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Transverse surface modes in ferromagnets: Coupled �M and �m
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Ferromagnets, when out of equilibrium, have two sets of transverse variables: the tipped magnetization
d �M, arising from the changed eigenstate, and the transverse component of the spin accumulation �m, arising
from the nonequilibrium spin distribution function (where �m = �0 in equilibrium). For conductors, �m is due a
nonequilibrium distribution of electrons near the Fermi surface; for insulators, �m is due to a nonequilibrium
distribution of magnons. Applying irreversible thermodynamics to these four transverse degrees of freedom
gives, in the small-amplitude limit, four static transverse surface modes (evanescent modes) of d �M and �m,
which couple both by uniform mean-field exchange λ and by the recently noted mutual decay rate τ−1

mM . As
prototype ferromagnets we consider static, pairwise degenerate modes for the insulator yttrium iron garnet
(YIG) and the conductor permalloy (Py). YIG has much longer longitudinal and transverse decay lengths than
Py. Numerical studies are made of the eigenmodes (ratio of d �M to �m) and of the real and imaginary parts of
the two eigenwave vectors; they reveal much about the dependence of the modes on field H , λ, χ f (transverse
spin accumulation susceptibility), χ⊥ (transverse magnetization susceptibility), and τmM . For example, when χ f

is very small, as expected at low temperatures, both transverse modes are dominated by d �M. The transverse
decay lengths typically are much shorter than the longitudinal (spin-flip) decay length, largely because they
are subject to exchange-field precession. Thus, ultrathin samples can give a full transverse response (such
as transverse “magnon-mediated” charge current “drag”), but thick samples can give neither longitudinal nor
transverse response. With amplitudes determined by the boundary conditions on �m and �M, these modes permit
the interior of the ferromagnet to respond in a spatially varying fashion. The six transverse boundary conditions
at an N/F interface are briefly discussed. For small enough sample thicknesses, relative to the transverse decay
lengths, there should be a transverse “magnon drag” phenomenon, both for conductors and insulators.
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I. INTRODUCTION

Johnson and Silsbee developed the thermodynamics of a
conducting ferromagnet of moment �M slightly out of equilib-
rium [1]. In an Appendix they used irreversible thermodynam-
ics to study the static spin transfer of longitudinal spin current
from a conducting ferromagnet to a paramagnetic conductor.
They found decaying modes (i.e., surface modes, also known
as evanescent modes) of longitudinal spin in both materials
[2]. Then, for a fixed charge current, they employed charge
current continuity and two spin current boundary conditions
at the interface to find the two unknown mode amplitudes for
the longitudinal spin current in each material.

One spin boundary condition was continuity of the longitu-
dinal spin current �js,L. The other, from irreversible thermody-
namics, was that �js,L across the interface is proportional to the
difference across the interface in the longitudinal spin chemi-
cal potential �μL (they employed an effective field H∗ rather
than �μL). Two previous works, not employing irreversible
thermodynamics boundary conditions, had taken different,
phenomenological, boundary conditions [3,4]. The associated
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nonequilibrium magnetization is called the longitudinal spin
accumulation, and is equivalent to dM [5].

Reference [1] is relevant to giant magnetoresistance [5–7]
as a dc read mechanism for magnetic data. Slonczewski
proposed a dc write mechanism for magnetic data, emphasiz-
ing transverse spin transfer from normal to ferromagnet and
from ferromagnet to normal [8]. It involved five materials:
two normal contacts we call NL and NR (at the left and
right) sandwiching a set of F1/N/F2 layers, for noncollinear
equilibrium magnetizations �M1 and �M2. (When thick enough,
the layer of N decouples F1 and F2 [9].) With dc current
entering from the left, at the NL/F1 interface the problem
was basically that studied by Johnson and Silsbee. However,
some of the spin-polarized current crossing the F1/N interface
and then entering F2 is polarized normal to the magnetiza-
tion in F2. This leads to a transverse spin transfer that for
large amplitudes was predicted to change the direction of the
magnetization in F2. The predicted change in direction of the
magnetization was shortly observed [10,11].

This work studies only the small-amplitude, linearized,
dc response to transverse spin transfer. It employs the �M-�m
model for the transverse response of a ferromagnet, for which
the variable d �M represents the tipped magnetic quantization
axis, and �m represents the effect of a nonequilibrium distribu-
tion of excitations. Since dM is the longitudinal component of
�m, we have dM = �M · �m. Each transverse magnetic variable
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is constrained by boundary conditions, associated either with
magnetics or spin transfer. The transverse degrees of freedom
couple, yielding transverse modes with decay lengths that for
yttrium iron garnet (YIG) we estimate to be in the 2–10 nm
range.

Section II gives a theoretical review. Section III considers
the nonequilibrium transverse response of conducting and
insulating ferromagnets. For conductors it uses Fermi surface
related arguments to explain how it arises. It also discusses
criticisms of the related theory of Silsbee, Janossy, and Monod
[12], which has mathematically equivalent transverse vari-
ables but a different physical picture. Section IV considers
the mathematics of the transverse eigenvalues and eigenmodes
(specified by wave vectors k) for a conducting ferromagnet
when anisotropy effects are small. In the absence of electric
current there is no essential difference between conducting
and nonconducting ferromagnets [13], so the considerations
of this section also apply to insulators.

Section V assembles material parameters for both the
conductor permalloy (Py) and the insulator YIG. Section VI
considers the general interpretation of the numerics that fol-
low. Section VII considers mode details for YIG, including the
dependence of the transverse eigenvectors and eigenwave vec-
tors and normal modes on applied field H , the �M-�m uniform
exchange constant λ, the transverse spin accumulation sus-
ceptibility χ f , and the transverse magnetization susceptibility
χ⊥. Section VIII considers the corresponding mode details for
Py. Section IX, using the fact that typically the longitudinal
decay length is much longer than either transverse decay
length, discusses how the results of transverse spin response
experiments (using very thin samples) might change on going
to thicker samples. In addition to the “magnon-mediated”
electric current “drag” effect for spin accumulation along
the host magnetization [14–17], for thin enough samples the
analogous effect may be observable for spin accumulation
transverse to the host magnetization.

