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Non-Fermi-liquid scattering against an emergent Bose liquid: Manifestations in the kink
and other exotic quasiparticle behavior in the normal-state cuprate superconductors
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The normal state of cuprate superconductors exhibits many exotic behaviors qualitatively different from the
Fermi liquid, the foundation of condensed-matter physics. Here we demonstrate that non-Fermi-liquid behaviors
emerge naturally from scattering against an emergent Bose liquid. Particularly, we find a finite zero-energy
scattering rate at the low-temperature limit that grows linearly with respect to temperature, against clean
fermions’ generic nondissipative characteristics. Surprisingly, three other seemingly unrelated experimental
observations are also produced, including the well-studied “kink” in the quasiparticle dispersion, as well as
the puzzling correspondences between the normal and superconducting states. Our findings provide a general
route for fermionic systems to generate non-Fermi-liquid behavior and suggest that by room temperature large
number of the doped holes in the cuprates have already formed an emergent Bose liquid of tightly bound pairs,
whose low-temperature condensation gives unconventional superconductivity.
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I. INTRODUCTION

The Landau Fermi-liquid (FL) theory is one of the corner-
stones of condensed-matter physics that explains most of the
basic properties of materials [1]. Another known generic liq-
uid is the Luttinger liquid [2], which seems to be another fixed
point of interacting fermionic systems [3]. However, in many
strongly correlated materials, various non-Fermi-liquid (NFL)
behaviors have been observed experimentally that are quali-
tatively distinct from these known generic liquid behaviors.
The most well known example is the normal state of cuprate
superconductors [4,5]. The observed resistivity shows a linear
temperature dependence in a wide doping and temperature
range [6,7]. This so-called strange-metal behavior is in great
contrast to the generic quadratic dependence in the FL and
has led to the suggestion of a “hidden Fermi liquid” [8,9].
Furthermore, in the hole underdoped “pseudogap” regime,
the Fermi surface becomes an open “arc,” beyond which the
spectral function demonstrates an incomplete gaplike feature
near momentum k = (π, 0) [10,11], without a well-defined
quasiparticle peak [12–14].

Even in the Fermi arc, where a quasiparticlelike peak can
be observed by angle-resolved photoemission spectroscopy
(ARPES), the peak is accompanied by a “background” span-
ning a large energy range taking a significant amount (at least
half) of weight from the peak [4]. Furthermore, in optimally
doped samples, the scattering rate of the quasiparticles near
the chemical potential is believed to have a (

√
T 2 + ω2)-

like temperature T /energy ω dependence [15]. This is very
exotic, as it implies a nonanalyticity at the zero-temperature,
zero-energy limit of the electronic self-energy, qualitatively

*Corresponding author: weiku@mailaps.org

different from the analytical T 2 + ω2 dependence of the FL
[16] and the T + ω2 dependence of the hidden Fermi liquid
[8,17]. In fact, the smooth FL behavior has a profound origin
related to the diminishing phase space of clean fermionic
systems (not just FL) at low energy that reduces the scat-
tering rate to zero in this limit. (In other words, given the
Pauli principle, clean fermionic systems are not supposed
to have dissipation near the ground state.) The observation
implies unusual nonanalytic behavior that perhaps further
promotes the notion of a quantum critical point [15,18,19],
whose associated quantum fluctuation can, in principle, lead
to unconventional superconductivity [20–22].

This exotic scattering rate has been one of the most essen-
tial puzzles of condensed-matter physics, in association with
the above strange-metal behavior. However, its microscopic
origin remains elusive. A phenomenological interpretation is
the marginal Fermi liquid (MFL), which hypothesizes charge
and spin polarizabilities [23] from unknown physical origins.
More recently, the same nonanalytic behavior was shown to
appear via holographic gauge/gravity duality [24,25]. A real-
istic physical picture of this exciting new line of consideration
still requires further development.

Even more unexpectedly, a recent experiment [26] found
very similar structures in the high-temperature normal-state
self-energy (which gives the scattering rate) and the anoma-
lous self-energy in the low-temperature superconducting state
(which gives the superconducting gap). This is in excellent
agreement with the earlier observation [27] that the normal-
state quasiparticle scattering rate on the Fermi surface corre-
lates directly with the low-temperature superconducting gap
in multiple materials near optimal doping. Together, these
observations indicate that whatever constitutes the micro-
scopic mechanism of superconductivity at low temperature
has already been encoded in the scattering of the normal state,
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a feature of the large energy scale of the essential correlations
absent in all weak-coupling pictures.

