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Using the dynamical mean-field theory (DMFT) as a “booster rocket”, the functional renormalization group
(fRG) can be upgraded from a weak-coupling method to a powerful computation tool for strongly interacting
fermion systems. The strong local correlations are treated nonperturbatively by the DMFT, while the fRG
flow can be formulated such that it is driven exclusively by nonlocal correlations, which are more amenable
to approximations. We show that the full frequency dependence of the two-particle vertex needs to be taken
into account in this approach, and demonstrate that this is actually possible—in spite of the singular frequency
dependence of the vertex at strong coupling. We are thus able to present results obtained from the DMFT-boosted
fRG for the two-dimensional Hubbard model in the strongly interacting regime. We find strong antiferromagnetic
correlations from half filling to 18% hole doping and at the lowest temperature we can access, a sizable d-wave
pairing interaction driven by magnetic correlations at the edge of the antiferromagnetic regime.
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I. INTRODUCTION

The discovery of high-temperature superconductivity in
cuprates raised new challenges in the field of strongly cor-
related electron systems [1]. Anderson [2] proposed the two-
dimensional single-band Hubbard model to describe the elec-
tron dynamics in the copper-oxide planes. While the Hubbard
model cannot be expected to capture all aspects of cuprate su-
perconductors, it describes their most important property, that
is, d-wave superconductivity close to an antiferromagnetic
order [3]. In spite of the apparent simplicity of the Hubbard
Hamiltonian, a solution of the model in the strong-coupling
regime relevant for cuprate superconductors turned out to be
extremely difficult.

For weak and moderate interactions, the functional renor-
malization group (fRG) provided conclusive evidence for
d-wave superconductivity in the two-dimensional Hubbard
model [4]. With its unbiased treatment of all fluctuation chan-
nels on equal footing, the fRG confirmed earlier studies of d-
wave pairing based on the summation of certain perturbative
contributions [3].

The fRG is based on an exact hierarchy of flow equations
for the effective interactions and the self-energy of the system
[4,5]. Truncations of this hierarchy are possible for weak or
moderate interactions, but not at strong coupling. In particular,
the truncated fRG equations used so far do not capture the
Mott transition, which plays a crucial role in the strongly
interacting Hubbard model.

The Mott metal-insulator transition in the Hubbard model
is essentially a consequence of strong local correlations. As
such, it is well described by the dynamical mean-field theory
(DMFT) [6–8], which treats local correlations nonperturba-
tively. The DMFT is exact in the limit of infinite dimensions,
where nonlocal correlations are absent [6,8]. The single-site
DMFT has been extended to self-consistent cluster approxi-
mations to take also short-ranged nonlocal correlations into

account [9]. Long-ranged correlations have been added to the
DMFT solution by several perturbative methods [10,11].

Recently, Taranto et al. [12] managed to combine the
strengths of the DMFT and the fRG in the DMF2RG. In this
approach the fRG flow does not start from the bare action
of the system, but rather from the DMFT solution. Local
correlations are thus included already from the beginning,
and nonlocal correlations are generated by the fRG flow. In
particular, the Mott physics at strong coupling is captured via
the DMFT starting point. While an obvious small expansion
parameter is still lacking, the weaker nonlocal correlations
may be captured by a manageable truncation of the exact fRG
hierarchy.

A key object in the fRG flow is the two-particle vertex,
since it determines the two-particle correlations and effective
interactions, and the flow of the self-energy. In a translation-
invariant system, the two-particle vertex is a function of
three independent momentum and frequency variables. A
suitable parametrization of these complicated dependencies
is difficult. Taranto et al. [12] used a channel decomposition
[13–15] to reduce the frequency dependence to one frequency
variable in each channel, and the momentum dependence was
discretized by a rough partition of the Brillouin zone. These
approximations limited the application of the DMF2RG to
the weak-to-moderate coupling range. The two-particle vertex
and the self-energy were computed from the DMF2RG flow at
half filling for moderate coupling strengths [12].

For strong interactions, the two-particle vertex exhibits
strong frequency dependencies which cannot be reduced to
one frequency per interaction channel. This is obvious already
at the DMFT level [16]. The full frequency dependence of
the vertex is required to compute response functions within
the DMFT [17–19]. In a recent fRG study it was shown that
nonseparable frequency dependencies are generated even for
moderate interactions [20].
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The application of the DMF2RG at strong coupling thus
requires an accurate parametrization of the full frequency
dependence of the vertex. This is extremely challenging,
since the frequency dependence is not only complicated, but
also singular at strong coupling. We have overcome these
difficulties by various technical developments, so that we are
now able to compute the first DMF2RG flows for the strongly
interacting two-dimensional Hubbard model. We will present
results both at half filling, where Néel antiferromagnetism is
the only physical instability, and away from half filling, where
d-wave pairing emerges.

Section II is dedicated to methodological aspects. Here
we describe the flow equations and our parametrization
of the two-particle vertex. In addition to a more accurate
parametrization of the vertex, a major advance compared
to the first version of the DMF2RG is a setup of the flow
equation where the flow is generated exclusively by nonlocal
correlations. This substantially improves the accuracy of the
unavoidable truncation of the flow equation hierarchy. Cor-
rections to local correlations captured already by the DMFT
are obtained only due to a feedback of nonlocal corrections to
the DMFT solution.

In Sec. III we present results obtained from the DMF2RG
for the two-dimensional Hubbard model at strong coupling,
in the regime that applies to cuprates. The fRG hierarchy is
truncated at the two-particle level; that is, only the influence of
nonlocal three-particle interactions (and beyond) is neglected.
The frequency dependence of the two-particle vertex and the
self-energy is fully taken into account. The momentum depen-
dence of the two-particle vertex is approximated by s-wave
and d-wave form factors. Due to the unbiased treatment of
all two-particle interaction channels, we capture the complete
interplay of charge, magnetic, and pairing fluctuations. All
calculations are carried out at finite temperature; the lowest
temperatures reached are two orders of magnitude smaller
than the bandwidth. Antiferromagnetic fluctuations dominate
over a wide doping range. They are of Néel type at half filling,
but incommensurate for a sizable doping. Strong d-wave pair-
ing correlations emerge at the edge of the antiferromagnetic
regime. For the lowest temperature we can reach, the model
is very close to a superconducting instability. The pairing
mechanism is clearly magnetic, similar to the mechanism at
weak coupling as seen in the plain fRG [4].

In Sec. IV we conclude with a summary and ideas on
further developments.