Section X considers additional implications of this work,
Sec. XI provides a summary and conclusions. Appendix con-
siders the effect on the surface mode wave vectors of the so-far
unstudied cross decay between �M and �m.

A considerable amount of current work emphasizes fer-
romagnetic insulators like YIG. These support magnons
(magnonics), and although not eliminating the heating effects
of spin currents [18], do eliminate the heating effects of charge
currents [19,20]. This study of ferromagnetic insulators takes
us from the short surface mode penetration depths of conduc-
tors to the much larger surface mode penetration depths of
insulators, and should facilitate observation of related surface
effects.

In particular, in Sec. VII this work predicts a new effect,
i.e., the transverse version of the (longitudinal) “magnon
drag” effect predicted by Zhang and Zhang, and observed by
multiple groups [14]. It involves the shorter transverse decay
lengths associated with the coupled modes of �m and d �M, and
thus will require different experimental geometries from those
for which the (longitudinal) “magnon drag” was observed
(see Fig. 8). More generally, the �M-�m formalism should be
applicable to all transport problems involving the transverse
response of ferromagnets.

II. THEORETICAL REVIEW

In addition to predicting spin transfer, Ref. [8] argued that
the spin current, on entering F2, almost immediately in space
redefines the longitudinal direction in F2. As a consequence,
in this picture no nonequilibrium transverse component of
the magnetization is permitted. It also yields a transverse
response in the ferromagnet that is completely independent
of the boundary conditions on �M and �m.

This influenced the Keldysh-based theory of Brataas,
Nazarov, and Bauer, for F/N interface spin transfer [21],
which employed thermodynamic variables including the spin
chemical potential, as in irreversible thermodynamics. By
literally accepting the physical picture of Ref. [8], no nonequi-
librium transverse spin component could appear in F, although
it could appear in N. This left the theory unsymmetrical: spin
currents could be driven from N to F but not from F to N.

This simplification is not unlike the classical picture where
a conductor screens an electric field immediately at the in-
terface, thus neglecting the quantum-mechanical Friedel os-
cillations that occur near the interface. Moreover, for con-
ducting nonmagnetic-magnetic interfaces detailed quantum-
mechanical studies show, in addition to spin-dependent re-
flection and transmission, Fermi wave-vector-dependent spin
oscillations extending into the ferromagnet [22]. As a conse-
quence, the physical picture of Ref. [8], although clearly and
correctly predicting the qualitative phenomenon of spin trans-
fer, is an approximation. We believe it is especially valid for
very thin samples, where bulk decay and precession processes
near the surface have little effect. This work is directed toward
thicker samples.

Not accepting the physical picture of Ref. [8], Zhang, Levy,
and Fert [23] adapted the s-d model of a ferromagnet to spin
transfer [24,25]. This model employs magnetization �Md (like
the usual magnetization �M) for immobile magnetic d elec-
trons, and �Ms (like the spin accumulation �m) for mobile but
polarizable s electrons [5]. For specific boundary conditions,
this work studied the adjustment of the ferromagnet when a
spin-polarized current entered it.

In fact, work on F � N flow using the s-d model had
been done previously. Silsbee, Janossy, and Monod observed
excess damping in FMR for an F (permalloy, Fe, Ni) that
was adjacent to a layer of N (Cu) [12]. To explain this,
they developed an irreversible-thermodynamics-inspired the-
ory that permitted a transverse nonequilibrium response for
an F, first order in the ac field. Thus, it was symmetrical
relative to interfacial spin currents to and from F and N.
This phenomenon of spin current driven from F to N was
named spin pumping [26]. Currently, the term spin pumping
is also employed to denote the second-order, dc spin current
(detected by the inverse spin Hall effect), that accompanies
first-order ac spin pumping.

Reference [12] considered that FMR directly drives a trans-
verse exchange field which, through the boundary conditions
on the s electrons, indirectly drives a spin current from F to
N, just as in previous work by Flesner, Fredkin, and Schultz
on electron spin resonance (ESR) from N1 to N2 [27]. With
two transverse spin accumulation degrees of freedom in both
F and N, Ref. [12] employed two boundary conditions on each
component to make the problem completely defined.
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Unlike this work, Ref. [12] included no additional modes
coupling transverse �M to transverse �m, and no correspond-
ing �M boundary conditions were considered. The theory of
Ref. [12], when taken to second order in the driving field,
yields a dc spin current proportional to the power absorbed,
and therefore a dc spin Hall voltage proportional to the power
absorbed.

It has been shown that the s-d model can be replaced
by a more rigorous Fermi liquid theory based model of a
conducting ferromagnet using the quantization axis M̂ and
the spin accumulation �m (associated with a nonequilibrium
distribution function) [28].

This work shows that a macroscopic, irreversible
thermodynamics-based theory yields four surface modes, and
applies to both conducting and insulating magnets [13]. By
applying the boundary conditions on �M and �m, one can
determine the normal mode amplitudes and thus the transverse
response of the ferromagnet within its interior.

In general, the equations of motion and boundary con-
ditions for both �M and �m must be considered. This leads
to two transverse components for both �M and �m, each with
distinct equations of motion, which recently have been derived
in detail using irreversible thermodynamics [13]. In addition
to exchange coupling, �M and �m also are coupled by mutual
decay (cross decay), with four coupled transverse modes.
Because an adjacent normal metal N has two transverse modes
of its own �m, in transverse spin transfer from N to F there are
two reflected modes in N and four transmitted modes in F.

