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Superconductivity near a magnetic domain wall
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We study the equilibrium properties of a ferromagnetic insulator/superconductor structure near a magnetic
domain wall. We show how the domain wall size is affected by the superconductivity in such structures.
Moreover, we calculate several physical quantities altered due to the magnetic domain wall, such as the spin
current density and local density of states, as well as the resulting tunneling conductance into a structure with a
magnetic domain wall.
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I. INTRODUCTION

One of the hallmarks of superconductivity is the Meissner
effect, where a superconductor expels an external magnetic
field from its interior [1]. Increasing the magnetic field, su-
perconductivity gets suppressed and eventually destroyed by
fields exceeding a critical field. However, the critical field
of thin films in parallel magnetic field is greatly increased
than that of the bulk superconductors, since the Meissner
effect is negligibly small in this case [2]. Rather, the critical
field is determined by the paramagnetic effect [3,4]. This
effect suppresses superconductivity by aligning the electrons
of Cooper pairs to be separated in energy. The magnetic field
in this case then leads to a Zeeman effect.

One important consequence of the Zeeman field is the
splitting of the density of states (DoS) in energy [5–9]. In the
absence of the Zeeman field, the DoS of a superconductor
shows a singularity at the energy which is equal to the
superconducting pair potential. This singularity is separated
by the Zeeman field for each spin species. The spin splitting
can also be induced by making contact of a superconductor (S)
with a ferromagnetic insulator (FI) [10–15]. In this case, the
ferromagnetic insulator induces a strong exchange field with
a small external magnetic field or even in its absence.

Various properties of superconductors with a spin-splitting
density of states have been studied in recent years. An ex-
ample is the strong thermoelectric effect with a thermopower
predicted to exceed kB/e and a possibility of obtaining
large values of the figure of merit ZT � 1 at low temper-
atures [16–18]. Indications of this effect were also recently
detected [19,20]. A spin accumulation in such a structure was
detected at much longer distances than the relaxation lengths
at the normal state [21–24]. Such effects are reviewed in
Refs. [25,26].

In the above studies, the spin-splitting field induced in the
superconductors is considered to be homogeneous. However,
this is not always the case in a FI/S structure due to the
nonuniformity of the ferromagnets. The nonuniformity can
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be described by a domain structure. Since the typical domain
size in ferromagnets is much longer than the superconduct-
ing coherence length, the uniform magnetization is a good
assumption in many cases. Here we relax this assumption and
study the effects of inhomogeneity, especially domain walls.

The inhomogeneous exchange field also brings interesting
effects to superconductivity. The existence of spin-singlet
superconductivity in a magnetic domain wall in a ferromagnet
(F) was studied several decades ago [27]. This effect also has
been studied in S/F bilayers [28,29], where a superconducting
material is placed on top of a ferromagnet with a domain
structure. Decreasing the temperature, superconductivity first
appears just above the domain wall. The experimental realiza-
tion of such domain wall superconductivity was reported in
Ref. [30]. The generation of a spin supercurrent in Josephson
contacts with a domain wall is discussed in Ref. [31]. The
reconstructed density of states at the end of the superconduc-
tor [32] and the magnetoelectric effects [33] in S/F bilayers
with a magnetic texture were also studied recently. In the case
of FI/S structures, a peculiar tunneling conductance was ob-
served in a recent experiment and the magnetic domains in the
ferromagnet were considered responsible for the experimental
result [34].

Usually, the inhomogeneity of the exchange field induced
by the ferromagnetic insulator in the superconductor can be
represented by a multidomain structure, namely, alternating
domains with opposite magnetization directions connected
via domain walls. The theoretical model of the tunneling
conductance in Ref. [34] concentrates on this case. Since
the size of the domains is often much longer than the su-
perconducting coherence length, whereas here we consider
a single domain wall structure separating two domains with
opposite magnetization directions. Moreover, the size of the
domain wall in Ref. [34] was considered much smaller than
the superconducting coherence length, here we also consider
larger domain walls and study several physical quantities
altered due to the inhomogeneity, such as the spin current
density and the local density of states.

This paper is organized as follows. We introduce the
FI/S structure containing a magnetic domain wall in
Sec. II and solve the Usadel equation with an extended θ
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parameterization. Equilibrium spin current density, as a direct
consequence of the inhomogeneous exchange field, and its
various properties are discussed in Sec. III. In Sec. IV we
discuss the effect of superconductivity on the domain wall
size, by considering the contribution of the superconducting
free energy to the domain wall energy, and show that the
maximal relative effect happens when the domain wall size
is of the order of ξ0, the superconducting coherence length
(here defined at zero temperature and exchange field). For the
possible measurement accessing this physics, we discuss the
local density of states in Sec. V and the tunneling conductance
across a nearby tunneling barrier in Sec. VI.

II. MODEL AND METHOD

A. Model

We study the properties of the structure in Fig. 1 in
equilibrium. A superconducting wire is placed on top of a
FI wire containing a magnetic domain wall. In many thin
ferromagnets the domain wall structure energetically prefers a
Néel type, in which the rotation of the magnetization happens
in the plane of the domain wall. Therefore we consider a Néel
domain wall with size λ. We make a variational ansatz and
define the magnetization rotation angle as

α(x) = π

λ

(
x + λ

2

)
�

(
x + λ

2

)
�

(
λ

2
− x

)
+ π�

(
x − λ

2

)
,

(1)

where � is the heaviside step function. The choice of α(x) in
Eq. (1) as a linear function of x instead of the typically used
hyperbolic functions that lead to a somewhat lower energy
brings certain technical advantages. Its derivative is a constant
inside the domain wall. This simplifies the Usadel equation,
which describes the properties of the superconductor (see
Sec. II B). The nonanalytic derivative of α(x) at the boundary
of the domain wall can be transferred to the boundary con-
ditions of the Usadel equation (see Sec. II C). Besides, the
domain wall energy introduced by this choice of α(x) gives
only slightly larger energy than the rotation angle constructed
with hyperbolic functions (see Sec. IV).