II. FORMALISM

A. Model

The Hubbard model [21] describes spin- 1
2 lattice fermions

with intersite hopping amplitudes ti j and a local interaction U .
The Hamiltonian is given by

H =
∑
i, j,σ

ti jc
†
i,σ c j,σ + U

∑
i

ni,↑ni,↓, (1)

where c†
i,σ (ci,σ ) creates (annihilates) fermions on site i with

spin orientation σ (↑ or ↓), and ni,σ = c†
i,σ ci,σ . We con-

sider the two-dimensional case on a square lattice and repul-
sive interaction U > 0 at finite temperature T . The hopping
amplitude is restricted to ti j = −t for nearest neighbors and

ti j = −t ′ for next-to-nearest neighbors. Fourier-transforming
the hopping matrix yields the bare dispersion relation

εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky. (2)

Both DMFT and fRG are formulated in a functional inte-
gral formalism. The bare action corresponding to the Hubbard
Hamiltonian has the form

S = −
∫ β

0
dτdτ ′ ∑

k,σ

ψ̄k,σ (τ )G−1
0 (k, τ − τ ′)ψk,σ (τ ′)

+U
∫ β

0
dτ

∑
i

ni,↑(τ )ni,↓(τ ), (3)

with ni,σ (τ ) = ψ̄i,σ (τ )ψi,σ (τ ). Here ψ̄i,σ (τ ) and ψi,σ (τ ) are
imaginary-time Grassmann fields corresponding to the cre-
ation and annihilation operators c†

i,σ and ci,σ , respectively,
while ψ̄k,σ (τ ) and ψk,σ (τ ′) are their Fourier components
in momentum space. The kernel of the quadratic part of S
is the inverse bare imaginary-time propagator. In Matsubara
frequency representation it has the simple form G−1

0 (k, ν) =
iν + μ − εk, where μ is the chemical potential.

B. DMF2RG

The DMFT treats local correlations nonperturbatively,
while nonlocal correlations are neglected [8]. It is exact in
the limit of infinite lattice dimensions, where nonlocal cor-
relations vanish [6]. In the absence of nonlocal correlations,
the self-energy is local and a functional of the local propa-
gator. Hence, the lattice problem can be mapped to a single
Hubbard site coupled to a noninteracting fermionic bath, that
is, to an auxiliary single-impurity Anderson model [7]. The
self-energies and local propagators of the impurity and the
lattice model must coincide, which leads to the DMFT self-
consistency condition

Gloc(ν) =
∫

k

1

iν + μ − εk − 	dmft (ν)

= 1

G−1
0,aim(ν) − 	dmft (ν)

. (4)

Here and in the following
∫

k is a shorthand notation for∫
d2k

(2π )2 , and G0,aim is the bare propagator of the Anderson
impurity model (AIM). The self-energy 	dmft can be obtained
by solving the AIM with G0,aim and U .

The fRG is based on a scale-by-scale evaluation of the
many-body functional integral [4]. A flow is generated by
letting the propagator in the quadratic part of the bare action
depend on a flow parameter �. For the Hubbard model, this
leads to an action of the form

S� = −
∫ β

0
dτdτ ′ ∑

k,σ

ψ̄k,σ (τ )G�
0

−1
(k, τ − τ ′)ψk,σ (τ ′)

+U
∫ β

0
dτ

∑
i

ni,↑(τ )ni,↓(τ ). (5)

The scale dependence of the function G�
0 generates a flow

for the generating functionals. The flow of the generating
functional for one-particle irreducible (1PI) vertex functions,
the effective action ��[ψ, ψ̄], is governed by an exact func-
tional flow equation [5]. The propagator G�ini

0 at the initial
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value � = �ini of the flow parameter determines the initial
condition of the flow. The final result at �fin is determined
by the condition G�fin

0 = G0 = (iω + μ − εk )−1, restoring the
original action (3). The initial condition for the effective
action �ini[ψ, ψ̄] = ��ini [ψ, ψ̄] is determined by the function
G�ini

0 . In the conventional fRG, G�ini
0 = 0 is chosen [4], leading

to an uncorrelated starting point.
In order to start from the DMFT solution, we impose [12]

G�ini
0 (k, τ − τ ′) = G0,aim(τ − τ ′), (6)

where G0,aim is the bare propagator of the AIM fulfilling the
self-consistency relation (4). In this way the initial value for
the action (5) becomes

S�ini = −
∫ β

0
dτdτ ′ ∑

k,σ

ψ̄k,σ (τ )G−1
0,aim(τ − τ ′)ψk,σ (τ ′)

+U
∫ β

0

∑
i

dτni,↑(τ )ni,↓(τ ). (7)

Action (7) determines the initial condition for ��[ψ, ψ̄] as

�ini[ψ, ψ̄] = �dmft[ψ, ψ̄]. (8)

Hence, the initial condition of the functional flow is given by
the effective action of the self-consistent Anderson impurity
model.

By expanding the exact flow equation in powers of the
Grassmann fields, one obtains an infinite hierarchy of flow
equations for 1PI functions [4]. In the following we will
truncate this hierarchy at the two-particle level; that is, we
neglect the influence of the three-particle vertex. The flow thus
involves only the self-energy 	� and the two-particle vertex
V �. Since local correlations are treated nonperturbatively by
the DMFT starting point, the truncation of the flow affects
only nonlocal correlations, and the feedback of nonlocal cor-
relations on local correlations.

To summarize, the DMF2RG is composed of two steps.
First, we solve the DMFT self-consistency loop leading to
the local DMFT self-energy 	dmft. From the AIM with the
self-consistent propagator G0,aim we also compute the local
vertex of the AIM, Vdmft = Vaim. In a second step, we use the
fRG flow equations for the self-energy and the vertex with
the local initial conditions 	dmft and Vdmft, respectively. The
flow equations for 	� and V � are formally identical to the
conventional ones; the only difference is the nontrivial initial
condition. We finally note that in the DMF2RG the “scale” �

FIG. 1. Notation of the two-particle vertex.

is not an energy or momentum scale as in the conventional
fRG, but rather a parameter tuning the strength of nonlocal
correlations in the system.

C. Truncated flow equations

The vertex V � depends on four frequency-momentum
variables k1, . . . , k4 and on four spin indices σ1, . . . , σ4, as
illustrated diagrammatically in Fig. 1. Here and in the follow-
ing, momentum and frequency variables are collected in one
symbol as ki = (ki, νi ). Momentum and energy conservation
implies that the vertex can be written as a function of only
three variables k1, k2, k3.

Due to SU(2) spin symmetry, the self-energy is diagonal
in spin space, while all of the six nonzero components of
the vertex can be expressed in terms of one function [16,20]
V �(k1, k2, k3) = V �

↑↓↑↓(k1, k2, k3) through the five relations
V �

↑↑↑↑ = V �
↓↓↓↓, V �

↑↓↑↓ = V �
↓↑↓↑, V �

↑↓↓↑ = V �
↓↑↑↓,

V �
↑↑↑↑(k1, k2, k3) = V �

↑↓↑↓(k1, k2, k3)

−V �
↑↓↑↓(k1, k2, k1 + k2 − k3), (9)

V �
↑↓↓↑(k1, k2, k3) = −V �

↑↓↑↓(k1, k2, k1 + k2 − k3). (10)

The flow equation for the self-energy has the form [4]
d

d�
	�(k) =

∫
p

S�(p)[2V �(k, p, p) − V �(k, p, k)], (11)

where
∫

p = T
∑

ω

∫
p is a shorthand notation for the Matsub-

ara frequency sum and the momentum integration over the
first Brillouin zone.