At the microscopic level, insulating ferromagnets have
spin properties that are distinct from those of conducting
ferromagnets since the magnetism is due to magnons; this has
led to the term magnonics. However, at the macroscopic level,
insulating ferromagnets have spin properties that are nearly
identical to those of conducting ferromagnets. In particular,
they satisfy the same �M and �m boundary conditions [13].

III. TRANSVERSE RESPONSE: �M AND �m

Although more recent work points to ferromagnetic in-
sulators as more promising for spintronics applications be-
cause they have no Joule heating, the first studies of the
nonequilibrium transport transverse response of ferromagnets
were performed for conductors [10,11]. We therefore con-
sider conductors first. Our purpose is to establish that this
nonequilibrium transport transverse response of ferromagnets
includes two sets of coupled surface modes of �M and �m.

We first note that, for a longitudinal spin current, the spin
of the excitations must be opposed to the majority spin direc-
tion, with a large increase in exchange energy. Nevertheless,
longitudinal spin currents have been observed. We conclude
that the necessarily large exchange energy does not inhibit
the generation of longitudinal spin currents, and therefore we
conclude that the much smaller exchange energy required to
excite slightly tipped transverse excitations should be even
less inhibited. Nevertheless, we provide a physical picture of
how transverse spin accumulation can arise.

Consider a conducting ferromagnet F having majority car-
rier excitations above the Fermi surface, with spin slightly
misaligned relative to the quantization axis M̂ by character-
istic angle θ . They have a transverse spin accumulation �m

FIG. 1. Excitations above the upper magnetic Fermi sea, with
thick spin vectors tilted slightly relative to majority spin direction.
Part (a) represents the unrotated ground state, with vertical spin
quantization axis. There are no excitations. Part (b) represents the
rotated ground state, with tipped spin quantization axis, represented
by d �M �= �0. There are no excitations. In part (c), empty states
below the Fermi sea have white circles with a dark downward arrow
indicating spin polarization, and filled states above the Fermi sea
have dark circles with tilted spin-polarization arrows. Thin arrows
indicate transitions from below to above the Fermi sea.

of magnitude ∼|θ | but gain only an exchange energy ∼θ2

(�m = �0 in equilibrium). Figure 1 illustrates typical low-energy
excitations that lead to a transverse spin accumulation �m. Just
as �m represents changes from equilibrium in the distribution
function at fixed spin eigenstates, so d �M represents changes
in the spin eigenstates.

Note that the longitudinal components of d �M and �m, or
dM and M̂ · �m, are equivalent. Hence, there are five, not six,
independent components to �M and �m. Reference [1] employed
dM, but M̂ · �m is a bit more consistent with the idea of excita-
tions, or spin accumulation. On the other hand, the transverse
magnetization has contributions both from the transverse spin
accumulation �m and from the tipped magnetization �M.

As for the longitudinal spin accumulation, each transverse
component of �m satisfies two boundary conditions. In addi-
tion, the two components of transverse �M satisfy boundary
conditions from micromagnetics, which arise from the equa-
tion of motion for �M evaluated for the spins on the surface.
We do not apply the boundary conditions in this work.

Although the related theory of Silsbee, Janossy, and Monod
(SJM) successfully explained the line shape observed in spin
pumping [12], some criticisms have been made of their theory
[29], which we now address:

(i) The original form of the theory uses both localized (d)
and conduction (s) spins. However, as noted above, it was
later shown that Fermi liquid theory gives the equivalent two
transverse variables d �M (from tipping the quantization axis)
and spin accumulation �m (from electron excitations) [13,28].
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Therefore, SJM can be reinterpreted in terms of Fermi liquid
theory.

(ii) The original form of the theory does not treat magnetic
insulators. However, as shown in the Appendix to Ref. [13],
the same variables d �M and �m apply for ferromagnetic insula-
tors, with �m now due to magnon excitations.

(iii) The theory does not use microscopically defined sur-
face transport parameters. However, the literature contained
computations of the longitudinal surface spin current transport
parameters [30–32]. Moreover, Ref. [21] was general enough
to later yield the corresponding values for the longitudinal and
transverse spin current transport parameters. Indeed, had the
authors of Ref. [21] not explicitly forbidden transverse spin
accumulation from the final version of their theory, then they
would have obtained a theory equivalent to that of Ref. [12],
with appropriate microscopically defined surface transport
parameters.

Microscopically defined surface transport parameters were
later employed to describe the irreversible-thermodynamic-
based spin “backflow” associated with the spin accumulation
in the normal material [33]. Perhaps the first surface transport
theory, that of Khalatnikov for phonon heat flux [34], com-
puted the conversion of phonon heat flux in one material to
that in the adjacent material. Moreover, the more recent spin
“convertance” of Zhang and Zhang computes the conversion
of spin current from magnetic excitations in a conductor to
spin current from magnons in an adjacent insulator [35].

We now consider the mathematical origin of the spin
accumulation in conductors, with spin due to electrons, of spin
1
2 . It is well known that for conduction electrons the local spin
density (the spin accumulation, with spin index i = 1, 2, 3) is
proportional to

1
2 〈α| σ i

αβ |β〉,
where the σ i

αβ are the Pauli matrices with index i running from
1 to 3. The indices α and β take on the values − 1

2 and + 1
2 , and

represent only the spin part of the electron wave function. This
definition applies both to the longitudinal and the transverse
spin accumulation in a conductor [13,28].

The situation is very similar in insulators. Let an insulator,
such as YIG (yttrium iron garnet), have effective spin S (later,
we take S = 14.5). Then, the local spin density (again the spin
accumulation, with spin index i = 1, 2, 3) is proportional to

〈α| Si
αβ |β〉,

where the Si
αβ are the angular momentum matrices for spin S

with with index i running from 1 to 3, and the indices α and
β, which go in integer steps from −S to +S, represent only
the spin part of the electron wave function. We do not need to
know the actual spin matrices Si

αβ .
It is important to note the following: The irreversible ther-

modynamics mechanism for driving transverse spin currents
across an interface is frequency independent; thus, it can be
distinguished from the resonance frequency dependence of
what has been called the “coherent” theory [26]. Moreover,
the two theories have a different dependence on the spin
polarization.