The properties of a superconductor in the diffusive limit,
namely, in the case when the elastic relaxation rate is much

FIG. 1. Schematic view of the structure considered in this paper.
A superconducting wire is placed on top of a FI wire containing a
magnetic domain wall. The center of the domain wall is located at
x = 0.

larger than any other energy scales in the problem, are de-
scribed by the Usadel equation. In equilibrium, it is convenient
to use the Usadel equation in the Matsubara representation
(h̄ = kB = 1)

D∇ · (ǧ∇ǧ) − [ωnτ̂3 + ih · στ̂3 + 
̌ + �̌, ǧ] = 0, (2)

where D is the diffusion constant, and ǧ is the quasiclassical
Green’s function satisfying the normalization condition ǧ2 =
1̌. In the commutator, ωn = (2n + 1)πT is the Matsubara
frequency, T is the temperature and n is an integer, h is the
exchange field, σ = (σ̂1, σ̂2, σ̂3) is a vector of Pauli spin ma-
trices, and 
̌ = 
τ̂1 is the superconducting pair potential. The
self-energy �̌ = �̌so + �̌s f , where �̌so = σ · ǧσ/(8τso) and
�̌s f = σ · τ̂3ǧτ̂3σ/(8τs f ) describe spin and charge imbalance
relaxation due to the spin-orbit scattering and exchange inter-
action with magnetic impurities with corresponding relaxation
times τso and τs f , and the Pauli matrices τ̂ j (σ̂ j ) are in the
Nambu (spin) space. We choose the Nambu spinor as

 = (ψ↑(x) ψ↓(x) −ψ
†
↓(x) ψ

†
↑(x))

�
,

where � denotes a transpose.
With the rotation angle described in Eq. (1), the exchange

field can be written as

h = h(cos α(x), 0, sin α(x)),

where h is the exchange field strength. With this choice, the
exchange field depends only on x, and rotates in the xz plane,
namely, hy = 0 everywhere. Correspondingly, the gradient in
Eq. (2) becomes a derivative in the x direction.

The Usadel equation we apply here is based on a lowest-
order spherical harmonics expansion of the Green’s function
in terms of the momentum direction. Hence it cannot describe
the domain wall superconductivity in a d-wave supercon-
ductor/ferromagnetic insulator multilayers [35]. The physics
studied in Ref. [35] is hence outside the scope of the present
work.

B. Rotation matrix

By introducing a position dependent rotation matrix, we
can rotate the spin axis parallel to the local magnetization
direction, so that the inhomogeneous exchange field in Eq. (2)
can be treated as homogeneous. We define the rotation matrix
as

Ř = eiσ̂2α(x)/2,

where α(x) is the rotation angle in Eq. (1), and σ̂2 is the second
Pauli matrix. Considering this rotation matrix, we define a
new quasiclassical Green’s function ǧ0

ǧ = Ř†ǧ0Ř, (3)

so that ǧ0 satisfies

D∂̌A
x · (

ǧ0∂̌
A
x ǧ0

) − [ωnτ̂3 + ihσ̂3τ̂3 + 
̌ + �̌, ǧ0] = 0, (4)

where

∂̌A
x X = ∂xX − [A, X ], (5)

A = iσ̂2α
′(x)/2.
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Thus the problem reduces to solving the Green’s function ǧ0

for a homogeneous exchange field h, but with a redefined
gradient with an SU(2) type vector potential A. Moreover, it is
also straightforward to show that ǧ0 satisfies the normalization
condition ǧ2

0 = ǧ2 = 1̌.
The long derivative in Eq. (4) with the form in Eq. (5) in-

troduces some extra terms with respect to the usual derivative
and commutator terms in the Usadel equation. One of them is
of the form

D[A, ǧ0Aǧ0] = − 1
2α′(x)2D[σ̂2ǧ0σ̂2, ǧ0]. (6)

This term has a similar form as the spin-orbit relaxation with
a relaxation rate α′(x)2D/2, but only in one spin direction.
It is hence similar to the intrinsic (Rashba or Dresselhaus)
spin-orbit coupling [36–38]. Since α′(x) �= 0 inside the do-
main wall, this term is a direct outcome of the existence
of the inhomogeneous exchange field. In other words, inho-
mogeneous exchange field acts like a spin-orbit relaxation,
reducing the effect of the exchange field without affecting
the superconducting pair potential. This is shown on some
physical quantities in the following sections.

C. Boundary condition

The long derivative ∂A
x g in the Usadel equation in Eq. (4)

has to be continuous, so that a discontinuity in the derivative

of α(x) implies a discontinuity in the derivative of ǧ at x =
±λ/2. In order to describe this discontinuity, we integrate
Eq. (4) at the boundary, obtaining

ǧ0∂xǧ0|x±
b

− ǧ0∂xǧ0|x∓
b

= 1
2α′(x)[ǧ0iσ̂2, ǧ0]|x±

b
, (7)

where xb = ±λ/2 and ± refers to the right and left side of
the boundary. These boundary conditions together with the
solutions in the case of a homogeneous exchange field far
from the domain wall form the boundary conditions to the
solutions of the Usadel equation in Eq. (4).