In addition to these unusual behaviors that connect pro-
foundly to the most basic concepts of condensed-matter
physics and the recent studies on the charge-density wave
[28–31], quasiparticles in the cuprates present another univer-
sal and distinct “kink” in their dispersion [32–38]. Coupling a
MFL to the magnetic resonance in the superconducting state
[34,36,39] was proposed to be the origin of the kink, but
the lack of magnetic resonance above the superconducting
transition temperature Tc appears to contradict the observation
of the kink above Tc [32,37]. Coupling to the phonon [32,35]
provides another possible origin, but its strength was ques-
tioned by a later calculation [40]. A similar structure can also
be produced by replacing the phonon by the spin fluctuation
[41,42], but no consensus has been reached for such a mech-
anism. Notice, however, that none of these proposals properly
includes the essential NFL scattering mentioned above that is
obviously controlling the low-energy physics.

The combination of these four characteristics in the one-
particle spectral function indicates unambiguously that the
cuprates are in a many-body state completely distinct from
the usual Fermi liquid. Then, other than a vague “strongly
correlated electronic system,” what exactly are the cuprates?
The best-known attempt to answer this essential question
is probably Anderson’s hidden Fermi liquid [8,17], which,
however, does not naturally incorporate the above-mentioned
strong correspondence between the superconducting gap and
the normal-state scattering rate.

In this paper, we show that NFL scattering rate results
naturally from scattering against an emergent Bose liquid of
tightly bound pairs. Near the optimal doping, we find a finite
scattering rate even at the zero-temperature and zero-energy
limit that grows linearly with temperature, against the typical
FL behavior. In essence, the formation of bosonic pairs allows
finite thermal fluctuation (and thus dissipation) in the low-
temperature, low-energy limit, in the absence of condensation.
Note that such an NFL scattering rate is produced with an
analytical self-energy and thus does not require a quantum
critical point. Most unexpectedly, the same scattering also
produces a kink in the quasiparticle dispersion at the exper-
imentally observed energy, revealing that the kink is essen-
tially another manifestation of the underlying NFL scattering
process. Furthermore, our results give the observed direct
correspondences between the normal and superconducting
states in several cuprates, including their structures of the
self-energies and scattering rate vs superconducting gap. Our
study demonstrates a generic route for clean fermionic sys-
tems to break the fermionic zero-dissipation characteristics.
The simultaneous description of these seemingly unrelated
experimental observations in the cuprates by a single model
suggests strongly that by room temperature a large number
of the doped holes in the cuprates have formed an emergent
Bose liquid, whose condensation at low temperature gives the
unconventional superconductivity.

II. MODEL

We assume a model system with very strong short-range
correlations in spin, charge, and pairing channels, correspond-

FIG. 1. (a) Illustration of pivoting motion of EBL in Eq. (1). The
green solid ellipse denotes a bosonic tightly bound pair of holes
located at the blue and red solid squares. Through the second- and
third-nearest-neighbor hoppings of holes (open squares), τ ′ and τ ′′,
the boson can hop to the first- and second-nearest-neighbor bosonic
sites (open ellipses). The resulting bosonic lattice (black ellipses)
forms a checkerboard lattice. (b) and (c) Illustration of the scattering
process τii′b

†
ij fjf

†
j ′bi′j ′ of a photohole (yellow circle) against a boson

in Eq. (2).

ing to energy scales much larger than the temperature and
energy range of experimental interest. In such a limiting case,
these correlations would appear to be “frozen” or saturated
in experimentally observed low-energy physics. We further
assume [43,44], concerning the charge and pairing degrees
of freedom, the essential correlations manifest themselves in
three constraints of the doped holes in the system: (1) no
double occupancy of sites, (2) the formation of tightly bound
nearest-neighbor pairs of doped holes, and (3) a fixed total
number of bosons (since the pair-breaking fluctuation is as-
sumed to be of higher energy and can be integrated out). These
assumptions lead to a simple model [43,44] of an emergent
Bose liquid (EBL) in a checkerboard lattice (a two-orbital
Hamiltonian corresponding to the two types of neighboring
bonds, vertical and horizontal), as shown in Fig. 1(a):