To be specific, the dominant term in spin current �js crossing
the interface in the coherent theory varies as M̂ × d �M/dt

[26]. This has, for equilibrium �M0 along ẑ and an e−iωt

time dependence, the form −iωMẑ × (dM̂xx̂ + dM̂yŷ) =
−iωM(ŷdM̂x − x̂dM̂y). On the other hand, the irreversible
thermodynamics forms for the spin current crossing the
interface varies as dM̂ = x̂dM̂x + ŷdM̂y. We summarize this
by writing

�js,T ∼ −iωM(ŷdM̂x − x̂dM̂y) (coherent), (1)

�js,T ∼ x̂dM̂x + ŷdM̂y (irreversible thermodynamics). (2)

Hence, the two approaches predict different frequency
and polarization dependencies. The contrast in frequency
dependence is sharpest both for the dc case and for very
high ac frequencies. To our knowledge, neither the resonance
frequency dependence nor the polarization dependence has
been studied experimentally. Note that all surface mechanisms
(irreversible thermodynamics, coherent, two-magnon decay)
lead to an excess damping that varies inversely with the
thickness of the ferromagnet.

IV. FOUR TRANSVERSE MODES

We now calculate the eigenvalues and eigenmodes with
exchange coupling between �M and �m, assuming no transverse
component of the external field, so �H0⊥ = 0. We take uniform
equilibrium magnetization �M0, and recall that �m = �0 in equi-
librium.

A. Model

�M and �m couple both in phase by a uniform exchange con-
stant λ, and by cross decay subject to an Onsager condition.
In addition, both �M and �m precess in any external field and/or
demagnetization field. Both also are subject to decay to the
lattice ( �M by Landau-Lifshitz damping and �m by spin flip). Fi-
nally, �M is subject to a nonuniform exchange field (with con-
stant A), and �m (but not �M) is subject to diffusion. Symmetry
permits a nonuniform exchange field ∇2 �m for �m, and nonuni-
form cross-coupling fields, which for simplicity we ignore.

B. Net magnetization

The total magnetization �M is given by

�M = �M + �m. (3)

We use SI units, so

�B = μ0( �H + �M) (4)

is in tesla and �H and �M are in A/m. For the static case with
translational symmetry, we show below that �H is proportional
to the appropriate component of the magnetization �M. A
more general treatment, needed to solve the full boundary
value problem, gives the field �H its own dynamics [36–38].
In what follows, since we restrict ourselves to the transverse
response, we may use �M⊥ for d �M.

C. �M⊥ and �m⊥

Associated with �M⊥ is an effective field �H∗
⊥ that is zero

in local equilibrium [13]. We take an exchange energy εex =
−μ0λ �M · �m, where the dimensionless constant λ is associated
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with the term that determines the Curie temperature in simple
mean-field theory. We also take the parameter A to be associ-
ated with nonuniform exchange (exchange stiffness). Then,

�H∗
⊥ =

(
�H + λ�m + 2A

μ0M
∇2M̂

)
⊥

− H

M
�M⊥ ≡ − H

M
δ �M⊥;

(5)

in local equilibrium we have �H∗
⊥ = �0, which determines �M⊥.

In uniform equilibrium, if the field �H rotates then �M rotates,
giving a transverse magnetization susceptibility

χ⊥ ≡ M

H
. (6)

It is helpful to rewrite (5) as

δ �M⊥ = −χ⊥ �H∗
⊥ = �M⊥ − χ⊥

(
�H + λ�m + 2A

μ0M
∇2M̂

)
⊥
,

(7)

so δ �M⊥ = �0 in local equilibrium [39–41]. When the sys-
tem is driven with wave vector k, as eikz, so ∇2 → −k2,
it is convenient to employ the nonuniform exchange wave
vector kA:

kA =
√

μ0MH

2A
. (8)

Then, (7) may be rewritten as

δ �M⊥ = �M⊥

(
1 + k2

k2
A

)
− χ⊥( �H + λ�m)⊥. (9)

We now turn to the transverse spin accumulation �m⊥.
Associated with �m⊥ is an effective field �h∗

⊥ that is zero in local
equilibrium [13]. With χ f the transverse component of the
ferromagnet’s spin accumulation susceptibility, �h∗

⊥ is given
by [13]

�h∗
⊥ =

(
�H + λ �M − �m

χ f

)
⊥

= −δ �m⊥
χ f

, (10)

so that in local equilibrium �h∗
⊥ = 0 and δ �m⊥ = �0. It is helpful

to rewrite (10) as

δ �m⊥ = �m⊥ − χ f ( �H + λ �M )⊥. (11)

We interpret δ �m⊥ as the deviation of �m⊥ from instantaneous
local equilibrium [39–41].

In terms of spin chemical potential �μs the relation �μs =
(γ h̄/2)�h∗ holds [13]. Note that the spin chemical potential
�μs is distinct from the spin accumulation �m, although for
paramagnets in zero external field they are proportional. In
what follows, it is useful to define two frequencies:

ωH ≡ γμ0H, (12)

ωX ≡ γμ0h∗
‖ = ωH + γμ0λM ≈ γμ0λM. (13)

D. Equations of motion: Degenerate transverse directions

We now write the equations of motion for �M⊥ and �m⊥, and
then comment on various new terms that appear in Ref. [13].

For simplicity, we consider the two transverse directions as
equivalent, so any anisotropy (which in practice we neglect)
is uniform in the transverse plane. We take the equilibrium
magnetization �M0 to be along ẑ.