D. Parameterization

The quasiclassical Green’s function ǧ and ǧ0 are 4 × 4
matrices in the Nambu ⊗ spin space. Since ǧ represents the
Green’s function for the inhomogeneous exchange field, we
parametrize ǧ0 following the parametrization of the quasiclas-
sical Green’s function for inhomogeneous exchange field in
Ref. [39],

ǧ0 = cos θ τ̂3(M0 + i tan θM · σ )

+ sin θ τ̂1(M0 − i cot θM · σ ). (8)

The advantage of using this parametrization is that θ and M0

are real scalars and M = (M1, M2, M3) is a real vector in the
Matsubara representation. The normalization condition ǧ2

0 =
1 adds the constraint

M2
0 − |M|2 = 1. (9)

With the parametrization in Eq. (8), we get a set of differential equations from Eq. (4)

D∂2
x θ + 2M0(
 cos θ − ωn sin θ ) − 2hM3 cos θ − 1

4τs f

(
2M2

0 + 1
)

sin(2θ ) = 0, (10)

D
(
M∂2

x M0 − M0∂
2
x M

) + 2DM0α
′(x)

⎛
⎜⎝

−∂xM3

0

∂xM1

⎞
⎟⎠ + DM0α

′(x)2

⎛
⎜⎝

M1

0

M3

⎞
⎟⎠ + 2M(
 sin θ + ωn cos θ )

− 2hM0 sin θ

⎛
⎜⎝

0

0

1

⎞
⎟⎠ +

[
1

τso
+ 1

2τs f
cos (2θ )

]
M0M = 0. (11)

We can see directly from the vector differential equation (11)
that the parameter M2 does not have a source term from the
domain wall structure, and therefore M2 = 0 everywhere. Fur-
thermore, one cannot directly solve these equations without
the help of the constraint in Eq. (9). Therefore, it is more con-

venient to use this constraint to transform Eq. (11) to another
set of differential equations for each of the components of Mi

as in Ref. [40].
Taking the second derivative of the constraint in Eq. (9),

we obtain

(∂xM0)2 − (∂xM1)2 − (∂xM3)2 + M0∂
2
x M0 − M1∂

2
x M1 − M3∂

2
x M3 = 0. (12)

Substituting Eq. (12) to each component of Eq. (11) yields

D∂2
x Mj − 2α′(x)DMj (M3∂xM1 − M1∂xM3) + DMj

∑
k=0,1,3

(−1)k (∂xMk )2 − α′(x)2DMj
(
M2

1 + M2
3

)

− 2MjM0(ωn cos θ + 
 sin θ ) + 2hMjM3 sin θ −
[

1

τso
+ 1

2τs f
cos (2θ )

]
Mj

(
M2

0 − δ j0
) = S j,

(13)
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where j = 0, 1, 3, and

S j =

⎧⎪⎨
⎪⎩

−2(ωn cos θ + 
 sin θ ) j = 0

−2α′(x)D∂xM3 + α′(x)2DM1 j = 1

2α′(x)D∂xM1 + α′(x)2DM3 − 2h sin θ j = 3

.

The differential equations in (10) and (13) have to be
supplemented by the boundary conditions in Eq. (7) and the
solutions at the regions far from the domain wall. With the
parametrization in Eq. (8), Eq. (7) becomes

∂xθ |x±
b

= ∂xθ |x∓
b

(Mi∂xM0 − M0∂xMi )|x±
b

− α′(x)M0M ′
i |x±

b

= (Mi∂xM0 − M0∂xMi )|x∓
b
, i = 1, 3, (14)

where Mi′ = M3 for i = 1, and Mi′ = −M1 for i = 3.

E. Solutions of the Usadel equation

Without the exchange field h = 0, the solutions of the
differential equations (10) and (13) give the regular results of
the θ parametrization with M0 = 1 and Mi = 0. In the case
of a homogeneous exchange field h = hẑ, the values of θ and
M0 are changed, and M3 �= 0, due to the odd-frequency spin
triplet superconductivity (with zero spin projection on the spin
z axis) is induced. In the absence of spin relaxation terms

tan θ =
√

4ω2
n


2 + (
h2 + ω2

n − 
2
)2 − h2 − ω2

n + 
2

2ωn


M0 = ωn + 
 tan θ√
ω2

n + (
2 − h2) tan2 θ + 2ωn
 tan θ

M3 = h tan θ√
ω2

n + (
2 − h2) tan2 θ + 2ωn
 tan θ

M1 = 0.

These results can be used to describe the solution of the
differential equations far from the domain wall structure.
For the inhomogeneous exchange field with a domain wall
structure, however, the differential equations (10) and (13)
cannot be solved analytically, but the numerical solutions are
plotted in Fig. 2.

We can see that the domain wall structure brings certain
changes to the homogeneous solutions. For θ , M0, and M3,
the effect of the exchange field around the domain wall is
reduced. This introduces a Gaussian functionlike structure for
the solutions of these parameters as a function of position. At
the center of the domain wall, the effect of the exchange field
is reduced the most and the values of these parameters reach
their homogeneous solutions gradually away from the domain
wall. For a smaller domain wall, the reduction of the effect
of the exchange field is more obvious, until for λ → 0, the
effect of the exchange field is completely lifted at the center of
the domain wall. This is due to the existence of the spin-orbit
relaxationlike term in Eq. (6) in the rotated Usadel equation
with a relaxation rate α′(x)2D/2 and α′(x) ∝ λ−1.

The domain wall structure also introduces a nonzero solu-
tion of M1 around the domain wall, due to the odd-frequency

spin triplet superconductivity (with nonzero spin projection on
the spin z axis) induced by the inhomogeneous exchange field.
The maximum of M1 appears at the boundary of the domain
wall and gradually goes to zero away from it. It also changes
sign at the two sides of the domain wall center. The amplitude
of M1 first increases and then decreases with increasing λ, the
maximum taking place at λ ≈ 2ξ0.

Spin relaxation also brings many changes to the solutions
of the differential equations. For the regions far from the
domain wall, the consequence of spin relaxation is the same as
with the case of homogeneous exchange field. The spin-orbit
relaxation reduces the effect of the exchange field, therefore,
the solutions in these regions approach the ones in the domain
wall center. The spin-flip relaxation reduces the superconduct-
ing pair potential 
, and therefore θ in these regions becomes
smaller, and M0/3 becomes larger with spin-flip relaxation.
These can be seen from Figs. 3(a), 3(b) and 3(d).

