. 3(b)–3(d)]. This strongly cova-
lent bonding between Nb and N could explain why all four
polytypes are hard. Also, the bands above −3.2 eV in ε-NbN,
WC-NbN, and δ′-NbN are again composed of mainly Nb d
orbital. However, the DOS spectrum does not increase mono-
tonically with energy. Instead, there is a pseudogap centered
at ∼1.0 eV above the Fermi level. This gives rise to a smaller
DOS at the Fermi level of 0.33 states/eV/f.u. for ε-NbN,
0.24 states/eV/f.u. for WC-NbN, and 0.39 states/eV/f.u. for
δ′-NbN.

Interestingly, Fig. 2 shows that there are quite a few
band crossings in the vicinity of the Fermi level in the band
structures of the four NbN polytypes. In the case of δ-NbN,
the band crossing along the �-X path belongs to little point
group C4v and the two crossing bands have distinct irreducible
representations (IRs) and parities of �−

3 and �+
5 [see the green

box in Fig. 2(a)]. Consequently, the two bands cannot mix
and thus the band crossing is protected by the C4 rotational
symmetry. For hexagonal ε-NbN, the linear band crossing
point is located just below the Fermi level at k point A. The
two crossing bands belong to IRs �−

4 and �+
5 of the C6v

point group [see Fig. 2(b)] and it is thus protected by the
threefold C3z rotational symmetry. There also exists a band
crossing along �-A with IRs of �1 and �3 of little point group
C3v in WC-NbN. This band crossing is protected by the C3z

rotational symmetry and also mirror symmetries My and Mz.
In δ′-NbN, three band crossings occur in the vicinity of the
Fermi level along �-A. The three bands involved in the band
crossings belong to IRs �−

4 , �+
5 , and �+

6 of the C6v little
group, as shown in Fig. 2(d). In short, all the bands involved
in the band crossings shown in the green boxes in Fig. 2
for the four NbN polytypes, have different IRs, and hence
the crossings are unavoidable. This suggests that these NbN
polytypes could be topological metals that would host three-
dimensional (3D) Dirac fermions [55–59] or other emergent
fermions [7,29].

To be topological metals, these band crossings should
remain ungapped when the SOC is included. Therefore, we
calculate the fully relativistic band structures of these NbN
polytypes which are displayed in Fig. 4. Remarkably, the band
crossings along the rotational axes (see those surrounded by
the green boxes in Figs. 2 and 4), i.e., the band crossing along
the �-X line in δ-NbN [Figs. 4(a) and 4(f)] as well as the
crossing along the �-A line in ε-NbN [Figs. 4(b) and 4(h)],
WC-NbN [Figs. 4(c) and 4(i)], and also in δ′-NbN [Figs. 4(d)
and 4(n)], remain intact when the SOC is included in the band
structure calculations. To verify that these band crossings are
unavoidable, we determine the IR for each crossing band in
all the four polytypes. Interestingly, the two crossing bands in
δ-NbN have IRs �−

7 and �+
6 of the C4v double point group,

as shown in Figs. 4(e) and 4(f), and it is thus protected by the
C4 rotational symmetry. For ε-NbN, the two crossing bands
shown in Figs. 4(g) and 4(h) have different IRs of �+

7 and �−
9

of the C6v double point group and hence it is protected by the
threefold C3z rotational symmetry. In the case of WC-NbN,
due to the lack of the spatial inversion symmetry the crossing
bands split into nondegenerate bands of IR �7 and doubly
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FIG. 4. Relativistic electronic band structures of (a) δ-NbN, (b) ε-NbN, (c) WC-NbN, and (d) for δ′-NbN. Panels (e)+(f), (g)+(h), (i),
(j)+(k)+(l)+(m)+(n) are the zoom-in plots of the band crossings in the green boxes in (a), (b), (c), and (d), respectively. DP in (e), (f), (g),
(h), (j), (k), (l), and (m) and (n), and TP in (i) denote, respectively, Dirac point and triple nodal point. The energy bands together with their
symmetries along the in-plane paths N-D-P and S-D-T through the DPs (see Fig. 1) are shown, respectively, for δ-NbN (e) and for both ε-NbN
(g) and δ′-NbN (j), (k), (l), (m).