From Ref. [13], �M⊥ and �m⊥ have coupled equations of
motion given by

∂t �M⊥ = ωH M̂ × δ �M⊥ − 1

τM
δ �M⊥ + 1

τmM
δ �m⊥, (14)

∂t �m⊥ = −ωX �m⊥ × M̂ + D f ∇2δ �m⊥ − LR

χ f
M̂ × ∇2δ �m⊥

− 1

τ f
δ �m⊥ + 1

τMm
δ �M⊥. (15)

Here, with α the dimensionless Gilbert constant (the spin
analog of the Q factor for a linear oscillator),

1

τM
= αωH ≡ 1

τML
+ 1

τMm
, (16)

1

τ f
≡ 1

τmL
+ 1

τmM
. (17)

The constant LR [13] represents a stiffness for �m⊥ (just as the
constant A represents a stiffness for �M⊥); for simplicity our
numerical calculations take LR = 0. There also is a transverse
spin diffusion constant D f , and

τ−1
M = αωH (α is the dimensionless Gilbert constant); τ−1

ML

gives the decay rate of �M⊥ to the lattice; τ−1
mL gives the decay

rate of �m⊥ to the lattice; τ−1
Mm gives the decay rate of �M⊥ to

�m⊥; and τ−1
mM gives the decay rate of �m⊥ to �M⊥. The last two

satisfy the Onsager relation
χ⊥
τMm

= χ f

τmM
. (18)

Since we expect that χ⊥ � χ f , by the above Onsager relation
we thus expect τMm � τmM . Hence, we expect that �M decays
much less quickly to �m than vice versa. Both τ−1

Mm and τ−1
mM

were introduced in Ref. [13]. However, in the s-d model of
Hasegawa and in related models there is a long history of such
cross decay [24,25].

In applying Maxwell’s divergence equation for �B,

0 = �∇ · �B = μ0 �∇ · ( �H + �M), (19)

we consider geometries where there is no significant variation
transverse to �M0 (along ẑ) and (to lowest order) no variation
in the longitudinal magnetization. For an eikz variation, (19) is
automatically satisfied.

E. Statics

In the static limit, Maxwell’s equation for �B is

�∇ × �B = �0. (20)

We wish to study static transverse modes. An eikz variation
satisfies

∂zBx,y − ∂x,yBz = ikBx,y = 0,

with k to be determined. Since for our geometry in F2
the modes generated at the N/F2 surface should decay for
increasing z, we take Im(k) > 0.
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Referring only to the spatially varying parts, we have

�H⊥ = − �M⊥ = − �M⊥ − �m⊥. (21)

This ensures that there are no “magnetic poles” for �H in the
bulk. There are four distinct transverse components of �M;
and in general there are four distinct wave vectors k. This is
necessary in order to satisfy the six N/F boundary conditions
associated with �M⊥ and �m⊥ in F, and an �m⊥ in N.

Consider how (21) affects (9). �H⊥ = − �M⊥ − �m⊥ implies
that, in (9), �M⊥ is multiplied by (1 + χ⊥). Moreover, �m⊥ is
multiplied by (−1 + λ). Hence,

δ �M⊥ ≈ �M⊥

(
(1 + χ⊥) + k2

k2
A

)
− χ⊥(λ − 1)�m⊥. (22)

Now, consider how (21) affects (11). �H⊥ = − �M⊥ − �m⊥ im-
plies that �M⊥ is multiplied by (−1 + λ). (References [12,23]
note that the tipped exchange field λ �M dominates over the
applied field �H .) Moreover, �m⊥ is multiplied by (1 + χ f );
since χ f � 1, �m⊥ is approximately multiplied by 1. Hence,
we take

δ �m⊥ ≈ �m⊥ − χ f (λ − 1) �M⊥. (23)

With M̂ = ẑ we now define, for any vector �A, A+ = Ax +
iAy, so (M̂ × �A)+ = iA+. We also define

D̃ f = D f − i
LR

χ f
, (24)

which permits us to easily set LR = 0 on replacing D̃ f by D f .
Recalling the eikz spatial variation, we rewrite Eqs. (14) and
(15) as

∂t M+ = 0 =
(

iωH − 1

τM

)
δM+ + 1

τmM
δm+, (25)

∂t m+ = 0 = iωX m+ − D̃ f k2δm+

− 1

τ f
δm+ + 1

τMm
δM+. (26)

Since δM+ explicitly depends on k2, in what follows we
employ M+ and m+.

We now multiply (25) by τM and (26) by τ f . Then, using
(22) and (23), and the previously cited relation ωHτM = α, we
obtain a form with dimensionless coefficients

0 = M+

[(
i

α
− 1

)(
1 + χ⊥ + k2

k2
A

)
− (λ − 1)χ f τM

τmM

]

+ m+

[
− (λ − 1)χ⊥

(
i

α
− 1

)
+ τM

τmM

]
, (27)

0 = m+

[
iωX τ f − (D̃ f τ f k2 + 1) − (λ − 1)χ⊥τ f

τMm

]

+ M+

⎡
⎣(λ − 1)χ f (D̃ f τ f k2 + 1) +

(
1 + χ⊥ + k2

k2
A

)
τ f

τMm

⎤
⎦.

(28)

The −1 in λ − 1 appears because of the demagnetization
fields that �M⊥ and �m⊥ exert on one another.

F. Statics with no cross decay and LR = 0

For simplicity we now set the spin accumulation stiff-
ness LR = 0 (so D̃ f → D f ), and we neglect cross decay
(τmM , τMm → ∞). One result of this is that α disappears from
the equations. Moreover, (27) gives

m+
M+

=
1 + χ⊥ + k2

k2
A

(λ − 1)χ⊥
. (29)

Solving Eqs. (27) and (28) for k2 gives a quadratic equation
in k2, which we write in terms of (k/kA)2 with dimensionless
coefficients (

k

kA

)4

+ b

(
k

kA

)2

+ c = 0, (30)

where

b =
[

(1 + χ⊥) − (iωX τ f − 1) − (λ − 1)2χ⊥χ f

D f τ f k2
A

]
, (31)

c = − 1

D f τ f k2
A

[(1 + χ⊥)(iωX τ f − 1) + (λ − 1)2χ⊥χ f ].