For the regions around the domain wall, the spin relaxation
brings minor changes. This is due to the fact that at the
center of the domain wall, the effect of the exchange field is
already reduced, and spin relaxation affects superconductivity
similarly to the case without exchange field. This can be seen
in Figs. 3(b) and 3(d). These behaviors can also be revealed in
the physical quantities as discussed below.
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FIG. 2. Solutions of the differential equations in Eqs. (10)
and (13) for different sizes of the domain wall. Here h =
h(cos α(x), 0, sin α(x)), h = 0.3
0, ωn = πT , T = 0.05
0, τ−1

so/s f =
0, 
0 is the superconducting pair potential at zero temperature and
exchange field, and ξ0 = √

D/
0 is the superconducting coherence
length.

104504-4



SUPERCONDUCTIVITY NEAR A MAGNETIC DOMAIN WALL PHYSICAL REVIEW B 99, 104504 (2019)

-10 -5 0 5 10
-0.1

-0.05

0

0.05

0.1

-10 -5 0 5 10
0.1

0.15

0.2

0.25

0.3

0.35

-10 -5 0 5 10
1.398

1.4

1.402

1.404

1.406

-10 -5 0 5 10
1

1.02

1.04

1.06

(c)

(a)

(d)

(b)

FIG. 3. Effect of spin relaxation on the solutions of the Usadel
equation. Here h = h(cos α(x), 0, sin α(x)), h = 0.3
0, ωn = πT ,
T = 0.05
0, and λ = 1.0ξ0.

With these solutions, and using Eq. (3), the unrotated
Green’s function is

ǧ = cos θ τ̂3[M0 + i tan θ cos α(x)M · σ

+ i tan θ sin α(x)(M3σ̂1 − M1σ̂3)]

+ sin θ τ̂1[M0 − i cot θ cos α(x)M · σ

− i cot θ sin α(x)(M3σ̂1 − M1σ̂3)]. (15)

In the rest of the paper, we use this Green’s function to
calculate various physical quantities.

F. Self-consistent calculations

The superconducting pair potential in Eq. (4) has to be
determined self-consistently. In the Matsubara representation,
we have


 = 1

2
πT γ

ωD∑
ωn>0

Tr(τ̂1ǧ) = 2πT γ

ωD∑
ωn>0

M0 sin θ, (16)

where ǧ is given by Eq. (15), γ is the coupling constant,
and ωD is the BCS cutoff energy. The latter gives a temper-
ature dependent cutoff ND = ωD/(2πT ) to the sum over n.
Considering the relations

2πT
ND (T )∑
n=0

1

ωn
= 2πT

⎛
⎝ND (Tc )∑

n=0

+
ND (T )∑
ND (Tc )

⎞
⎠ 1

ωn

= 1

γ
+ log

(
Tc

T

) (17)

we can rewrite the self-consistency equation as


 log

(
T

Tc

)
= 2πT

∑
ωn>0

(
M0 sin θ − 


ωn

)
. (18)

We can see that 
 does not explicitly depend on the ro-
tation angle α(x). Its position dependence comes from the
parameters M0 and θ , whose solutions depend on α(x). This

is because we only consider spin-singlet pairing in the self-
consistent calculations.

The self-consistent pair potential in Eq. (18) is position
dependent, 
 = 
(x). At the regions far from the domain
wall, 
(x = ±∞) is the same as in the case of homogeneous
exchange field. A homogeneous exchange field brings many
interesting effects on 
. It suppresses 
 at a finite temperature
and for T → 0, 
 → 0 for a field h > hc. Here hc = 
0/

√
2

when T = 0, called the Chandrasekhar-Clogston limit [3,4].
The superconducting pair potential is reduced by spin relax-
ation, and hc is enhanced by the spin-orbit relaxation and
suppressed by the spin-flip relaxation [25,26].

In the case of an inhomogeneous exchange field, the above
properties are similar. However, in the domain wall region, the
weak effect of the spin relaxation (Fig. 3) brings less changes
to 
, compared to the homogeneous case.

III. EQUILIBRIUM SPIN CURRENT DENSITY

One important consequence of the inhomogeneous ex-
change field is the equilibrium spin current density. Due to the
inhomogeneity of the magnetization, the spin of the quasipar-
ticles rotates following the local magnetization, which creates
a flow of spin [41].

In the quasiclassical theory, the spin current can be
calculated from

jk,i = σN

2e2
πTi

∑
ωn>0

Tr[τ̂0σ̂i(ǧ∇kǧ)],

where σN = 2e2N0D is the normal state conductivity and N0

is the density of states at the Fermi level. The spin current
density jk,i is a tensor, the index k represents the transport
direction of spin, and i represents the spin component. With
the parametrization in Eq. (15), we get the three components
of the spin current density in the x direction,

jx,2 = 2σN

e2
πT

∑
ωn>0

[
α′(x)

(
M2

1 + M2
3

) + M3∂xM1 − M1∂xM3
]

jx,1/3 = 0, (19)

where α(x) is the rotation angle in Eq. (1). Since the rotation
of the magnetization happens in the xz plane, the x and z spin
components of the spin current density are absent, jx,1/3 = 0.
The only nonzero spin component of the spin current density
is in the y spin direction.

The spatial dependence of jx,2 is shown in Fig. 4(a) for a
domain wall size λ = 0.5ξ0. We can see that a nonzero spin
current density is created around the domain wall structure.
Inside the domain wall, the maximum spin current density
jx,2(0) is constant and smoothly goes to zero outside the
domain wall. Both spin-orbit and spin-flip relaxations reduce
the spin current density.