Hb =
∑

ii ′,j∈NN(i)∩NN(i ′ )

τii ′b
†
ij bi ′j , (1)

where bi ′j denotes the annihilation of a boson composed of
fermions sitting at Cu site i ′ and its adjacent site j and
τii

′ = τ ′ or τ ′′ is the strength of a fully dressed kinetic process
involving second- or third-nearest-neighbor sites, describing
the pivoting motion of the two-legged boson. The resulting
noninteracting band structure and density of states of typical
solutions of this two-orbital model are illustrated in Fig. 4
below and correspond to the one-particle propagator of the
boson, D = 1/(ω − Hb ) [45].

Justifications for applying this idealized model to the
actual cuprates can be argued from general theoretical
grounds [43,44] and are at least consistent with interpretations
of many experimental observations [46–53]. This model also
takes into consideration the importance of phase fluctuation
[54–56] for the superconductivity in the underdoped cuprates.
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FIG. 2. Feynman diagram of (a) a kernel of quasiparticle scat-
tering against two-orbital EBL, (b) Dyson’s equation for dressed
hopping F , (c) self-energy �, and (d) Dyson’s equation for the
dressed fermionic propagator G. The dotted blue line stands for bare
hopping τii

′ . The thick red line denotes the extracted renormalized
propagator G.

But of course, the ultimate justification for this model, par-
ticularly in contrast to other various proposals of “preformed
pairs” [57–60], should come from verification of its physi-
cal properties against all available experiments. Previously,
without using any free parameter, this model successfully
explained quantitatively the demise of superconductivity at
5.2% doping [44] in excellent agreement with experiments
and produced a kinetics-driven second kind of superconduct-
ing gap with the correct experimental gap size [43]. Below
we will use this model to explain intuitively the novel physics
behind all four main characteristics of the electronic spectral
functions, giving further credibility to this model.

We are most concerned about the effects on the electronic
one-particle propagator G of the injected photohole and the
small number of residual unpaired holes (created by f †)
via scattering against the bosonic pairs composed of holes
indistinguishable from them. As an illustration, we consider
the inelastic scattering process [44] that conserves the bosonic
particle number, as shown in Figs. 1(b) and 1(c):∑

ii ′

∑
j ∈ NN(i),

j ′ ∈ NN(i ′ ) \ j

τii ′b
†
ij fjf

†
j ′bi ′j ′ . (2)

Treating this process as a perturbation and making use of
Wick’s theorem, we derive the corresponding Feynman dia-
grams and their rules [61]. We then perform the following
partial sum of fermionic self-energy diagrams at finite tem-
perature (see Fig. 2):

�(1, 1′) = F (2′, 2)D(1, 2; 1′, 2′) (3)

[in the 1 → (space, time) notation, with variables with an
overline denoting dummy ones to be summed over]. Here
D(1, 2; 1′, 2′) denotes the propagation of the boson from 1′
and its adjacent 2′ to 1 and its adjacent 2. F denotes the
dressed hopping obtained from (in matrix notation)

F = τSτ + τSF, (4)

which is dressed by

S(1, 1′) = G(2′, 2)D(1, 2; 1′, 2′) (5)

via the dressed fermion one-particle propagator G, which
itself is self-consistently obtained with the self-energy (in

FIG. 3. Real (blue) and imaginary (red) parts of the (a) exper-
imental [26] and (b)–(f) calculated self-energy at different dopings
and temperatures. Solid arrows mark two distinct features in Im�.
Open arrows and black lines indicate the direct correspondence of
the peak feature and (g) the kink observed in the dispersion. The
background removed in (a) is a quasilinear analytical

√
c2 + ω2 − c

function with c much smaller than the first feature around 20 meV,
so that it does not introduce any visible artificial feature.

matrix notation)

G = G0 + G0�G. (6)

Note that in Eq. (4), the lowest-order term containing only the
bare hopping is removed since its contribution to Eq. (3) leads
to a nearly k independent constant that can be absorbed by the
chemical potential.