S� = dG�

d�

∣∣∣∣
	�=const

(12)

is the so-called single-scale propagator, while G� is the full
propagator, which is related to the bare propagator and the
self-energy by the Dyson equation (G�)−1 = (G�

0 )−1 − 	�.
The flow equation for the two-particle vertex can be written

as [4,14]

d

d�
V �(k1, k2, k3) = T �

pp (k1, k2, k3) + T �
ph (k1, k2, k3) + T �

phc(k1, k2, k3), (13)

where

T �
pp (k1, k2, k3) = −

∫
p
P�

pp(k1 + k2, p)V �(k1, k2, k1 + k2 − p)V �(k1 + k2 − p, p, k3), (14)

T �
ph (k1, k2, k3) =

∫
p
P�

ph(k3 − k1, p){2V �(k1, k3 − k1 + p, k3)V �(p, k2, k3 − k1 + p)

−V �(k1, k3 − k1 + p, p)V �(p, k2, k3 − k1 + p) − V �(k1, k3 − k1 + p, k3)V �(k2, p, k3 − k1 + p)}, (15)

T �
phc(k1, k2, k3) = −

∫
p
P�

ph(k2 − k3, p)V �(k1, k2 − k3 + p, p)V �(p, k2, k3). (16)
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Here T �
pp , T �

ph , and T �
phc stand, respectively, for particle-

particle, particle-hole, and particle-hole crossed contribu-
tions. We have defined the quantities

P�
ph(Q, p) = G�(Q + p)S�(p) + G�(p)S�(Q + p), (17)

P�
pp(Q, p) = G�(Q − p)S�(p) + G�(p)S�(Q − p), (18)

which are the scale derivatives, at fixed self-energy, of the
product of two Green’s functions.

The initial conditions for the flow equations (11) and (13)
are

	�ini (k, ν) = 	dmft (ν), (19)

V �ini (k1, k2, k3) = Vdmft (ν1, ν2, ν3), (20)

where νi is the frequency component of ki = (ki, νi ).

D. DMFT conserving flow

There is much freedom in choosing the � dependence
of the bare propagator G�

0 , which can be exploited to our
advantage. The initial condition is determined by Eq. (6),
while the final value is given by the bare lattice propagator,
G�fin

0 = G0. Taranto et al. [12] used a linear interpolation
between the initial and final values.

For reasons explained below, we choose G�
0 such that

G�
loc(ν)

∣∣
	�=	dmft

=
∫

k
G�(k, ν)

∣∣
	�=	dmft

= Gdmft (ν) (21)

is independent of �, and thus given by the local propagator as
obtained from the DMFT. This can be achieved by an ansatz
of the form

G�
0 (k, ν) = 1

iν + μ − (1 − �)εk − g�(ν)�(ν)
, (22)

with the hybridization function �(ν) = iν + μ − G−1
0,aim(ν),

and a function g�(ν) which is determined by the condition
(21). The initial value for g�(ν) is g�ini (ν) = 1 at �ini = 1,
such that the condition (6) is fulfilled. The final value is
g�fin (ν) = 0 at �fin = 0. The value of the chemical potential
μ is fixed and determined by the DMFT solution. The simple
choice g�(ν) = � yields the flow scheme used in Ref. [12],
where G�

loc is scale dependent even if 	� = 	dmft is kept
fixed.

Inserting the ansatz (22) into the condition (21), we obtain
the equation∫

k

1

iν + μ − (1 − �)εk − g�(ν)�(ν) − 	dmft (ν)

= [
G−1

0,aim(ν) − 	dmft (ν)
]−1

, (23)

from which we can determine g�(ν) numerically for any �.
In Fig. 2, we show an example for the function g�(ν) as a

function of � for the first Matsubara frequency ν0 = πT . In
the absence of particle-hole symmetry, g�(ν) has a nonzero
imaginary part. The real part is linear in � only for small �.
The frequency dependence of g�(ν) (not shown here) is very
weak.

From Eq. (22), we can calculate the single-scale propagator

S� = −G� d (G�
0 )−1

d�
G� = −G�

[
εk − �

dg�

d�

]
G�. (24)

The function dg�/d� can be conveniently determined by
taking the � derivative of Eq. (21).

The condition (21) implies that the local single-scale
propagator S�

loc with 	� = 	dmft vanishes. Hence, for 	� =
	dmft, there are no local contributions to the flow, and thus no
corrections to the DMFT solution. In other words, the DMFT
is conserved by the flow. The flow is thus exclusively gen-
erated by nonlocal contributions. This improves the accuracy
of the truncation. In particular, the three-particle contributions
to the flow of the two-particle vertex (see Fig. 3), which are
neglected in our truncation, contribute only after nonlocal cor-
relations have been generated. At the initial stage of the flow,
where the three-particle vertex is local and the self-energy
is given by 	dmft, the three-particle tadpole contribution to
the flow of �� vanishes. In the course of the flow it starts
contributing due to nonlocal corrections to the DMFT three-
particle vertex and due to deviations of the self-energy from
the DMFT solution.

E. Vertex parametrization

We parametrize the two-particle vertex by extending
the channel decomposition introduced by Husemann and
Salmhofer [14,15]. This allows us to capture the dominant
momentum dependence generated by each interaction channel
by an accurate discretization, while the remaining more regu-
lar momentum dependencies are approximated by a few form
factors. The vertex function V �(k1, k2, k3) is decomposed as

V �(k1, k2, k3) = Vdmft (ν1, ν2, ν3) − φ�
p (k1 + k2; k1, k3)

+φ�
m (k2 − k3; k1, k2)

+ 1
2φ�

m (k3 − k1; k1, k2)

− 1
2φ�

c (k3 − k1; k1, k2), (25)

with the DMFT vertex Vdmft, the pairing channel φ�
p , the

magnetic channel φ�
m , and the charge channel φ�

c . The func-
tions φx in (25) are nonlocal fluctuation contributions beyond
the DMFT solution. Local pairing, magnetic, and charge

FIG. 2. g�(ν ) as defined in Eq. (22) as a function of � for the
first Matsubara frequency ν0 = πT . Parameters are n = 0.82, U =
8t, T = 0.08t , and t ′ = −0.2t .
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FIG. 3. Contribution from three-particle vertex to the flow of the
two-particle vertex.

fluctuations are already captured by the DMFT vertex. The
initial condition for the vertex (20) determines the starting
conditions φ�ini

p = φ�ini
m = φ�ini

c = 0.
To derive the flow equations for the nonlocal fluctuation

channels, we substitute Eq. (25) into Eq. (13) and, by follow-
ing Ref. [20], we obtain the equations for φx:

φ̇�
p (Q; k1, k3) = −T �

pp (k1, Q − k1, k3), (26)

φ̇�
c (Q; k1, k2) = T �

phc(k1, k2, k2 − Q)

− 2T �
ph (k1, k2, Q + k1), (27)

φ̇�
m (Q; k1, k2) = T �

phc(k1, k2, k2 − Q). (28)

While capturing the full frequency dependence and the
dependence on the bosonic momentum Q for each channel by
an accurate discretization, we treat the remaining fermionic
momentum dependence approximately by using a small or-
thonormal set of form factors fl (k) [20]. For the charge
and magnetic channels we keep only fs(k) = 1, while for
the pairing channel we use fs(k) = 1 and fd (k) = cos kx −
cos ky. This is sufficient to capture the leading magnetic and
pairing instabilities. The nonlocal fluctuation terms can thus
be written as

φ�
p (Q; k1, k3) = S�

Q,�(ν1, ν3) + fd (Q/2 − k1)

× fd (Q/2 − k3)D�
Q,�(ν1, ν3), (29)

φ�
c (Q; k1, k2) = C�

Q,�(ν1, ν2), (30)

φ�
m (Q; k1, k2) = M�

Q,�(ν1, ν2), (31)

where the functions S�, D�, C�, and M� still depend on
three frequencies, but only on one momentum variable.