The constant spin current density jx,2(0) in the domain
wall region is determined from the adiabatic solution of the
parameter M3 and the domain wall size λ. From Fig. 2(d)
we know that M3 describes the effect of the exchange field
on superconductivity, and at the center of the domain wall
M3 → 0 for a small domain wall size. Therefore, jx,2(0) → 0
for λ → 0 and becomes large for a stronger exchange field.
These are shown in Figs. 4(b) and 4(c). We can also see
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FIG. 4. Dependence of spin current density on (a) position, and
the maximum spin current density jx,2(0) on (b) domain wall size, (c)
exchange field, and (d) temperature. Here λ = 0.5ξ0, T = 0.05
0,
and h = 0.3
0 unless specified otherwise.

that for a small domain wall, both spin-orbit and spin-flip
relaxation reduce jx,2(0). However, for large domain walls,
spin-flip relaxation increases jx,2(0) for a fixed domain wall
size, but it kills jx,2(0) at the Chandrasekhar-Clogston limit,
where the superconductivity is suppressed [25,26].

The temperature dependence of jx,2(0) is shown in
Fig. 4(d). It resembles the temperature dependence of the
self-consistent pair potential 
. This means jx,2(0) ∼ 
 for
a fixed domain wall size and exchange field h. The effect of
spin relaxation also resembles the temperature dependence of

.

From the spatial dependence of jx,2 we can see that, strictly
speaking, the spin current density is not conserved. The posi-
tion dependence is related to the appearance of a spin-transfer
torque [41]. It is exerted on the spins in order to reorient spin
flow to follow the direction of local magnetization, namely,
it represents the rotation of spins through the domain wall
structure. Then in the continuity equation for spin density ns,
we have [42]

dns

dt
+ ∇ · jk,i = T ,

where T is the spin-transfer torque and it is nonzero in the
case of an inhomogeneous exchange field and spin relaxation.

In the static case ∇ · jk,i = T . With the parametrization in
Eq. (15),

T = ∂x jx,2 = 4σN

e2D
πT h

∑
ωn>0

sin θM1. (20)

It is nothing but the Matsubara sum of M1 but constrained by
superconductivity (sin θ ). In the normal state θ → 0, then the
torque is zero in equilibrium.

The expression of T in Eq. (20) also helps us to understand
the properties of the spin current density. The spatial depen-
dence follows Fig. 2(c), but the amplitude is constrained by
sin θ ∼ 
. That is why the temperature dependence of the

spin current density is similar to that of the self-consistent
pair potential [Fig. 4(d)]. The dependence on h explains the
monotonous dependence on h of the spin current density
[Fig. 4(c)].

The equilibrium spin-transfer torque T is related to the
superconducting free energy by

T = 1

V
h × δFsn

δh
, (21)

where V is the volume of the superconductor, h is the ex-
change field induced in the superconductor, and Fsn is given
by

Fsn = W
∫ ∞

−∞
fsndx, (22)

where W is the cross sectional area of the superconductor and
the superconducting free energy density [43–47] compared to
its normal state fsn is given by (see Appendix)

fsn = fs − fn = πT N0

∑
ωn>0

Tr

{
(ωn + ih · σ )(1̌ − τ̂3ǧ)

− 1

2
(
τ̂+ + 
∗τ̂−)ǧ + D

4
(∇ǧ)2

+ 1

16τso
[3 − (σǧ) · (σǧ)]

+ 1

16τs f
[3 − (στ̂3ǧ) · (στ̂3ǧ)]

}
. (23)

In the absence of spin relaxation and exchange field, this
agrees with the result in Ref. [47]. Here fsn = fsn[h], and 


and ǧ are the self-consistent values of the order parameter and
the Green function. With the parametrization in Eq. (15), it
becomes

fsn = πT N0

∑
ωn>0

{
4ωn − 2M0(2ωn cos θ + 
 sin θ )

+ 4hM3 sin θ − D
(
M2

1 + M2
3

)
α′(x)2

+ D[(∂xM0)2 − (∂xM1)2 − (∂xM3)2 + (∂xθ )2]

− 2D(M3∂xM1 − M1∂xM3)α′(x)

+ 1
4

[
3
(
τ−1

so + τ−1
s f

) − 3
(
τ−1

so + τ−1
s f cos 2θ

)
M2

0

− (
τ−1

so − τ−1
s f cos 2θ

)(
M2

1 + M2
3

)]}
. (24)

From the relation in Eqs. (19) and (21), we obtain

fsn = f 0
sn − 1

2
α′(x) jx,2 + 1

4
α′(x)2 δ jx,2

δα′(x)
, (25)

where f 0
sn is the free-energy density in Eq. (24) with terms that

do not directly depend on α′(x), and fsn − f 0
sn is nonzero only

in the domain wall region. We can see that the spin current
density contributes to the energetics of the system, which in
turn influences the formation of the domain wall.

In nonequilibrium spin transport, spin-transfer torque leads
to the domain wall motion and influences the orientation of
the magnetization [41]. In our model, the equilibrium spin-
transfer torque in Eq. (20) does not make the domain wall
move, but it contributes to the superconducting free energy via
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the spin current density [as in Eq. (25)], which in turn affects
the domain wall size, as we discuss in the next section.

IV. EFFECT OF SUPERCONDUCTIVITY ON THE DOMAIN
WALL SIZE

In the absence of the external magnetic field, the domain
wall size in a ferromagnet is dictated by the competition
between exchange and anisotropy energies [48]. Exchange
energy tries to maintain the direction of the magnetization,
while the anisotropy energy tends to align the magnetization
to a particular direction.