degenerate bands of IRs �8 and �9, thus resulting in triply
degenerate crossing points protected by the C3z rotational
symmetry [see Figs. 4(c) and 4(i)]. The band crossings in
δ′-NbN belong to IRs �+

9 and �−
8 [Figs. 4(j) and 4(n)], �+

7 and
�−

8 [Figs. 4(k) and 4(n)], �+
9 and �−

8 [Figs. 4(l) and 4(n)], and
�+

7 and �−
8 [Figs. 4(m) and 4(n)]. Consequently, these band

crossings are protected by the C3 rotational symmetry. Fur-
thermore, to see these topological nodal points more clearly,
we also display the energy bands near the crossing points (D)
along the N-D-P path for δ-NbN [Fig. 4(e)] and along the
S-D-T path for both ε-NbN [Fig. 4(g)] and δ′-NbN [Figs. 4(j)–
4(m)] in the in-planes going through the crossing (Dirac) point
D (see Fig. 1). This demonstrates that all four NbN polytypes
are topological metals. All the other band crossings in Fig. 2
become gapped when the SOC is included (see Fig. 4). This
could be expected because certain crystalline symmetries such
as threefold and fourfold rotations are needed to protect these
3D band crossing points [56].

Remarkably, these band crossings in the four different
structures of NbN belong, respectively, to three different kinds
of topological nodal points, namely, conventional (i.e., type-I)
and type-II Dirac points (DPs) [55–59] as well as triply
degenerate nodal points (TPs) [7,29]. δ-NbN, ε-NbN, and
δ′-NbN have both time-reversal (T ) symmetry and spatial
inversion (P) symmetry, and thus each of their energy bands is
twofold degenerate. Consequently, the band crossings in these
structures are fourfold DPs [55–59]. In ε-NbN and δ′-NbN,
the DPs [see Figs. 4(b), 4(g), 4(h) and Figs. 4(d), 4(j), 4(k),
4(l), 4(m), 4(n)] are the conventional one as the slopes of
the crossing bands have opposite signs [55–58]. In contrast,
the DPs in δ-NbN [see Figs. 4(a), 4(e), and 4(f)] are rare
type-II Dirac points since the slopes of the crossing bands
have the same sign [59]. Moreover, the band crossings in
WC-NbN are exotic triply degenerate nodal points [7,29] that
may host emergent fermions which are absent in high-energy
physics. WC-NbN has broken P symmetry and, consequently,
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FIG. 5. Phonon dispersion relations of (a) δ-NbN, (b) ε-NbN,
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its energy bands may split into nondegenerate ones away from
the T -symmetric k points in the Brillouin zone. Therefore, the
state degeneracies of band crossings in WC-NbN could be an
odd number such as three in the present case.

C. Phonon dispersion relations

Now, we turn our attention towards the phonon dispersion
spectra of NbN ploytypes. The calculated phonon dispersion
relations for all the NbN structures are displayed in Fig. 5. The
associated phonon DOSs are plotted in Fig. 6. Since δ-NbN
and WC-NbN have two atoms per unit cell, their phonon
dispersion relations have six branches with three acoustic
and three optical modes [see Figs. 5(a) and 5(c)]. There is
a gap separating the optical bands from the acoustic bands
[Figs. 5(a) and 5(c) as well as Figs. 6(a) and 6(c)]. The gap
arises because of the large mass difference between Nb and
N atoms. The acoustic bands come predominantly from the
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tion [α2F (ω)] of (a) δ-NbN, (b) ε-NbN, (c) WC-NbN, and (d)
δ′-NbN.