We emphasize that we keep the full frequency dependence
in each channel. Below we will show that approximating the
channels by functions of a single (bosonic) linear combination
of frequencies as in Ref. [12] restricts the application of the
DMF2RG to weak or moderate coupling, while the scope of
the formalism is to capture strong-coupling effects.

The flow equations for S�, D�, C�, and M� are obtained
by inserting Eqs. (29), (30), and (31) into Eqs. (26), (27), and
(28), respectively, and by projecting onto form factors [20].

The flow equation for the magnetic channel M� reads

d

d�
M�

Q,�(ν1, ν2) = −T
∑

ν

Lm,�
Q,�

(ν1, ν)

× P�
Q,�(ν)Lm,�

Q,�
(ν, ν2 − �), (32)

with

P�
Q,�(ω) =

∫
p
[G�(p, ω)S�(Q + p,� + ω)

+ G�(Q + p,� + ω)S�(p, ω)] (33)

and

Lm,�
Q,�

(ν1, ν2) = Vdmft (ν1, ν2, ν2 − �) + M�
Q,�(ν1, ν2)

+
∫

p

{
− S�

p,ν1+ν2
(ν1, ν1 + �)

− 1

2
(cos Qx + cos Qy)D�

p,ν1+ν2
(ν1, ν1 + �)

+ 1

2

[
M�

p,ν2−ν1−�(ν1, ν2)−C�
p,ν2−ν1−�(ν1, ν2)

]}
.

(34)

The other flow equations are reported in Appendix A.

F. Single-channel approximation

In the conventional fRG, when restricting the flow of the
two-particle vertex to a single channel, particle-particle, or
direct/crossed particle-hole, and when neglecting the self-
energy feedback, the solution of the flow equation is equiva-
lent to a random phase approximation (RPA) in that particular
channel [4]. A similar statement holds for the DMF2RG:
neglecting the self-energy flow, the single-channel DMF2RG
is equivalent to a RPA with the irreducible DMFT vertex
instead of the bare interaction. The DMFT vertex is required
for the calculation of response functions within DMFT [8].
We now demonstrate this equivalence explicitly for the case
of the crossed particle-hole channel.

Within DMFT, the momentum-dependent vertex function
for the calculation of magnetic response functions is obtained
by inserting the local two-particle irreducible vertex in the
crossed particle-hole channel into the nonlocal Bethe-Salpeter
equation for the same channel. This yields [8,16]

V rpa
Q,�(ν1, ν3) =

∑
ν

Vdmft,�(ν1, ν) A−1
Q,�(ν, ν3), (35)

with Vdmft,�(ν1, ν3) = Vdmft (ν1, ν3 + �, ν3), and

AQ,�(ν1, ν3) = δν1,ν3 − T
[
χ0

Q,�(ν1) − χ0
loc,�(ν1)

]
×Vdmft,�(ν1, ν3). (36)

A−1
Q,�(ν1, ν3) is the matrix inverse of AQ,�(ν1, ν3) viewed as a

matrix with the fermionic Matsubara frequencies ν1 and ν3 as
matrix indices. We also introduced the momentum-integrated
particle-hole propagator

χ0
Q,�(ν) = −

∫
k

Gdmft (k, ν)Gdmft (Q + k,� + ν), (37)

with G−1
dmft (k, ν) = iν + μ − εk − 	dmft (ν), and the local

particle-hole propagator χ0
loc,�(ν) = −Gloc(ν)Gloc(� + ν)
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with Gloc(ν) = ∫
k Gdmft (k, ν). Note that Eq. (35) involves

only 1PI vertices.
To prove the equivalence between DMFT-RPA and single-

channel DMF2RG, we show that Eq. (35) is the solution of
the vertex flow equation, once we neglect the flow of the self-
energy and take only the crossed particle-hole channel into
account. To this end, we introduce the �-dependent particle-
hole propagator χ0,�

Q,�
(ν) by promoting Gdmft in Eq. (37) to the

�-dependent propagator G�
dmft = [G�

0
−1 − 	dmft]−1, where

G�
0 can be any continuous function fulfilling the conditions

G�ini
0 = G0,aim and G�fin

0 = G0,latt . The matrix AQ,� in Eq. (36)
becomes � dependent through χ�,0

Q,�(ν), and Eq. (35) reads

V rpa,�
Q,�

(ν1, ν3) =
∑

ν

Vdmft,�(ν1, ν)
(
A�

Q,�

)−1
(ν, ν3). (38)

Defining the function φrpa,� = V rpa,� − Vdmft and taking the
� derivative of Eq. (38) yields

dφ
rpa,�
Q,�

d�
= T

∑
ν

[
Vdmft,�(ν1, ν) + φ

rpa,�
Q,�

(ν1, ν)
]

×dχ�,0
Q,�(ν)

d�

[
Vdmft,�(ν, ν3) + φ

rpa,�
Q,� (ν, ν3)

]
. (39)

Equation (39) is equivalent to Eq. (32) with M� = φrpa,�,
once the feedback of the self-energy is neglected and only
the first line of Eq. (34) is taken into account. Hence, the
solution of the single-channel approximation of the DMF2RG
is equivalent to the RPA with the DMFT vertex in that given
channel. We have selected the particle-hole crossed channel
as a concrete example. A similar equivalence between single-
channel DMF2RG and RPA also holds for the particle-particle
and the direct particle-hole channels.

III. RESULTS

We will now discuss our results obtained by means of
DMF2RG in its full frequency-dependent implementation. In
the first part of this section we test the method at half filling
for both weak and strong interactions. We will show that
the DMF2RG is able to access the strong-coupling regime,
once the vertex frequency dependence is properly taken into
account. The second part of the section is dedicated to the
more interesting parameter regime away from half filling,
relevant for high-temperature superconductivity in cuprates.
We will focus on the interplay between the two key players
in this regime, strong magnetic fluctuations, and emerging
d-wave pairing fluctuations.

Numerical details are described in Appendix B. The spin
susceptibility χ s

q with q = (q,�) is obtained from the two-
particle vertex as

χ s
q =

∫
k
χ0

q (k) +
∫

k,k′
χ0

q (k)V (k, k′ + q, k′) χ0
q (k′), (40)

where χ0
q (k) = −G(k)G(k + q). We set t = 1 in all plots of

quantities with dimension energy.