The exchange energy density can be expressed by

Uex = Q
3∑

i=1

(
∂mi

∂x

)2

,

where mi is the component of the magnetization unit vec-
tor, and Q is the exchange stiffness constant. Here m =
(cos α, 0, sin α), where α is the rotation angle in Eq. (1).
Substituting Eq. (1) to Uex we get

Uex = Qπ2

λ2
�

(
x + λ

2

)
�

(
λ

2
− x

)
. (26)

The anisotropy energy density depends on the crystal
structure of the system. Most of the ferromagnetic insulators
have face centered cubic crystal structure [49]. The anisotropy
energy density in this case is given by

Uaniso = Kc1
(
m2

1m2
2 + m2

1m2
3 + m2

2m2
3

) + Kc2m2
1m2

2m2
3,

where Kc1, Kc2 < 0 for many ferromagnetic insulators, which
makes the magnetization lie in one of the easy planes. In the
case of thin films, the symmetry is broken in the direction
perpendicular to the film plane and this energy density can
be expressed by a uniaxial crystal structure as [50]

Uaniso =
(

K1 + Ks

t

)
sin2 α + K2 sin4 α, (27)

where K1 = Kc1, K2 = −7Kc1/8 + Kc2/8, and Ks is the sur-
face anisotropy constant representing the rotation of the easy
plane towards an easy axis magnetization with film thickness
t .

Together with Eqs. (26) and (27), the domain wall energy
is given by

F1 =
∫ ∞

−∞
(Uex + Uaniso)dx = Qπ2

λ
+ 1

2
Keffλ, (28)

where Keff = K1 + Ks/t + 3K2/4. Minimization of this en-
ergy with respect to λ gives the domain wall size of the
inhomogeneous exchange field in the ferromagnet

λ0 =
√

2Q

Keff
π. (29)

Then the minimized domain wall energy is

F min
1 =

√
2KeffQπ. (30)
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FIG. 5. (a) Superconducting free energy contribution F2 to the
domain wall energy at T = 0.05
0 for different exchange field
strengths. The blue circles in (a) are the results of the fitted formula
in Eq. (31). (b) Effect of spin relaxation on F2 for h = 0.3
0 at
T = 0.05
0. (c) Effect of superconductivity on the domain wall
size for h = 0.3
0 with different domain wall energies F1 in the
ferromagnet. (d) The effect of spin relaxation on the same quantity
as in (c) for F1 = 0.12N0


2
0W ξ0.

In many studies, the domain wall structure is represented
by the hyperbolic functions with [48]

α(x) = cos−1

[
− tanh

(
x − x0

λ′

)]
,

where λ′ = √
Q/K ′

eff and K ′
eff = K1 + Ks/t + 2K2/3. The

minimized energy is then given by 4
√

K ′
effQ. Since K ′

eff ≈ Keff,
this is very close to F min

1 in Eq. (30). In other words, the
domain wall structure in Eq. (1) gives the minimum energy
which is only slightly larger than that of more complicated
domain wall structures.

The contribution of superconductivity to the domain wall
energy is given by the difference of the free energy in the cases
of inhomogeneous and homogeneous magnetization

F2 = Fsn(h) − Fsn(h = hẑ),

where Fsn is given by Eq. (22). This energy cannot be ex-
pressed analytically, but the numerical result is plotted in
Fig. 5(a). We can see that F2 is negative. This is due to the
fact that the existence of the domain wall structure enhances
the superconducting condensation energy near the domain
wall. This contribution is stronger for a smaller domain wall,
since smaller domain wall reduces the effect of the exchange
field more in the domain wall region. The effect of spin
relaxation is plotted in Fig. 5(b). We can see that spin-orbit
relaxation makes |F2| smaller. This is because spin-orbit re-
laxation reduces the effect of the exchange field, but it has less
effect in the domain wall region. This makes the free energy
difference |Fsn(h) − Fsn(h = hẑ)| smaller. Spin-flip relaxation
on the other hand, makes |F2| larger.
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From Fig. 5(a) we can approximate F2 as

F2 = − a

λ + 2ξ0
+ be−λ/ξ0 , (31)

where a, b are functions of temperature and exchange field
strength and can be determined numerically. For example, for
h = 0.3
0, a = 0.4N0


2
0W ξ 2

0 and b = 0.085N0

2
0W ξ0.

Minimizing the total energy F1 + F2 with respect to λ, we
get a compact analytical expression for two extreme limits

(i) λ � ξ0

λ =
√

2Q

Keff + (
a

2ξ 2
0

− 2b
ξ0

)π.

(ii) λ � ξ0

λ =
√

2(Q − a/π2)

Keff
π, for Qπ2 > a (32)

λ = 4aξ0

a − π2Q
, for Qπ2 < a.

In both limits superconductivity reduces the domain wall size.
(i) For a small domain wall λ � ξ0, superconductivity reduces
the domain wall size by effectively increasing the anisotropy
constant Keff. (From the numerical results a/(2ξ 2

0 ) > 2b/ξ0

holds for all h.) (ii) For the case of a large domain wall, the
situation is more complicated. For a ferromagnet with strong
stiffness Qπ2 > a, superconductivity reduces the domain wall
size by effectively reducing the exchange stiffness constant
Q. For a ferromagnet with weak stiffness Qπ2 < a, which
also refers to the case of Keff � 1.0N0


2
0W , the domain wall

size is also reduced. However, in this case superconductivity
dominates the domain wall energy and leads to a negative
total energy F1 + F2, which introduces a dense domain struc-
ture with a domain length comparable with the domain wall
size [51]. Since we are considering a single domain structure,
here we only consider domain walls with positive domain wall
energy.

In Fig. 5(c), we numerically minimize the domain wall
energy F = F1 + F2 with respect to the domain wall size for
the case of h = 0.3
0 and T = 0.05
0 and calculate the
relative change of the domain wall size. To avoid a negative
domain wall energy leading to a transition to a system with
many domain walls, we set in each figure a constant F1 �
0.12N0


2
0W ξ0 so that F > 0 for each case considered. In

other words, instead of varying Keff and Q, we fix F1 and
vary λ0 in the figures. The effect of superconductivity on the
domain wall size is strongest for the lowest F1. If we consider
larger values of F1, namely, a stronger ferromagnet, the effect
of superconductivity on the domain wall size is smaller.