vibrations of heavier Nb atoms while the optical branches
are mainly due to lighter N atoms. The acoustic bands are
rather dispersive while the optical bands are rather narrow. In
ε-NbN (δ′-NbN), the unit cell has 8 (4) atoms and thus there
are 24 (12) phonon branches (Figs. 5(b) [5(d)]). Out of the
24 (12) phonon branches three are acoustic and remaining 21
(9) are optical. There is no gap separating the three acoustic
bands from the optical bands. Nonetheless, the 24 (12) bands
can be divided into two groups with a gap separating them,
namely, 12 (6) low-lying dispersive bands dominated by the
Nb vibrations and 12 (6) high-lying narrower bands arising
from the N vibrations [Figs. 5(b), 5(d) and 6(b), 6(d)].

Figure 5 shows that all the phonon frequencies of the four
NbN polytypes are positive and this means that they are all dy-
namically stable. Nonetheless, we should note that in δ-NbN,
all the calculated phonon frequencies are positive only when
an abnormally large value of the electronic band smearing
width (σ � 0.15 Ry) is used. If an ordinary value of σ , e.g.,
σ = 0.02 Ry, is used, the calculated phonon frequencies of
the acoustic branches in the vicinity of the X point and K
point become imaginary (i.e., the phonon frequency squares
become negative), as shown in Fig. 7(a) in the Appendix. It is
known that the presence of imaginary phonon frequencies in a
crystalline material indicates that its structure would become
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(dynamically) unstable. In other words, the δ structure of pure
NbN would be unstable. The presence of imaginary phonon
frequencies near the X point has been found before in previous
GGA phonon frequency calculations [23,25,27]. In fact, this
appears to be a common feature found for the superconducting
transition metal nitrides and carbides with NaCl structure
[22,24,25]. Indeed, experimentally, δ-NbN phase could only
be prepared with a small-N deficiency (x) at high temperatures
[9,22]. In δ-NbN1−x with a small number of N vacancies
(VN ) (x � 1.0), N atoms and vacancies on the N sublattice
are randomly distributed. The main effect of the disorder
due to this random distribution of N and VN on electronic
band energies is a larger band smearing [25]. Therefore, to
a first-order approximation, the effect of the disorder due to
nitrogen vacancies in NbN1−x could be taken into account
by using a large electronic smearing width in the theoreti-
cal calculations [25]. Indeed, all the phonon frequencies of
δ-NbN shown in Fig. 5(a) calculated with σ = 0.18 Ry are
now positive. Moreover, they are in good agreement with the

available neutron scattering experiments [22]. In particular,
the calculated longitudinal acoustic phonon branch agrees
very well with the experimental one, although small discrep-
ancies between the calculation and experiment could be found
for the transverse acoustic phonons [Fig. 5(a)]. Note that the
neutron scattering experiments were carried out on δ-NbN0.93.
Also note that our calculated phonon dispersion relations of
δ-NbN are in much better agreement with the neutron scatter-
ing data than that reported previously in Ref. [25]. To further
investigate the effect of the N deficiency, we also calculate the
phonon dispersion within the virtual crystal approximation,
i.e., the small-N deficiency (x) in NbN1−x is simulated by
a small reduction (7x) in the number of valence electrons.
For example, to simulate δ-NbN0.93, we would reduce the
number of valence electrons by ∼0.5 e/f.u. We find that when
the N deficiency x in δ-NbN1−x becomes more than 0.05,
the imaginary phonon band disappears, indicating that the
structure becomes dynamically stable. When the x is further
increased to ∼0.07, the soft acoustic phonon mode at the X
point becomes a normal phonon mode as shown in Fig. 7(b).
Therefore, we conclude that the small-N deficiency would
indeed stabilize the δ-NbN structure.