A. Particle-hole symmetric case

In this section we focus on the special case of pure
nearest-neighbor hopping (t ′ = 0) at half filling (n = 1),
where particle-hole symmetry leads to several simplifications.
Due to perfect nesting, the physics is dominated by magnetic
fluctuations peaked at (π, π ) for any coupling strength U .
We will present results for the magnetic properties of the
half-filled 2D Hubbard model, and show that taking the full
frequency dependence of the vertex into account is crucial at
strong coupling.

In the left panel of Fig. 4, we show the U dependence
of the Néel temperature as obtained from the DMFT. The
smooth curve is a fit to data points obtained previously by
Kunes [22], which are consistent with our own calculations.
Note that the Mott transition line (not shown in the figure)
in the paramagnetic DMFT solution is situated well below
the Néel temperature, with a critical coupling ranging from
Uc ≈ 10t at the critical end point, where T ≈ 0.1t , to Uc ≈
12t at T = 0 [23]. We have checked numerically that the
Néel temperature predicted by the single-channel DMF2RG
described in Sec. II F indeed agrees with the Néel temper-
ature computed from the RPA susceptibility with the local
DMFT vertex. The red shadowed area, instead, shows the Néel
temperature as obtained from the single-channel DMF2RG
with an approximate ansatz for the frequency dependence,
where only the bosonic frequency dependence of the magnetic
fluctuation term M� is taken into account, while the two
fermionic frequencies are projected to some arbitrary value
[12,20]. Different choices for the projection lead to different
estimates for the transition temperature—hence the shadowed
area instead of a single transition line. As the interaction is
increased the difference between the upper and the lower
transition temperatures increases, reflecting the fact that the
quality of the single-frequency approximation deteriorates. As
a matter of fact, the error is sizable already for intermediate
coupling. Eventually, the approximation fails to reproduce the
maximum of the Néel temperature as a function of U and its
decrease at large U .

On the other hand, we have verified numerically that
the single-channel DMF2RG with full frequency dependence
reproduces exactly the DMFT results, where the susceptibility
is computed from a RPA (ladder sum) with the DMFT vertex.
While this agreement is dictated by the analytic proof in
Sec. II F, it is still challenging to reproduce in a numerical
evaluation. To demonstrate the accuracy of the agreement,
and thus the performance of our code, we plot the suscepti-
bility along a specific momentum path in the Brillouin zone
computed with both methods (right panel of Fig. 4), for a
parameter set at strong coupling where the single-frequency
approximation fails drastically.

The decrease of the Néel temperature at large U is known
to be associated with a change in the mechanism leading
to an antiferromagnetic ground state, from Slater type to
Heisenberg type [24–26]. The failure of the single-frequency
approximation in the intermediate-to-strong coupling regions
reveals that the vertex acquires a frequency structure that
cannot be reproduced by a single bosonic frequency only.

We now turn to the first complete DMF2RG calculation
at strong coupling. Here the flow of the vertex is computed
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FIG. 4. Left panel: DMFT Néel temperature as a function of U (black line) for n = 1 and t ′ = 0. The shadowed area depicts the range
of transition temperatures obtained from a simplified parametrization of the vertex with a single bosonic frequency variable in each channel.
Right panel: Spin susceptibility χ s along a path in the BZ zone as computed from RPA with DMFT vertex and self-energy (black solid line),
and by the single-channel DMF2RG (blue symbols). Here U = 12t and T = 0.038t , corresponding to the black dot in the left panel.

with all the channels taken into account. In the particle-hole
symmetric case, the DMF2RG always exhibits an antiferro-
magnetic instability toward a Néel state at low temperature.
In Fig. 5 we show, from left to right, the flow of the maximum
of the magnetic fluctuation term, the flow of the maximum
of the magnetic susceptibility, and the magnetic fluctuation
term for Q = (π, π ) and � = 0 at the end of the flow, as a
function of the fermion frequencies. The coupling strength is
U = 16t , and the temperature T = 0.29t slightly above the
Néel temperature. We see that DMF2RG is able to recover
convergent results at strong coupling, where the conventional
fRG is clearly inapplicable. Note that the vertex maximum at
strong coupling can be thousands or even millions of times
larger than the hopping, as can be seen from the left panel
of Fig. 5. However, the maximum is very sharp in frequency
space; see the right panel of Fig. 5. This, together with the self-
energy, leads to relatively moderate values of the magnetic
susceptibility shown in the central panel of Fig. 5.

In weak-coupling fRG calculations [4] the flow is usually
stopped when the largest vertex component exceeds a certain
value Vmax on the order of tens or hundreds of times the
hopping, since this is typically a precursor of a divergence,
accompanied by a divergence of a susceptibility, and the
weak-coupling truncation is at least questionable at this point.
At strong coupling, we see that the magnetic fluctuation
contribution to the two-particle vertex can be huge in a small-

frequency regime, while the magnetic susceptibility is only
moderately enhanced at the chosen temperature, and the flow
remains stable. At weak coupling, the dependence of the
vertex on the fermion frequencies is much more shallow [20].

The instability criterion in conventional fRG, suggested
by weak-coupling arguments [27] and based on the size of
the two-particle vertex, is thus misleading at strong coupling.
In fact, at strong coupling already the DMFT vertex can be
very large for certain frequencies, while the susceptibility,
which contains a summation over the fermionic frequencies
of the vertex, can still be moderate. Hence, rather than looking
at the maximal value of the vertex, the instability criterion
should be defined by the maximum of the corresponding
susceptibility.

In Fig. 6 we plot the inverse of the magnetic susceptibility
for � = 0 and Q = (π, π ), at an intermediate coupling as
a function of the temperature. An extrapolation of (χ s)−1

indicates a finite Néel temperature. For a comparison we also
show the same quantity as computed by the RPA with DMFT
vertices. One can see that the Néel temperature in DMF2RG is
only slightly reduced compared to the DMFT results, which,
in turn, is much smaller than the temperature predicted by
the standard RPA. In conventional fRG, fluctuations in the
nonmagnetic channels (mostly pairing) substantially reduce
the Néel temperature. On the local level, these effects are
already taken into account by the DMFT, while a further

FIG. 5. Left panel: Flow of the maximum of the magnetic fluctuation term as function of the flow parameter �. Center panel: Flow of
the magnetic susceptibility at Q = (π, π ) and � = 0. Right panel: Frequency dependence of the magnetic fluctuation term for momentum
Q = (π, π ) and vanishing bosonic frequency � = 0. Parameters: U = 16t, T = 0.29t, t ′ = 0, and n = 1.
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FIG. 6. Inverse of the static magnetic susceptibility for Q =
(π, π ) as a function of the temperature for U = 4t in DMF2RG and
in RPA with DMFT vertices for n = 1 and t ′ = 0.

reduction of the Néel temperature due to nonlocal fluctuations
in the nonmagnetic channels turns out be to less pronounced.