To best account for realistic cuprate materials, we use
the same doping-dependent τ parameters in Refs. [43,44]
obtained from the dispersion ε near the chemical potential in
the ARPES measurement of La2−xSrxCuO4. We further use
the same experimental dispersion to construct an approximate
G ∼G̃(�q, ω) = W/[ω − ε(�q )] with a reduced quasiparticle
weight W ∼0.5, roughly estimated from the experimental
spectra [4] that show a large weight loss in the incoherent
features. We then choose a featureless reference G0 to ensure
that the low-energy part of the resulting G from Eq. (6) agrees
well with G̃ (experiment) to respect as much as possible the
self-consistency of our formalism. It is important to note that
the third assumption above dictates that the chemical potential
of the boson needs to be calculated for each temperature to
guarantee the fixed particle number (∼x/2) of bosons.

III. RESULTS

Figure 3 shows our calculated normal-state self-energy at
two temperatures (40 and 80 K). Also shown in Fig. 3(a) is
the measured Im� with high resolution [26] for optimally
doped Bi2Sr2CaCu2O8+δ , which contains two distinct features
at low energy (easier to see after removing a featureless back-
ground associated with other decay channels). Amazingly,
these features and, particularly, their energies are very nicely
captured in our results in Fig. 3(b). The agreement in their
energies is not to be taken lightly, considering that it results
from a framework that has no free parameter: the essential
parameters τ and G̃ are obtained directly from ARPES exper-
imental dispersion, and D is obtained from τ directly. (The
weight reduction factor of 0.5 in G̃ roughly estimated from the
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FIG. 4. (a), (b), (e) Temperature-dependent scattering rate � of the nodal quasiparticle at the Fermi wave vector kF (black open circles) and
at the chemical potential kμ (red solid circles) for 7% (top panel) and 15% (bottom panel). Both show NFL behavior with a linear temperature
dependence with a constant at the zero-temperature limit. The shaded region is below Tc. (c) and (f) The corresponding band structure and (d)
and (g) density of states of the bosonic pairs. (h) The experimentally extracted Eliashberg function α2F (ω) [26] at optimal doping, showing a
strong peak around 40 meV, a weak peak around 140 meV, and a large energy range around 250 meV, all of which are well captured by the
calculated bosonic density of states in (g).

experiments mostly just fine-tunes the intensity of our results
and does not alter their energies much.)

In fact, in our calculation, the stronger peak around 50 meV
obtains its energy approximately from the binding energy
of the Van Hove singularity at (π, 0) given directly from
the ARPES dispersion of La2−xSrxCuO4 [43,62]. (A similar
energy of the Van Hove singularity was observed in opti-
mally doped Bi2Sr2CaCu2O8+δ as well [4].) Consistently,
Figs. 3(c)–3(f) show that at lower (7%) doping the feature
grows to 70 meV, again following the well-known non-
rigid band shift of the Van Hove singularity at (π, 0) [63].
Microscopically, this comes simply from the significant open-
ing of the scattering phase space near the Van Hove singu-
larity. This realization accounts naturally for the observed
sudden change in momentum distribution curve of ARPES
[32–35,37] as well.

Most unexpectedly, Figs. 3(c) and 3(g) show that when ap-
plied to a smooth featureless reference G0 = W/[ω − ε0(�q )],
this stronger feature produces a clear kink structure in the
dispersion of the resulting G, a structure intensively studied
by ARPES. A careful examination of the resulting kink struc-
ture should make clear that both experimental dispersion and
our calculated dispersion actually contain two kinks (marked
by thin lines), between which the dispersion is steeper. This
behavior is also clearly observed in experimental data shown
here (6.3%, 20 K) [12] and in other experiments [36–38]. Such
a flat-steep-flat, two-kink structure is qualitatively distinct
from the flat-vertical, one-kink structure produced by cou-
pling to phonon [40] and spin fluctuations [42], as it requires
a peak, not a dip, in Im�. Since the kink energy is closely
related to the Van Hove–singularity–derived peak in Im�, one
should expect a systematic correspondence between these two
measured quantities. Indeed, in overdoped Bi2Sr2Cu2O8+δ ,
the Van Hove singularity occurs at higher energy around
100 meV [64], and correspondingly, a kink of the similar
energy was reported by ARPES [36].