On the other hand, all the phonon dispersion spectra of
hexagonal ε-NbN, WC-NbN, and δ′-NbN calculated using
different smearing widths of either σ = 0.02 Ry (Fig. 5) or
σ = 0.10 Ry (Fig. 8) are positive, implying that they are all
dynamically stable. Furthermore, a comparison of Figs. 5(b)–
5(d), respectively, with Figs. 8(a), 8(b), and 8(c) shows that
the electronic band smearing width used has almost no effect
on the calculated phonon dispersion relations. To further
study the effect of the possible N deficiency on the phonon
dispersion of hexagonal structures of NbN, we also calculate
the phonon dispersion of ε-NbN1−x with a small x of ∼0.02
within the virtual crystal approximation. Figure 7(c) shows
clearly that the small-N deficiency has no effect on the phonon
dispersion of ε-NbN. Our calculated phonon dispersion rela-
tions of WC-NbN are in good agreement with that of the ear-
lier GGA calculation reported in Ref. [24] but differ from that
reported in Ref. [25]. In particular, there is no visible splitting
of the transverse and longitudinal optical phonon modes at
the � in the phonon dispersion relations reported in Ref. [25],
which is incorrect. However, no experimental measurements
nor theoretical calculations on the phonon dispersion relations
of ε-NbN have been reported.

D. Eliashberg function and superconductivity

The main focus of this study is to study the strength of the
electron-phonon coupling in all four NbN polytypes, which is
given by an integral of Eliashberg function α2F (ω) times 1/ω

over phonon frequency [Eq. (2)]. Table III lists the calculated
electron-phonon coupling constants (λ). Figure 6 displays
the calculated Eliashberg functions α2F (ω) along with the
phonon DOSs. Overall, each α2F (ω) function follows its
corresponding phonon DOS spectrum. For example, like the
phonon DOS spectra, the α2F (ω) spectra of all the four
structures show a gap between the lower Nb-dominant and
upper N-dominant phonon regions. Interestingly, the gap as
well as the centroids of the two phonon regions move up
in energy as one goes from δ-NbN to δ′-NbN to ε-NbN
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and finally to WC-NbN (see Fig. 6). This results in the
fact that δ-NbN has the smallest logarithmic average phonon
frequency ωlog while WC-NbN has the largest ωlog, as shown
in Table III. Also, the α2F (ω) is considerably larger in the
upper region than in the lower region. Note that the two
phonon regions have an equal number of phonon bands and
thus can accommodate an equal number of phonons, i.e., their
areas under the phonon DOS curves should be the same.
Consequently, the phonon DOS and hence α2F (ω) are larger
in the upper region than in the lower region because the upper
region is narrower than the lower region (Fig. 6). Remarkably,
Fig. 6 shows that the magnitude of the α2F (ω) spectrum in
δ-NbN is significantly larger than that in ε-NbN, WC-NbN,
and δ′-NbN, thus implying a much stronger electron-phonon
coupling in δ-NbN. Note that the large peaks in α2F (ω) at
around 14 THz for δ-NbN result from the coupling of the
transverse optical modes due to N atoms to the electrons.
This, together with the lower centroids of the two phonon
regions in δ-NbN, suggests that δ-NbN would have the highest

TABLE III. Calculated electron-phonon coupling constant (λ),
logarithmic average phonon frequency (ωlog), Debye temperature
(�D), density of states at the Fermi level N (εF ), and superconducting
transition temperature (Tc) of δ-NbN, ε-NbN, WC-NbN, and δ′-NbN.
The smearing parameter (σ ) used in these calculations is set to
σ = 0.18 Ry, 0.02 Ry for δ-NbN, and to σ = 0.02 Ry, 0.10 Ry, and
0.18 Ry for ε-NbN, WC-NbN, and δ′-NbN. The screened Coulomb
interaction μ∗ entering Eq. (4) is set to 0.10. Available experimental
Tc values are also listed for comparison.