The effect of spin relaxation on the domain wall size is
shown in Fig. 5(d). We see that for small domain walls, the
spin relaxation brings very little effects on the domain wall
size compared to the case without spin relaxation. However,
for larger domain walls, the two types of spin-relaxation
mechanisms lead to different effects on the domain wall size.
Spin-orbit relaxation makes the effect smaller since it reduces
the effect of the exchange field and makes |F2| smaller. Spin-
flip relaxation makes the effect stronger, since |F2| is larger.

As we can see, the effect of superconductivity on the
domain wall size is pronounced for weak ferromagnets with
large domain walls. Domain wall sizes in ferromagnetic insu-
lators are rarely reported, but with Eq. (29) we can evaluate a
typical size. For materials with a face centered cubic structure,
the exchange stiffness constant Q is related to the exchange
integral J by Q = 4S2J/a0, where S is spin and a0 is the
lattice constant [52]. With the values of the parameters for
Q in Ref. [53] and for Keff in Ref. [50], we get the domain
wall size for a EuS thin film as 50 nm. Considering a typical
coherence length of a conventional superconductor in the
diffusive superconductors at zero temperature and exchange
field between 15 nm and a few hundred nm, we can estimate
in this case λ0 ∼ 0.1 . . . 5ξ0. Therefore, although perhaps in
most cases λ0 < ξ0 is the most relevant limit, nothing as such
seems to exclude the possibility of the opposite limit as well.

V. DENSITY OF STATES

The inhomogeneous exchange field also makes the lo-
cal density of states (DoS) peculiar. Since the domain wall
structure reduces the effect of the exchange field, the local
DoS in the domain wall region is different from the one for
homogeneous magnetization.

In the quasiclassical theory, the local DoS for each spin
species is given by

Ns = 1
8 N0Re[Tr(τ̂3 ± σ̂3τ̂3)ǧ|ωn=−iε+ ],

where ± is for spin ↑ / ↓. With the parametrization in
Eq. (15), it becomes

Ns = 1
2 N0Re[cos θM0 ± (cos αM3 − sin αM1)i sin θ ]. (33)
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FIG. 6. (a) Local DoS at the center of the domain wall for
different domain wall sizes. (b) Local DoS for spin ↑ at different
positions for a domain wall size λ = 0.1ξ0. (c) Local DoS in the
presence of spin relaxation in the homogeneous exchange field (at
x = −∞) and (d) at the center of the domain wall (x = 0) for a
domain wall size λ = 0.1ξ0. The temperature and exchange field
used in the calculations are T = 0.05
0, h = 0.3
0.
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In Fig. 6(a) we show the local DoS N+ = N↑ + N↓ at the
center of the domain wall for different domain wall sizes in the
absence of spin relaxation. At the center of the domain wall
α = π/2 and M1 = 0, then N↑ = N↓ and N− = N↑ − N↓ = 0
due to the symmetry of the model. For λ → ∞, N+ has two
BCS peaks at 
 ± h. As the domain wall becomes smaller, the
inner peak is shifted towards the outer one and forms a shark-
fin structure for a very small domain wall size [λ = 0.1ξ0

in Fig. 6(a)]. In this case, although N− = 0, N+ is different
from the case with zero exchange field. Due to the spin-orbit
relaxationlike effect of the inhomogeneous exchange field,
the peaks are wider and the superconducting gap is smaller
compared to the case of h = 0.

Since the magnetization direction is opposite on the two
sides of the domain wall, Ns behaves differently in these two
regions, such that N+(x) = N+(−x) and N−(x) = −N−(−x).
In Fig. 6(b) we show N↑ at different location along the
superconducting wire with a small domain wall λ = 0.1ξ0, in
the absence of spin relaxation. These results in are similar to
those in Ref. [34], which concentrates on the limit λ � ξ0.
Here we further study the effect of spin relaxation on the local
DoS in Figs. 6(c) and 6(d). The DoS in the presence of the two
kinds of spin relaxation is plotted in Fig. 6(d) at the center of a
domain wall with a size λ = 0.1ξ0. For comparison, the DoS
at x = −∞, which also refers to the homogeneous exchange
field, is plotted for the same parameters in Fig. 6(c). In both
cases, spin-orbit relaxation broadens the peaks but keeps 
(x)
unchanged. Spin-flip relaxation also broadens the peaks, but
it suppresses 
(x). These properties of the local DoS are
caused by the inhomogeneous magnetization and are needed
for understanding the tunneling conductance as discussed in
the next section.

VI. TUNNELING CONDUCTANCE

The local density of states is visible in measurements of
a tunneling conductance through a barrier in contact with
the FI/S bilayer. However, the results depend on whether the
barrier itself is magnetic or not. Therefore, we consider either
a nonmagnetic tunnel contact (NISFI) or tunneling through
the FI containing the domain wall (SFIN). In either system
the tunneling current can be written as

I = GT

e

∫ ∞

−∞
dεN̄ (ε)[ f (ε − eV ) − f (ε)],

where GT is the normal-state conductance, V is the applied
voltage, and f = [1 + exp(ε/kBT )]−1 is the Fermi function.
Here the averaged density of states N̄ (ε) over the tunneling
area is given by [54]

N̄ (ε) = 1

L

∫ xb

xa

dx
∑

s=↑,↓
[1 + sP(x)]Ns(ε, x),

where P(x) is the spin polarization of the junction, L = xb −
xa is the size of the tunneling barrier, and Ns is given in
Eq. (33). Using the definition of N± = N↑ ± N↓, we can also
write

N̄ (ε) = 1

L

∫ xb

xa

dx[N+ + P(x)N−]. (34)
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xb
L

xa
xb

L
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FIG. 7. Tunneling conductance for different sizes of the tun-
neling barriers for NISFI and NISFI contacts, respectively. Here
the center of the tunneling barrier is located at the center of the
domain wall, xb = −xa = L/2. The calculations are carried out for
a domain wall size λ = 0.1ξ0 at T = 0.05
0 and h = 0.3
0. In (d)
the polarization is P(x) = P0 cos α, where α is the rotation angle, and
P0 = 0.5.