At half filling and with t ′ = 0, a divergent spin suscepti-
bility signaling a magnetic instability at low temperature is
found in our calculations for any coupling strength. However,
an ordered magnetic state breaking the SU(2) spin symmetry
is excluded at finite temperature in two dimensions by the
Mermin-Wagner theorem [28]. The truncation of nonlocal
fluctuation contributions underlying our present implementa-
tion of the DMF2RG misses the order parameter fluctuations
preventing the magnetic order at finite temperatures. This de-
ficiency could be cured by including thermal order parameter
fluctuations using the techniques developed by Baier et al.
[29] for the plain fRG.

Nonlocal correlations develop already at fairly high tem-
peratures. In particular, the real part of the self-energy exhibits
a pronounced momentum dependence well above the temper-
ature scale at which strong magnetic fluctuations are formed.
In Fig. 7 we show the real part of the self-energy along a
momentum path in the Brillouin zone at the lowest Matsubara
frequency for a set of parameters that was previously used
for benchmarking various numerical methods [30]. Our re-
sults agree with those obtained from the dynamical cluster
approximation, diagrammatic determinantal Monte Carlo, and
the dual-fermion approach as reported in Fig. 16 of Ref. [30].

FIG. 7. Real part of the self-energy as a function of momentum at
the lowest Matsubara frequency ω0 = πT . Parameters: U = 8t, T =
0.5t, t ′ = 0, and n = 1.

FIG. 8. Left axis: Critical flow parameter �c for the antifer-
romagnetic instability as a function of doping δ = 1 − n in full
DMF2RG (blue circles) and in single-channel DMF2RG (orange cir-
cles). Right axis: Maximum of the d-wave pairing interaction D from
the full DMF2RG (blue stars) and in a decoupling approximation
(red stars). The lines connecting the symbols are guides to the eye.
Parameters are U = 8t, T = 0.08t , and t ′ = −0.2t .

B. Finite doping

Let us now switch to the finite-doping case in a parameter
range relevant for cuprates. The ratio of next-to-nearest neigh-
bor hopping and nearest-neighbor hopping is t ′/t = −0.2 in
the entire section.

1. Magnetic fluctuations

In Fig. 8 we show the critical flow parameter �c as a
function of doping for U = 8t and T = 0.08t . Assuming
a hopping value for cuprates of t ≈ 0.4 eV, the chosen
temperature is thus about 350 K. We observe a magnetic
instability for all dopings smaller than δc = 0.18. For higher
doping values the flow reaches � = 0 without encountering
any instability. Decreasing the temperature to T = 0.044t ,
we only observe a very slight increase of the critical doping
value. Hence, from our results, we see that the critical doping
for a magnetic instability δc remains about 0.18 down to
the lowest temperatures. This value is roughly comparable
with the maximal doping range for which the pseudogap
is experimentally observed [31]. Hence, the large magnetic
fluctuations leading to the instability of the flow should not
be associated with spontaneous symmetry breaking, but rather
with the onset of the pseudogap. The instability occurs at
the commensurate antiferromagnetic wave vector (π, π ) for
δ < 0.16, and at incommensurate wave vectors of the form
(π − 2πη, π ) with η > 0 for larger values of the doping.
These results are in line with a similar transition from com-
mensurate to incommensurate magnetic fluctuations revealed
by the DMFT-RPA susceptibility (with DMFT self-energy and
vertex corrections) [19].

In Fig. 9 we compare the magnetic susceptibility of
DMF2RG with the one from RPA with DMFT vertex for
doping δ = 0.18 along a specific path in the BZ. The two
susceptibilities are qualitatively similar, showing that the in-
clusion of the nonmagnetic channels leads only to minor
quantitative modifications in this parameter regime. In partic-
ular we observe that in both cases (π, π ) is a marked local
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FIG. 9. Static magnetic susceptibility in DMFT-RPA (black line)
and in full DMF2RG (blue points) along a specific path in the BZ.
Parameters: U = 8t, T = 0.08t, t ′ = −0.2t , and δ = 0.18.

minimum. The maximum of the susceptibility in DMF2RG
seems to be shifted to a slightly different incommensurate
wave vector compared to the DMFT-RPA, but the limited
momentum resolution of the DMF2RG calculation does not
allow for a conclusive statement.

To highlight the different frequency structures that arise in
different coupling regimes, we show in Fig. 10 the frequency
dependence of M� for � = 0 and Q = (π, π ) at moderate
and strong coupling, with � slightly below the critical value
�c. At moderate coupling (U = 4t) the maximal value of M�

is observed for asymptotically large values of ν1 and ν2 in
the frequency region where the channel competition is less
effective. The cross-shaped structure, which can be ascribed
to the effect of the feedback from the other channels [32], on
the other hand, decreases the value of M�. At strong coupling
(U = 8t), the cross-shaped structure is still decreasing M�,
but the maximal values are not in the asymptotic region, but in
a localized area for limited values of ν1 and ν2 (and away from
the cross-shaped structure). Although a complete explanation
of these features in Matsubara frequency space is complicated,
they hint at a different nature of the magnetic fluctuations at
weak or moderate and at strong coupling.

2. Self-energy

In Fig. 11 we show the imaginary part of the self-energy
in Matsubara space for different points in the BZ, and for
δ = 0.18. For this doping value, the flow reaches the final �

without encountering any instability, but the magnetic fluc-
tuations are already strongly enhanced. Therefore one could
have expected some signature of a strong momentum dif-
ferentiation in the self-energy, associated with a suppression
of the spectral weight in the antinodal region. This is not
observed in our calculation. The self-energy obtained from
the DMF2RG does not deviate qualitatively from the DMFT
result. The slope at the lowest Matsubara frequencies depends
only weakly on momentum, with a slight enhancement in the
antinodal region. This result is very similar to the one we
obtained at weak coupling within a conventional fRG scheme
with full frequency dependence [20].

FIG. 10. Frequency dependence of the magnetic fluctuation
channel at weak (left) and strong (right) coupling close to half filling
for T = 0.08t and t ′ = −0.2t .

Previous weak-coupling fRG calculations provided evi-
dence for delicate pseudogap features at antiferromagnetic
hot spots in the self-energy as a function of real frequencies
[33,34]. In particular, the imaginary part of the self-energy
was found to exhibit peaks at low frequencies |ω| < πT .
We note that these features are not directly visible on the
Matsubara frequency axis, where the lowest frequency is
equal to πT .

3. d-wave pairing fluctuations

As discussed above, the pairing and density channels do
not strongly affect the magnetic one. However the reverse
is not true: the magnetic channel generates d-wave pairing
fluctuations which, for lower temperatures, are expected to
give rise to a pairing instability.