(32)

The (complex) solutions are given by

k2 = 1
2 (−b ±

√
b2 − 4c). (33)

V. MATERIAL PARAMETERS

To determine the mode wave vectors requires a number
of material parameters, given for one conducting magnet
(permalloy, or Py) and one insulating magnet (yttrium iron
garnet, or YIG) in Table I. These values are largely taken from
Ref. [38]. However, a number of material parameters come
from other sources or from estimates. For YIG we take two
values of λ. The value λ = 225 is obtained from λ = Tc/C,
where C is the Curie constant given by C = μ0nμ2

Bg2S(S +
1)/(3kB), where n = 1.06 × 1027 m−3 is the number density
of spins, g = 2 is the g factor, and S = 14.5 is the spin per

TABLE I. Parameters for Py and YIG used in calculations,
mostly from Ref. [38]. Two exchange-related constants appear. λ

is the dimensionless uniform exchange constant that determines the
mean-field transition temperature (because of the uncertainty in its
value for YIG, we employ the same two values for YIG and Py).
A is the exchange constant associated with nonuniformity of the
magnetization. In figures where λ is varied, λ also is varied in ωX .
For many figures, H takes on different values.

Quantity Py YIG

M (A/m) 8.6 × 105 1.42 × 105

γ (Hz/T) 1.847 × 1011 1.847 × 1011

λ 500, 3300 500, 3300
A (J/m) 1.3 × 10−11 3.65 × 10−12

Df (m2/s) 1.0 × 10−3 5.0 × 10−3

α 0.005 0.0006
τML ≈ τM = (αωH )−1 (s) 3 × 10−10 1 × 10−2

τmL ≈ τ f (s) 3 × 10−14 1 × 10−6

lL = √
Df τ f (m) 5.5 × 10−9 7.1 × 10−5
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unit cell. Because λ = 225 gives a rather low value for ωX ,
for calculations we consider λ = 500 and 3300, the value
for Py.

For transverse diffusion and decay we assume that diffu-
sion and decay of excitations is the same for both longitudinal
and transverse excitations, where the diffusion longitudinal
length is defined as

lL ≡ √
D f τ f ≈ √

D f τmL. (34)

For YIG, we take D f from Ref. [42] and we take τ f from
Ref. [35]. This appears only in the dimensionless product
(kAlF )2, of which each part is reasonably well known. Like-
wise, the dimensionless quantity ωX τ f that appears is reason-
ably well known, as is χ⊥. Less well known is χ f , due to the
excitations.

The next section numerically evaluates the mode eigenval-
ues (wave vectors) and eigenvectors for both Py and YIG,
exploring how they vary with λ. Unlike quantum mechanics
where there is mode crossing for a fixed off-diagonal param-
eter V at varying energies E1 and E2, in the present case the
parameter λ varies both off diagonal and on diagonal. This
complicates the interpretation considerably. The Appendix
explores how the k’s vary with the largely unknown mutual
decay rate τMm.

VI. INTERPRETING THE NUMERICS

The theory is surprisingly complex to interpret. One reason
is that because the theory yields equations that are non-
Hermitian, the normal modes are not orthogonal, and thus it is
especially important to study the eigenfunctions of the normal
modes, as well as the normal modes (the wave vectors).

Another reason is that the theory involves three parameters
that are not precisely known. These parameters, from most
to least well known, are (1) the exchange parameter λ; (2)
the transverse susceptibility of the excitations χ f ; and (3) the
decay time τmM . χ f may be close to the longitudinal sus-
ceptibility of the excitations, which by definition is the usual
longitudinal susceptibility χl . τmM and τmM are related by an
Onsager relation involving χ⊥ and χ f , and are new to theories
of ferromagnetic response in modern spintronics. (However,
as noted earlier, they have their origins in Hasegawa’s s-d
model for Mn in Cu [24].)

Our strategy to study the parameter dependence of the
two mode structures m+/M+ and the two eigenmodes k is
as follows. (1) We relegate the dependence on τmM to the
Appendix; (2) we display the dependence on χ f for a large
range of χ f using a logarithmic plot for the m+/M+’s and
a semilogarithmic plot for the k’s; and (3) we explore the
dependence on λ for the two plausible values 3300 (solid
lines) and 500 (dashed lines); (4) we consider three experi-
mentally accessible values for μ0H : 0.1, 1.0, and 10.0 T. We
employ circles for λ = 3300 and triangles for λ = 500, with
increasing size to denote increasing field.

For each mode, m+/M+ and k are complex. As a conse-
quence, each mode contributes a decaying and an oscillating
part. To be specific, the transverse decay lengths are defined,
for modes n = 1, 2, via

lT n = 1

Im{kn} , (35)

and the transverse wavelengths are defined by

λT n = 2π

Re{kn} . (36)

Hence, if a sample can be made of varying thickness d but
of such regularity that the boundary conditions are the same
at both surfaces, in comparing the dependence on d one must
employ two decay lengths and two wavelengths.

Although spintronics first involved studies of conducting
ferromagnets, such as permalloy (Py), because of the longer
longitudinal decay length (from spin flip and diffusion) of
magnetic insulators like YIG, more recent work has focused
on materials like YIG [43]. For that reason, we first study the
properties of YIG. Note that YIG has a complex structure
with three inequivalent magnetic lattices, and although at
room temperatures they are collinear, at low temperatures
they are noncollinear. This noncollinearity is an early example
of competing interactions; it results in a low-temperature
noncollinear phase [44]. Here, the noncollinear order “melts”
as the temperature increases, not unlike what has been posited
for the appearance of spin-glass order at low temperatures in
magnetic alloys known as reentrant spin glasses [45].