The tunneling conductance is given by

dI

dV
(V ) = GT

e

d

dV

∫ ∞

−∞
dεN̄ (ε)[ f (ε − eV ) − f (ε)]. (35)

In the case of a scanning tunneling microscope measure-
ment with a small normal metal tip (xb − xa � ξ0 and P(x) =
0), N̄ = N+. In this case the tunneling conductance at T → 0
gives the local DoS N+ shown in Fig. 6.

For a planar tunneling spectroscopy measurement with a
normal metal electrode having size xb − xa � ξ0, N̄ is the
averaged N+ since P(x) = 0. The tunneling conductance in
this case is given in Fig. 7(c). We show the comparison of
different sizes of tunneling barriers (centered at x = 0). Since
we are considering a single domain wall structure, a large
tunneling barrier produces tunneling conductance identical
with the case of homogeneous magnetization (green curve). If
we choose a smaller tunneling barrier, the effect of the domain
wall is more obvious. It reduces the effect of the exchange
field, becomes similar to the case for a small homogeneous
exchange field strength h, and reshapes the peaks in the
tunneling conductance (red and blue curves).

If the tunneling is through the ferromagnetic insulator, we
need to include the effect of finite spin polarization. Assuming
the polarization of the transmission to follow the local magne-
tization, the position dependent polarization P is related to the
rotation angle of the magnetization as P(x) = P0 cos α. The
tunneling conductance is plotted in Fig. 7(d). The asymmetric
dependence in the injection voltage in the conductance is a
direct result of the polarization of the ferromagnet. Similar to
Fig. 7(c), for a large tunneling barrier the tunneling conduc-
tance is the same for the case of a homogeneous exchange
field h with a finite spin polarization P0. The effect of the
domain wall is again obvious for smaller tunneling barriers,
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and the spin-orbit relaxationlike effect of the domain wall
structure reduces the effect of the exchange field.

VII. CONCLUSION

In conclusion, we have studied various properties of a
superconductor in contact to a ferromagnet with a domain
wall. We have studied the equilibrium spin current density,
which exists due to the inhomogeneity of the exchange field.
It also contributes to the superconducting free energy, which
in turn affects the domain wall size. We show that the domain
wall size is reduced by the contribution of the superconducting
free energy to the domain wall energy. We have also studied
the peculiar density of states around the domain wall and the
tunneling conductance. Our work can be a precursor to the
study of the nonequilibrium effects, in particular domain wall
motion.
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APPENDIX: EXPRESSION FOR THE FREE ENERGY

For completeness, we give now a brief argument for the
form of the free energy in the superconducting state. There
are several ways to arrive at such results, and below we follow
a similar procedure as in Ref. [43]. The free energy density
difference between superconducting and normal states can be
written as [we set N (0) = 1 in the following] [55,56]

fsn = −
∫ γ

0
dγ ′ 
|2γ ′

(γ ′)2
=

∫ 1/γ

∞
dq 
|2γ=1/q . (A1)

The integral could now in principle be computed numerically
from Usadel equations, solving 
 self-consistently as a func-
tion of the coupling constant γ in the geometry considered.
This is cumbersome, and also unnecessary, as the integral can
be evaluated analytically as follows.

Suppose there exists a functional R = ∫
d3x r,

r[q,
,�z] = q
2 + p[
,�z] , (A2)

whose saddle point vs �z and 
 defines 
(q). In other words,
the self-consistency (16) and Usadel equations (2) are defined
by variations

δR

δ

|∗ = 0 ,

δR

δz j
|∗ = 0 , (A3)

and�z is some parametrization of ĝ under the constraint ĝ2 = 1
of the Usadel equation. Now,

d

dq
R|∗ = ∂qR|∗ + δR

δ

|∗ ∗ d
∗

dq
+ δR

δ�z
|∗ ∗ d�z∗

dq
= 
2

∗ , (A4)

where the last two terms vanish due to the saddle point
conditions. Therefore,

fsn = r[1/γ ,
∗,�z∗] − r[∞, 0,�z∗,n] . (A5)
This assumes there is a continuous solution branch connecting
the normal and the superconducting states as the coupling
constant γ (i.e., q) is changed.

The next step is to find a suitable R that satisfies Eqs. (A3).
Its form can be guessed (or derived) based on σ -model
results [45,46,57]:

r = q|
|2 − 2πT
∑
ωn>0

1

2
tr

{
− D

4
(∇ǧ)2 + (ωn + ih · σ)τ̂3ǧ

+ (
τ̂+ + 
∗τ̂−)ǧ + 1

16τso
(σǧ) · (σǧ)

+ 1

16τs f
(στ̂3ǧ) · (στ̂3ǧ)

}
. (A6)

First, we can note that variation vs 
∗ (or 
) gives the
self-consistency relation (16). For variations with ĝ, we
parametrize δĝ = eδŴ ĝe−δŴ − ĝ � δW ĝ − ĝδŴ to retain the
normalization condition. Requiring variation vs Ŵ to vanish
we find Eq. (2). Hence, the result has the property (A3).

The sum defining R is not convergent, and only the dif-
ference in Eq. (A5) is well defined. There’s also an implicit
Matsubara frequency cutoff in the term that appears in the
self-consistency equation. We can eliminate this issue by
substituting the self-consistency equation back into the |
|2
term in Eq. (A6). This results in Eq. (23) in the main text.
Variation vs h still gives the correct quasiclassical expression
for the magnetization, but 
 and ĝ can no longer be varied and
have to be taken at their saddle-point values.
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