We now show that near the optimal doping, this model
produces an exotic NFL scattering rate at low temperature.
Figure 4(a) shows a linear temperature T dependent scattering

rate �(kF ) measured from the full width at half maximum
of the peak in our resulting spectral function at the fixed
Fermi wave vector kF . Such a linear temperature dependence
signifies an exotic scattering, qualitatively distinct from the
standard T 2 dependence scattering of a FL. This linear de-
pendence has been observed experimentally near the optimal
doping [15,65,66] and is regarded as the phenomenological
MFL [23].

Even more exotically, Fig. 4(b) shows that the scattering
rate approaches a finite value at low temperature, indicating
that the low-energy carriers can dissipate even at the low-
temperature limit without disorder. This is quite unexpected
since, generally speaking, due to the Pauli principle, a typical
clean fermionic system should have a diminishing phase space
of scattering at zero temperature and cannot dissipate at the
chemical potential. This is why even the phenomenological
MFL picture assumes a zero Im� at the chemical potential
as temperature approaches zero and why the hidden Fermi
liquid shows the same behavior. This is also the reason why
such a finite scattering rate is always ignored in experimental
analysis [26,37] by regarding disorder as its origin. Our results
open an entirely new possibility that such finite scattering
might be intrinsic to the clean fermionic system and should
be analyzed with care in future experiments.

This issue has a significant physical consequence. If, in-
deed, the scattering rate must be zero at the chemical poten-
tial, the observed linear ω dependence necessarily dictates
a nonanalytical function of ω. Such nonanalytical behavior
is, of course, quite special and might support the notion of
a quantum critical point [15,18,19], for example. However,
if the scattering rate is allowed to be finite at the chemical
potential, as found here, a linear ω dependence comes simply
from the lowest-order expansion of an analytical function,
Im�(�kF , ω, T ) ≈ a0 + a1T + a2ω.

So how can our model break the above generic phase-space
limitation of dissipation of fermions? The answer lies in the
nontrivial EBL. On the one hand, the indistinguishableness
between the photohole and the holes that constitute the boson
results in scattering processes like that in Eq. (2). On the
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FIG. 5. A scaling relationship between the kinetic-driven superconducting gap [43] at zero temperature and quasiparticle scattering rate at
the normal state slightly above TC in La2−xSrxCuO4 as a function of rescaled Fermi surface angle φ/φc. (a) The calculated trend resembles
(b) the observed one in Bi series cuprates [27]. The inset in (a) is an illustration of the Fermi surface angle φ, with φc being the angle of the
end point on the Fermi surface.

other hand, the peculiar nature of larger thermal fluctuation
of uncondensed bosons would produce incoherent scattering
even at the zero-temperature limit. In essence, by forming
an EBL, the fermionic system can escape from its fermionic
constraints. Note that this consideration is clearly very general
and does not rely on the details of our specific model. Such
NFL behavior is possible only in the limitless richness of
emergence in many-body systems.

The linear temperature dependence of the scattering rate
can be visualized by rewriting Eq. (3) into approximately the
form of the Eliashberg function:

Im�(�k, 0, T ) = −
∫

α2F (�k, u)[nb(u, T ) + nf (u, T )]du,

(7)

where the Eliashberg function α2F is approximately propor-
tional to the bosonic density of states (DOS). The nb-related
first term yields a constant (since the number of tightly bound
pairs is fixed), while the nf -related second terms yields a
linear temperature dependence [67], as long as the DOS does
not change too fast at the energy scale of kBT . This is why
such linearity persists longer in optimally doped system, in
which the bandwidth of the lower-energy band is the biggest
[see Fig. 4(g)].

Of course, this approximate analysis is limited to low tem-
perature, where the chemical potentials for the boson and the
photohole do not shift strongly with temperature. Otherwise,
Fig. 4(e) shows that at high temperature, the spectral function
that peaks at the chemical potential will occur at a different
wave vector kμ and experience a different scattering rate.
Particularly, the shift of the bosonic chemical potential will
cause the scattering channels to deviate from linear increase.
Interestingly, a similar reduction of the quasiparticle scatter-
ing rate at high temperature was produced by a dynamical
mean-field calculation recently [9], even though the physics
in play is quite different.