VII. EIGENMODES AND EIGENWAVE VECTORS FOR YIG

For YIG we now show our results for the eigenmodes and
the eigenvectors. Although the mode ratios m+/M+ are com-
plex, with the phase relationship a measurable quantity, we
present only |m+/M+|. We do this before presenting the nor-
mal modes kn in order to facilitate interpretation of the modes.

Figure 2(a) shows that for mode 1, m+/M+ is always
dominated by M+. Also, the dependence on λ involves a
crossover, depending on the value of χ f . Further, m+/M+
increases as H increases. We may think of this as a mostly
M mode.

Figure 2(b) shows that mode 2 is more complex: for χ f <

10−4 m+/M+ is dominated by M+, increasing λ decreases
m+/M+, and increasing H increases m+/M+. However, for
χ f > 10−3 m+/M+ is dominated by m+, increasing λ in-
creases m+/M+, and increasing H has little effect on m+/M+.
For large enough χ f we may think of this as a mostly m mode.

The corresponding eigenvalues are given in Figs. 3 and
4. We take the imaginary parts to be positive. Figure 3(a)
shows that Re(k1) vs χ f has a resonancelike shape. With
increasing λ the peak position in Re(k1) decreases but its peak
value increases. With increasing H , both its peak position
and peak value increase. Figure 3(b) shows that Im(k1) vs χ f

rolls over to zero for increasing χ f , for all λ and H . With
increasing λ the peak position in Im(k1) decreases but its peak
value increases. With increasing H , both its peak position
and peak value increase. Figure 4(a) shows that Re(k2) is
nearly independent of H , and increases with increasing λ.
Re(k2) is very small for small χ f , corresponding to a very
long spatial period of oscillation. However, for increasing χ f ,
Re(k2) grows to values that correspond to a very short spatial
period. Figure 4(b) shows that Im(k2) vs χ f has a constant
small χ f value that is independent of H but increases as λ

increases. For μ0H = 10 T, as χ f increases Im(k2) goes to
a peak and then falls to zero. For smaller H , as χ f increases
Im(k2) simply rolls over to zero.
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(a)

(b)

FIG. 2. For YIG, the eigenmode ratios |m+/M+| parametrized
by λ and μ0H for no mutual decay: (a) k1; (b) k2. Solid lines
indicate λ = 3300, with circles of increasing size indicating large
μ0H . Dashed lines indicates λ = 500, with triangles of increasing
size indicating large μ0H . Both vertical and horizontal scales are
dimensionless.

VIII. EIGENMODES AND EIGENWAVE VECTORS FOR PY

In the absence of a detailed knowledge of λ for Py, we
employ the same values 3300 and 500 as for YIG. For Py we
now show our results for the eigenmodes and the eigenvectors.
Although the mode ratios m+/M+ are complex, with the phase
relationship a measurable quantity, we present only |m+/M+|.
As for YIG we do this before presenting the normal modes kn

in order to facilitate interpretation of the modes. In general,
the results are very similar qualitatively to those for YIG, but
they differ in detail.

Figure 5(a) shows that for mode 1, m+/M+ is always
dominated by M+. Also, the dependence on λ involves a
crossover, depending on the value of χ f . Further, m+/M+
increases as H increases. We may think of this as a mostly

(a)

(b)

FIG. 3. For YIG the eigenvalues k1 vs λ with no mutual decay:
(a) Re(k1); (b) Im(k1). The vertical scales are in nm−1 and the
horizontal scales are dimensionless.

M mode. Figure 5(b) shows that mode 2 is more complex:
for χ f < 10−4 m+/M+ is dominated by M+, increasing λ

decreases m+/M+, and increasing H increases m+/M+. How-
ever, for χ f > 10−3 m+/M+ is dominated by m+, increasing
λ increases m+/M+, and increasing H has little effect on
m+/M+. For large enough χ f , we may think of this as a mostly
m mode.

The corresponding eigenvalues are given in Figs. 6 and 7.
Our convention is that imaginary parts are taken to be positive.
Figure 6(a) shows that Re(k1) vs χ f has a resonancelike shape.
With increasing λ, the peak position in Re(k1) decreases but
its peak value increases. With increasing H , both its peak po-
sition and peak value increase. Figure 6(b) shows that Im(k1)
vs χ f rolls over to zero for increasing χ f , for all λ and H . With
increasing λ the peak position in Im(k1) decreases but its peak
value increases. With increasing H , both its peak position
and peak value increase. The λ = 500, μ0H = 0.1 T peak
is much lower than for YIG. Figure 7(a) shows that Re(k2)
is nearly independent of H , and increases with increasing λ.
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(a)

(b)

FIG. 4. For YIG the eigenvalues k2 vs λ with no mutual decay:
(a) Re(k2); (b) Im(k2). The vertical scales are in nm−1 and the
horizontal scales are dimensionless.

Re(k2) is very small for small χ f , corresponding to a very
long spatial period of oscillation. For increasing χ f , Re(k2)
grows to values that correspond to a very short spatial period.
Figure 7(b) shows that Im(k2) vs χ f has a small constant
value, independent of H , but increases as χ f increases. As
χ f increases, for λ = 500 and μ0H = 10 T, Im(k2) goes to a
(small) peak and then falls to zero. For smaller H , Im(k2) rolls
over to zero. For λ = 3300 and all three H , Im(k2) rolls over
to zero.

IX. EXPERIMENTAL CONSIDERATIONS

We now consider two dc spin current experiments for
which the values of the longitudinal and transverse decay
lengths relative to sample thicknesses are relevant.