In Fig. 8 (see stars and right axis) we show the maximal
value of D� for the lowest accessible value of �, which
measures the strength of the d-wave pairing interaction. For
dopings much larger than δc the pairing interaction is very
small. Decreasing the doping from 0.2 to 0.16 the d-wave
pairing interaction rapidly increases. Decreasing the doping
further, the flow runs into the magnetic instability and has
to be stopped at the critical flow parameter �c. The d-wave

FIG. 11. Imaginary part of the self-energy as a function of Mat-
subara frequency for different points in the BZ along the noninteract-
ing Fermi surface (see inset). The local DMFT self-energy is shown
in black. Parameters: U = 8t, T = 0.08t, t ′ = −0.2t , and δ = 0.18.
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FIG. 12. Inverse d-wave channel as a function of flow param-
eter � for various fillings. Parameters: U = 8t, T = 0.08t , and
t ′ = −0.2.

interaction at the critical scale �c then drops again, to very
small values.

These results can be interpreted as follows. For δ � δc the
magnetic fluctuations become very strong and the large mag-
netic channel drives the d-wave interaction to large values.
When the doping is decreased further, the flow has to be
stopped before the d-wave interaction can fully develop. In
the context of the conventional fRG it has been frequently ob-
served [35,36] that the d-wave pairing increases quite rapidly
at a late stage of the flow, as compared to the more gradual
increase of the magnetic channel, which sets in already at
high energy scales. While the flow parameter in DMF2RG
is a measure of nonlocality rather than an energy scale, the
retarded but then rapid formation of pairing interactions seems
to be typical here, too.

To confirm the magnetic pairing mechanism, in Fig. 8 we
also present the critical value �c and the pairing interaction
D� within a simplified approximation, where we neglect the
flow of the self-energy and we set C� = S� = 0, while the
magnetic channel is treated at the single-channel level as
in Sec. II F. As a consequence, the d-wave pairing channel
receives contributions only from the magnetic channel and the
pairing channel itself. In this approach the feedback of charge
and s-wave pairing channels is taken into account only at the
DMFT level. The d-wave pairing channel does not receive any
contribution from the DMFT vertex, since the latter is local.
The resulting critical flow parameter �c, shown in orange in
Fig. 8, is always slightly larger than the one from the full
DMF2RG. This confirms that the channel competition has
only a modest detrimental effect on the magnetic fluctuations.
The maximal doping value for which the magnetic instability
is observed increases. A sizable d-wave pairing interaction
sets in for higher values of the doping, too. There is no major
difference in the d-wave pairing interaction compared to the
full DMF2RG where all the channels are included, supporting
the hypothesis that d-wave pairing is mostly driven by the
nonlocal magnetic channel.

In Fig. 12 we show the inverse d-wave pairing interaction
D−1 for Q = (0, 0) and � = 0, as a function of the flow
parameter � for different fillings. The parameters are the same

FIG. 13. Flow of the d-wave pairing channel at higher and lower
temperature for U = 8t and t ′ = −0.2.

as in Fig. 8. For n = 0.88 and n = 0.96, the flow is shown
up to the critical value �c at which the magnetic instability
occurs. Approaching half filling n = 1, the d-wave pairing
correlations increase but cannot develop further due to the
magnetic instability which prevents a continuation of the flow
to smaller �.

Finally, let us discuss the role of the temperature. The re-
sults discussed so far are for a temperature T = 0.08t , roughly
comparable to room temperature and thus much higher than
the maximal temperatures for which d-wave superconduc-
tivity has been observed. Therefore, we do not expect a d-
wave pairing instability at this temperature, but the onset of a
large d-wave pairing interaction is likely a high-temperature
precursor of a superconducting phase at lower temperature.

Different theoretical studies yield different estimates for
the maximal temperature for which superconductivity is ob-
served for the Hubbard model on the square lattice. For
example, while cluster extensions of the DMFT [37,38]
find a higher scale of T ≈ 0.03t , diagrammatic methods
[39,40] yield superconductivity only for temperatures be-
low T ≈ 0.01t . Experimentally, the maximal superconducting
temperature observed for cuprates is O(100) K, which roughly
corresponds to T ∼ 0.02t in units of the nearest-neighbor
hopping amplitude. Hence, we expect that we need to decrease
the temperature at least by a factor of two compared to what
we have achieved so far, to observe a pairing instability.

Due to the high computational cost of low-T calculations,
we cannot reach the superconducting transition temperature
at the moment. However, to better understand the evolution
of the d-wave fluctuations at lower temperatures, we have
performed a few computations at a reduced (compared to the
above) temperature T = 0.044t . A result is shown in Fig. 13,
where we show the flow of the maximum of the d-wave
pairing channel D for the doping value for which the d-wave
pairing is most pronounced. A flow at T = 0.08t for a slightly
different filling is also shown for comparison. Our expectation
is that as the temperature is further decreased, the relative
relevance of the d-wave pairing should increase and its flow
become more steep until, eventually, the d-wave pairing be-
comes larger than the magnetic one. This is indicated by the
comparison in Fig. 13, where the pairing interaction at the
lower temperature is not only much larger, but also has a
larger slope. In both cases the critical value �c is set by the
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instability in the magnetic channel, but the d-wave pairing
interaction is much larger for the lower temperature.

All these observations lead us to the conclusion that also
in the strong-coupling regime the magnetic fluctuations can
generate large d-wave pairing interactions leading ultimately
a pairing instability at sufficiently low temperatures.

IV. CONCLUSION

In summary, we have developed the DMF2RG, a com-
bination of DMFT and fRG proposed several years ago by
Taranto et al. [12], to a practical method that allows for
the computation of local and nonlocal dynamical correlation
functions in strongly interacting lattice fermion systems. The
fRG flow starts from the DMFT solution for the self-energy
and the two-particle vertex. Local correlations are treated
nonperturbatively by the DMFT, while the flow is driven
exclusively by nonlocal correlations, such that only the lat-
ter are directly affected by the truncation of the exact flow
equation hierarchy. This improves the accuracy of the method
substantially compared to the early version of the DMF2RG.
While there is still no obvious small expansion parameter
controlling the truncation of the nonlocal flow equations,
the Mott physics is already captured by the DMFT starting
point.

Another crucial improvement concerns the frequency de-
pendence of the two-particle vertex. We have shown that
a reduction to a single bosonic frequency variable in each
fluctuation channel (magnetic, charge, and pairing) is inade-
quate already at moderate coupling, and fails completely in
the strong-coupling regime. Hence, we have taken the full
frequency dependence into account. While this is challenging
due to the large number of variables and the extremely sin-
gular frequency dependence of the vertex at strong coupling,
we have managed to perform calculations with a sufficiently
large number of frequencies down to temperatures of about
one percent of the bandwidth.

We have applied our implementation of the DMF2RG to
the two-dimensional Hubbard model with interactions up to
U = 16t at half filling and up to U = 8t in the hole-doped
regime. Most of the calculations were performed at a fixed
temperature T = 0.08t . Magnetic correlations dominate from
half filling up to 18% hole doping. In that regime the magnetic
fluctuation term diverges for a certain critical flow parameter
�c, signaling an antiferromagnetic instability. The magnetic
fluctuations are peaked at the Néel wave vector (π, π ) for
doping δ < 0.16, and at incommensurate wave vectors of
the form (π − 2πη, π ) for larger doping. Their strength is
only mildly reduced by nonlocal fluctuations in other (non-
magnetic) channels, while a substantial reduction from local
correlations is already taken into account by the DMFT. The
antiferromagnetic instability obtained at finite temperature is

due to missing feedback of thermal order parameter fluctua-
tions in our truncation of the fRG flow (see below). Hence, the
divergence of the magnetic channel in our calculation should
rather be associated with the pseudogap formation rather than
magnetic long-range order.