ωlog �D N (εF ) Tc

Structure σ λ (K) (K) (states/eV/f.u.) (K)

δ-NbN 0.18 0.98 269 637 0.883 18.26
δ-NbN0.93 0.02 1.07 271 691 0.842 20.86
Expt. 17.3a

ε-NbN 0.02 0.16 398 734 0.331 0.00
0.10 0.27 456 0.339 0.08
0.18 0.36 472 0.341 1.08

ε-NbN0.97 0.02 0.36 396 660 1.469 0.92
Expt. <1.77b,11.6c

WC-NbN 0.02 0.11 639 740 0.244 0.00
0.10 0.22 479 0.248 0.00
0.18 0.34 504 0.255 0.89

δ′-NbN 0.02 0.17 430 715 0.394 0.00
0.10 0.35 483 0.397 0.90
0.18 0.43 496 0.411 2.91

aReference [5] (experiment).
bReference [28] (experiment).
cReference [16] (experiment).

λ value. Indeed, Table III shows that δ-NbN has a value of λ

(0.98) much larger than that of δ′-NbN (0.17), ε-NbN (0.16),
and WC-NbN (0.11). Interestingly, we find that the major
contribution to the electron-phonon coupling constant λ in
the NbN polytypes comes from the Nb vibration dominated
phonon modes in the low-frequency region. For example, the
contribution of these phonon modes to the λ in δ-NbN is
nearly 80%. Therefore, it is easy to see from Eq. (2) why
δ-NbN has the largest λ value among the four NbN polytypes.

The trend of the calculated λ values could also be under-
stood in terms of the expression [41] λ = [N (εF )/ < ω2 >]∑

i(〈I2〉i/Mi ) where Mi is the atomic mass of atom i and
〈I2〉i is the square of the electron-phonon coupling matrix
element averaged over the Fermi surface. Also, 〈ω2〉 ≈ 0.5�2

D
where the Debye temperature �D could be related to the
elastic constants [60]. Using the calculated elastic constants
(Table II), we estimate the �D for all four NbN polytypes,
as listed in Table III. Therefore, it is clear from Table III that
δ-NbN has the largest λ value because it has the largest N (εF )
(Table III) and the smallest �D (hence the smallest 〈ω2〉).

By using the calculated electron-phonon coupling constant
λ, we estimate the superconducting transition temperature
Tc for all four NbN polytypes with Allen-Dynes formula
[Eq. (4)] (see Table III). Here, the screened electron-electron
repulsion μ∗ is treated as an empirical parameter and is set
to 0.10 [42]. For δ-NbN, the calculated Tc is 18.2 K, being
in good agreement with the experimental value of 17.3 K [5].
No experimental finding of the superconductivity in WC-NbN
and δ′-NbN has been reported, and this seems to agree with
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our prediction of Tc = 0 K for pure WC-NbN and δ′-NbN
with small smearing width σ = 0.02 Ry (Table III). Oya
and Onoders reported that ε-NbN did not exhibit supercon-
ductivity down to 1.77 K [28]. This experimental result is
in agreement with our prediction of zero Tc value for pure
ε-NbN (Table III). However, Zou et al. [15] recently found
two superconducting transitions at 17.5 and 11.6 K in their
polycrystalline samples of mixed ε-NbN and δ-NbN phases.
They attributed the superconducting transitions at 11.6 and
17.5 K to the ε-NbN and δ-NbN phases, respectively. This
appears to be in contradiction with the earlier experiment by
Oya and Onoders [28] and also with the present calculation
(Table III).

In order to ensure that our theoretical results are converged
with respect to the computational parameters used, we further
perform the calculations with a denser q grid of 8 × 8 × 8
for δ-NbN, 8 × 8 × 2 for ε-NbN, 8 × 8 × 10 for WC-NbN,
and 8 × 8 × 6 for δ′-NbN. The calculated phonon DOS,
α2F (ω) and λ, etc., remain almost the same. Consequently,
the calculated Tc is still zero for pure ε-NbN, WC-NbN,
and δ′-NbN while the Tc for δ-NbN increases slightly to
19.1 K. For transition metals and their binary compounds,
the screened electron-electron repulsion μ∗ usually ranges
from 0.09 to 0.15 [42]. We also calculate Tc using μ∗ =
0.13 but find that the Tc remains zero for ε-NbN, WC-NbN,
and δ′-NbN while the Tc for δ-NbN gets reduced slightly to
16.8 K.