Finally, our picture also offers a natural explanation of the
puzzling correspondence between the normal-state scattering

rate and the superconducting gap [27]. For example, ARPES
measurements reported an unexpected correlation between the
normal-state scattering rate at the transition temperature �Tc

and the low-temperature superconducting gap �0 shown in
Fig. 5(b):

�0(φ) ∝ φ

φc

�T c(φ), (8)

where φ denotes the k space angle from the nodal point
(π, π )/2 and φc denotes the same for the end of the Fermi
arc [see the inset in Fig. 5(a)]. In the traditional weak-
coupling theory of superconductivity, the superconducting
gap is controlled by the strength of pairing, which does not
leave much of a signature in the normal state when amplitude
fluctuation overwhelms the system. So this correspondence is
quite unimaginable in the weak-coupling regime.

In our picture, on the other hand, this is quite straightfor-
ward. As reported in a previous study [43], at low temperature,
a second kind of superconducting gap appears in the one-
particle spectral function through coherent kinetic scatter-
ing against the condensed EBL. This “superconducting gap”
is a simple analytical function of the condensation density
(∼x/2, half of the doping level at zero temperature) and fully
renormalized hopping τii ′ . With a d-wave condensate [44],
the momentum dependence becomes simply linear near the
nodal point: �0 ∝ √

xφ. On the other hand, the normal-state
scattering rate results from inelastic scattering against the
same set of bosons, except they are not yet condensed, � ∝ x

with very weak k dependence due to the heavy convolution
in Eq. (6). Given that φc is approximately proportional to
the Fermi arc length, which scales as the square root of the
hole pocket size that is proportional to the doping level x/2,
φc ∝ √

x, the observed trend is easily understood. Indeed, our
results shown in Fig. 5(a) reproduce very nicely the observed
trend of Eq. (8) in Fig. 5(b).

In essence, in this picture, all the short-range correlations
are so strong that they become frozen at low temperature,
including at the normal state slightly above Tc. In other words,
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all the relevant information concerning the lower-temperature
condensed state is already available in the normal state.
Therefore, this kind of direct correspondence between many
properties of the normal state and the superconducting state is
natural.

This consideration immediately applies to yet another
observed correspondence. The Eliashberg function α2F

of the normal and pairing self-energies extracted from
high-resolution laser ARPES data was found to have the
same characteristics [26] [see Fig. 4(h)]: a strong peak around
40 meV, a weak peak around 140 meV, and a broad feature
extending to 250 meV. (Calculation of conductivity data
[68] also suggests such a large cutoff.) It is obviously very
hard to imagine a phonon extending to such a high energy
or a spin fluctuation demonstrating such a rich structure.
However, compared to the DOS of our boson [see Fig. 4(h)],
one immediately recognizes the resemblances in all three
characteristics. Again, both states are scattering against the
same set of bosons, condensed or not.

IV. SUMMARY

In summary, we showed that the non-Fermi-liquid scatter-
ing rate results naturally from scattering against an emergent
Bose liquid of tightly bound pairs, designed to model the
hole-doped cuprates. At the chemical potential, even clean

fermionic systems develop a finite scattering rate at the zero-
temperature limit that grows linearly with temperature, in
contrast to the usual nondissipative fermionic characteris-
tics. Such exotic behavior does not involve a nonanalytic
self-energy and does not require proximity to a quantum
critical point. Unexpectedly, the same non-Fermi-liquid scat-
tering process also generates a kink structure in the result-
ing one-particle propagator at the experimentally observed
energy, revealing that the kink is another manifestation of
the non-Fermi-liquid scattering. Our results further produced
the observed direct correspondence between the normal-state
scattering rate and the superconducting gap, as well as their
underlying structures in the self-energy. Our findings provide
a generic route for fermionic systems to demonstrate non-
Fermi-liquid behavior. They also suggest that the cuprates are
in this exotic regime in which a large number of doped holes
develop bosonic features by forming an emergent Bose liquid
of tightly bound pairs that condense into a superfluid at lower
temperature.
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