At the edge of the regime dominated by magnetic fluctu-
ations, near δ = 0.18, we find sizable d-wave pairing fluctu-
ations. Lowering the temperature to T = 0.044t they almost
diverge. Hence, the system is not far from a pairing instability
at that temperature, consistent with superconductivity in the
temperature range observed for cuprates. Switching off the
nonmagnetic fluctuation channels we could show that the
dominant driving mechanism for d-wave pairing is magnetic,
as suggested by various physical arguments [3], and con-
firmed for moderate interactions by plain fRG calculations [4].

The divergence of the magnetic fluctuation term and the
magnetic susceptibility in the doping range from half filling
to δ = 0.18 indicates the importance of nonlocal magnetic
correlations in that regime, but also a breakdown of our trun-
cation at the critical flow parameter �c. The Mermin-Wagner
theorem excludes magnetic long-range order at any finite tem-
perature, and the magnetic susceptibility should diverge only
in the zero-temperature limit. Magnetic order is prevented by
thermal order parameter fluctuations via a destructive feed-
back mechanism that is not captured by our truncation of the
flow equations. The most efficient way of dealing with these
effects is by introducing a bosonic order parameter field via a
Hubbard-Stratonovich decoupling of the dominant magnetic
interactions. A relatively simple truncation of the fRG flow
for the order parameter fluctuations then pushes the magnetic
phase transition to zero temperature, in agreement with the
Mermin-Wagner theorem [29]. Alternatively, one may also re-
cover the Mermin-Wagner theorem in a purely fermionic flow
via the recently developed multiloop truncation of the flow
equation hierarchy [41,42]. Extending such refinements to
the DMF2RG is one of the most promising future directions.
The temperature range in which the present implementation
of the DMF2RG breaks down due to the divergent magnetic
fluctuation term would then become accessible. We expect
strong but finite magnetic correlations in that regime, and thus
a fertile soil for pseudogap behavior and d-wave pairing.
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APPENDIX A: FLOW EQUATIONS

The flow equation for the magnetic channel has been
presented in Sec. II E. Here we present the expressions for the
flow equations in the pairing and in the charge channels. The
flow equation for the s-wave pairing channel reads

d

d�
S�

Q,�(ν1, ν3) = T
∑

ν

Ls,�
Q,�

(ν1, ν)Ps,�
Q,�

(ν)Ls,�
Q,�

(ν, ν3), (A1)

with

Ps,�
Q,�

(ω) =
∫

p
G�(p, ω)S�(Q − p,� − ω) + G�(Q − p,� − ω)S�(p, ω) (A2)
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and

Ls,�
Q,�

(ν1, ν3) = Vdmft (ν1,� − ν1, ν3) − S�
Q,�(ν1, ν3) +

∫
p

[
M�

p,ν3−ν1
(ν1,� − ν1)

+ 1

2
M�

p,�−ν1−ν3
(ν1,� − ν1) − 1

2
C�

p,�−ν1−ν3
(ν1,� − ν1)

]
. (A3)

The flow equation for the d-wave pairing channel reads

d

d�
D�

Q,�(ν1, ν3) = T
∑

ν

Ld,�
Q,�

(ν1, ν)Pd,�
Q,�(ν)L

d,�
Q,�

(ν, ν3), (A4)

with

Pd,�
Q,�(ω) =

∫
p
[ fd(Q/2 − p)]2[G�(p, ω)S�(Q − p,� − ω) + G�(Q − p,� − ω)S�(p, ω)] (A5)

and

Ld,�
Q,�

(ν1, ν3) = −D�
Q,�(ν1, ν3) + 1

2

∫
p
(cos px + cos py)

[
M�

p,ν3−ν1
(ν1,� − ν1)

+ 1

2
M�

p,�−ν1−ν3
(ν1,� − ν1) − 1

2
C�

p,�−ν1−ν3
(ν1,� − ν1)

]
. (A6)

Since D� is generated exclusively by fluctuation contributions (not by the DMFT vertex Vdmft), see Eq. (A6), it is the channel
which is most sensitive to approximations on the frequency dependence.

The flow equation for the charge channel reads

d

d�
C�

Q,�(ν1, ν2) = −T
∑

ν

Lc,�
Q,�

(ν1, ν)P�
Q,�(ν)Lc,�

Q,�
(ν, ν2 − �), (A7)

with P�
Q,�(ω) as in Eq. (33), and

Lc,�
Q,�

(ν1, ν2) = 2Vdmft (ν1, ν2,� + ν1) − Vdmft (ν2, ν1,� + ν1) − C�
Q,�(ν1, ν2) +

∫
p

{
− 2S�

p,ν1+ν2
(ν1, ν2 − �)

+S�
p,ν1+ν2

(ν1,� + ν1) + 3

2
M�

p,ν2−ν1−�(ν1, ν2) + 1

2
C�

p,ν2−ν1−�(ν1, ν2)

+ (cos Qx + cos Qy)

[
D�

p,ν1+ν2
(ν1, ν2 − �) − 1

2
D�

p,ν1+ν2
(ν1,� + ν1)

]}
. (A8)

The form factor decomposition allows us to decouple the
momentum integrals, in the calculation of the L’s, Eqs. (34),
(A3), (A6), and (A8), from the frequency summations in the
flow equations, hence reducing the numerical effort.

APPENDIX B: NUMERICAL DETAILS

We first compute the DMFT loop and the DMFT vertex
function with an exact diagonalization (ED) method [43] by
discretizing the conduction electron bath of the AIM with 4
sites. The DMFT vertex is computed in a box containing the
first 80 positive and the first 80 negative Matsubara frequen-
cies for each of the three frequency variables, while outside
the box we extrapolate the frequency dependence with asymp-
totic functions as described in Ref. [32]. The numerical setup
of the flow equations is similar to Ref. [20]. We use different

patching schemes in momentum space for the self-energy and
for the vertex. We use 29 patches for the bosonic momentum
dependence (Q) of the vertex with more accuracy in the cor-
ners around (0,0) and (π, π ), where we expect the instability
vectors. For the momentum dependence of the self-energy
we use 44 patches adapted to the shape of the noninteracting
Fermi surface. For the frequency dependence of the vertex,
we rewrite S, D, C, and M as functions of three bosonic
frequency variables. For each variable the first 40 positive and
first 40 negative Matsubara frequencies are kept explicitly,
while beyond we extrapolate the asymptotic behavior. The
bosonic representation of the frequency dependence simplifies
the numerical treatment of the asymptotic behavior.

For the doped case, we keep the filling fixed during the flow
by properly adjusting an additive constant in the real part of
the self-energy.
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