Given the fact that as in δ-NbN, there could be some N
vacancies in ε-NbN, WC-NbN, and δ′-NbN samples, we also
carry out further calculations using the electronic smearing
widths of larger than 0.02 Ry. Table III indicates that for σ =
0.18 Ry, the Tc for ε-NbN, WC-NbN, and δ′-NbN become
nonzero but small (1.0 ∼ 3.0 K), due to substantially en-
hanced λ values. Since a larger smearing width has almost no
effect on the phonon dispersion relations in ε-NbN and WC-
NbN (Figs. 5 and 8), the enhanced λ could be attributed to the
increased N (εF ). Figure 4 shows that as mentioned before,
the Fermi level sits on the slope of the lower-energy side of
the pseudogap. Consequently, when a much larger σ value is
used, the peak in the DOS spectrum just below the Fermi level
becomes considerably broadened and thus transfers some
weight to the Fermi level, leading to an increased N (εF ). To
further explore the consequences of small-N deficiency, we
also calculate the superconducting properties of δ-NbN0.93

and ε-NbN0.97 within the virtual crystal approximation. As
expected, Table III shows that the DOS of ε-NbN0.97 at the
Fermi level increases by about four times compared to the
pure ε-NbN case [Fig. 3(b)]. This results in an enhanced
λ, thus leading to a Tc of 0.92 K. Based on these results,
we may conclude that if there were the superconductivity
in hexagonal NbN polytypes, the superconducting transition
temperature would be smaller than ∼1.0 (3.0) K in ε-NbN
and WC-NbN (δ′-NbN). To clarify this important issue, we
believe that further experiments on the single-phase samples
of ε-NbN would be helpful.

IV. CONCLUSION

Summarizing, we have investigated the mechanical prop-
erties, electronic structure, lattice dynamics, electron-phonon

interactions, and superconductivity in all four NbN polytypes
(δ-NbN, ε-NbN, WC-NbN, and δ′-NbN) by performing sys-
tematic ab initio DFT-GGA calculations. The calculated total
energy and elastic constants (Tables I and II) reveal that
ε-NbN is the ground-state structure but δ-NbN, WC-NbN,
and δ′-NbN are also mechanically stable, thus explaining
the fact that all four NbN polytypes have been reported.
These results also indicate that all four polytypes are hard
materials with their bulk moduli being comparable to that of
cubic and hexagonal BN [51,53]. In fact, their bulk moduli
(Table II) are only about 1

4 smaller than that of cubic and
hexagonal diamond [52,54], the hardest materials on Earth.
The calculated electronic band structures (Figs. 2 and 3) show
that all four polytypes are metallic with the energy bands in
the vicinity of the Fermi level (EF ) being dominated by Nb
d orbitals. Nonetheless, the lower part of the valence band
manifold is of strongly covalent bonding with nearly equal
weights of Nb d and N p orbitals, thus resulting in large bulk
and Young’s moduli.

The calculated phonon dispersion relations (Fig. 5) can be
divided into two groups separated by a band gap, namely,
low-frequency heavier Nb vibration-dominated one and high-
frequency lighter N vibration-dominated one. The calculated
phonon dispersion relations of δ-NbN are in excellent agree-
ment with the available neutron scattering experiments [22].
Interestingly, the calculated phonon DOSs (Fig. 6) reveal
that the centroids of the two groups and hence the Debye
temperature (Table III) go up as one moves from δ-NbN
to δ′-NbN to ε-NbN and then to WC-NbN. The calculated
Eliashberg functions follow the same trend and thus give
rise to the largest electron-phonon coupling constant of λ =
0.98 in δ-NbN. δ′-NbN has value of λ = 0.17, ε-NbN has
a much smaller λ of 0.16, and WC-NbN has the smallest
λ of 0.11 (Table III). This trend of the λ values can be
attributed to the trend of the DOS at the Fermi level N (εF ),
viz., N (εF )δ > N (εF )δ

′
> N (εF )ε > N (εF )WC, and also that

of Debye temperature �D, i.e., �δ
D < �δ′

D < �ε
D < �WC

D , of
the four NbN polytypes. The estimated superconducting tran-
sition temperature Tc of 18.2 K of δ-NbN (Table III) agrees
very well with the experimental value [5]. The calculated Tc

is zero for pure ε-NbN, δ′-NbN, and WC-NbN (Table III).
When large band smearing widths are used to simulate the
effect of random substitutional disorder on the N sublattice
due to the slight N deficiency present in NbN samples, the Tc

could go up to 1.0 ∼ 3.0 K (Table III). This result agrees quite
well with the earlier report [28] that ε-NbN did not exhibit
superconductivity down to 1.77 K [28] but disagrees with the
recent report [15] that the Tc of ε-NbN phase in the samples
with mixed ε-NbN and δ-NbN phases is about 11.6 K. To
resolve this controversy, we believe that further experiments
on the single-phase samples of ε-NbN would be helpful.

Finally, the calculated relativistic band structures reveal
that all four NbN polytypes are topological metals. In par-
ticular, both ε-NbN, δ′-NbN, and δ-NbN are, respectively,
type-I and type-II Dirac metals, which would exhibit novel
quantum phenomena such as negative and anisotropic mag-
netotransports [61–63] and topological phase transitions [57].
Furthermore, WC-NbN is an emergent topological metal that
has exotic triply degenerate nodes [7,29]. Therefore, all the
four NbN polytypes should be hard superconductors with
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nontrivial band topology. This suggests that the NbN poly-
types would provide a valuable material platform for studying
fascinating phenomena arising from the interplay of band
topology and superconductivity [64–66].
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APPENDIX: POSSIBLE EFFECTS OF N DEFICIENCY
ON PHONON DISPERSION

Figure 7(a) shows the phonon dispersion of pure δ-NbN
with the standard electronic smearing width of σ = 0.02 Ry.
The phonon dispersion shows imaginary frequency phonon
modes at X and K points. This indicates that pure δ-NbN
is unstable. Experimentally, δ-NbN phase could only be pre-
pared with a small-N deficiency [9,22]. One way to investigate
the effect of the N deficiency is to calculate the phonon
dispersion within the virtual crystal approximation (VCA),
i.e., the small-N deficiency (x) in NbN1−x is simulated by

a small reduction (7x) in the number of valence electrons.
The phonon dispersion calculated based on the VCA for
δ-NbN0.93 and ε-NbN0.98 are displayed in Figs. 7(b) and
7(c), respectively. Figure 7(b) shows that the soft phonon
modes disappear in δ-NbN0.93 while Fig. 7(c) indicates that
the phonon dispersion of ε-NbN0.98 is almost identical to that
of pure ε-NbN [Fig. 5(b)]

In N-deficient δ-NbN1−x, N atoms and N vacancies (VN )
on the N sublattice are randomly distributed. The main effect
of the disorder due to this random distribution of N and VN on
electronic energy bands is a larger band smearing [25]. There-
fore, the effect of the disorder due to VN in NbN1−x could be
taken into account by using a large electronic smearing width
in the calculations [25]. The phonon dispersion relations
calculated using a larger smearing value of σ = 0.10 Ry for
ε-NbN, WC-NbN, and δ′-NbN are plotted in Figs. 8(a), 8(b)
and 8(c), respectively. Figures 5 and 8 show that the phonon
dispersions calculated using the two different σ values of
0.02 and 0.10 Ry are nearly the same. Therefore, we may
conclude that although the small-N deficiency stabilizes the
cubic δ-NbN by removing the imaginary frequency phonon
modes at X and K points, it has negligible effects on the
phonon dispersion in the hexagonal NbN polytypes (ε-NbN,
WC-NbN, and δ′-NbN).
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