(a)

(b)

FIG. 5. For Py, the eigenmode ratios |m+/M+| parametrized by λ

and μ0H for no mutual decay: (a) k1; (b) k2. Solid lines indicate λ =
3300, with circles of increasing size indicating large μ0H . Dashed
lines indicates λ = 500, with triangles of increasing size indicating
large μ0H . Both vertical and horizontal scales are dimensionless.

A. Spin transfer in conductors

Shortly after Slonczewski’s proposal of spin transfer [8],
experiments using large applied currents established both spin
transfer and, for strong applied fields, spin-wave generation
[11]. Reference [11] used a multilayer of Co(10 nm)/Cu(6
nm)/Co(2.5 nm). Assuming that Co has properties similar to
those of Py, such a d = 6 nm sample thickness is near the
transverse decay length 7.1 nm of mode 1, but much larger
than the transverse decay length 2.4 nm of mode 2. Therefore,
although our above estimates for Py indicate that mode 2
decays significantly for d = 6 nm, mode 1 does not decay
significantly within that distance, so that all of the spin that
is transferred at the interface does not decay to the lattice,
and it can tip the net �M, as observed for large amplitude
currents.

For thicker samples and small currents, the net �M would
not appear to be tipped. We thus expect that, for sample
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(a)

(b)

FIG. 6. For Py the eigenvalues k1 vs λ with no mutual decay:
(a) Re(k1); (b) Im(k1). The vertical scales are in nm−1 and the
horizontal scales are dimensionless.

thicknesses exceeding both transverse decay lengths, spin
transfer will be more difficult to observe. For comparison,
Ref. [46] gives a room-temperature longitudinal decay length
for Co of 140 nm.

Note that Ref. [47] gives, for the alloy permalloy (Py) at
room temperature, a much shorter 3-nm longitudinal decay
length. Reference [48] gives a useful and general experimental
review, for metals and alloys, of spin-diffusion lengths and of
spin flip at metal/metal interfaces.

To summarize, if the three decay lengths satisfy lT 2 �
lT 1 � lL, then there are four regimes of longitudinal and trans-
verse behavior as a function of film thickness d , according
to which of the modes decay and which remain over the
distance d . Moreover, because these modes have complex
wave vectors, there will be oscillations in addition to decay,
thus complicating the interpretation.

(a)

(b)

FIG. 7. For Py the eigenvalues k2 vs λ with no mutual decay:
(a) Re(k2); (b) Im(k2). The vertical scales are in nm−1 and the
horizontal scales are dimensionless.

B. “Magnon-mediated” current drag in insulators

An effect called “magnon drag” was proposed by Zhang
and Zhang [14]. Consider a multilayer where spin-orbit active
normal metals NM sandwich a ferromagnet F (conductor or
insulator). By the spin Hall effect in NM1, a charge current
along the NM1 layer drives a spin current through F to NM2
(which could be the same as NM1), where by the inverse
spin Hall effect a charge current entering NM2 is generated
along the surface of NM2. The effect was predicted for
the spin-polarization direction of the spin current along the
magnetization in F, a longitudinal effect.

The effect indeed was observed for the insulator YIG for
thicknesses that likely were short compared to the longitudinal
spin decay length, but long compared to the transverse decay
lengths [15–17]. There, we expect the effect can be observed
only for longitudinal magnetization. However, for thinner
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FIG. 8. Proposed transverse “‘magnon drag” experiment. The
spin current is js along −y, and the polarization of the spin current in
the FI is denoted by σ , as is conventional in such experiments.

samples, the effect for transverse magnetization should also
occur.

Specifically, Ref. [15] used YIG thicknesses <5 μm and
for 3–50 μm; in addition to observing the predicted ef-
fect, they found a longitudinal decay length of about 9 μm.

(a)

(b)

FIG. 9. For YIG, the eigenvalues k vs τMm for mutual decay with
λ = 3300 and three values for χ f : (a) k1; (b) k2.

Reference [49] gives a longitudinal decay length at room tem-
perature for YIG of 10 μm. Reference [16] used the relatively
small YIG thickness of about 8 nm, and Ref. [17] used the
relatively large YIG thicknesses of 40, 60, 80, and 100 μm.
Given the uncertainty in χ f , it is not clear what the theory
predicts for the decay lengths of the modes; see Figs. 3(b)
and 4(b).

In addition to the longitudinal magnon drag effect, for
sample thicknesses that do not exceed the transverse decay
lengths, the present theory indicates that there should be a
transverse magnon drag effect, indicated in Fig. 8. By the
spin Hall effect an applied �E in top layer N1 drives a spin
Hall current js, spin polarized with �σ ≡ �m along z, into the
insulating F1, whose �M is along x. Hence, the spin current
is transverse to �M. By bulk irreversible thermodynamics, if
the sample is thinner than the transverse decay lengths, which
from Figs. 3(b) and 4(b) we estimate to be of order 2–10 nm,
then the spin current will reach the FI/N2 interface. By sur-
face irreversible thermodynamics, a spin current then will be

(a)

(b)

FIG. 10. For Py, the eigenvalues k vs τMm for mutual decay with
λ = 3300 and three values for χ f : (a) k1; (b) k2.
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“pumped” across the FI/N2 interface (spin convertance). For
this dc case, “coherent” �M × d �M/dt based theories predict
zero spin transfer current js from F to N2.

X. IMPLICATIONS

This work shows that, except perhaps for very small sample
thicknesses, the response of a ferromagnet to a transverse
spin current does not simply consist of a redefined axis for
the magnetization. A recently studied ferromagnetic insulator
(FI) might provide a useful example. We refer to a study
of the spin Seebeck effect (temperature gradient producing a
spin current) and spin transfer torque by magnons [50]. This
work considers a FI/AF/FI sandwich subject to gradients in
both temperature and longitudinal spin chemical potential.
When the system thicknesses do not exceed the transverse
decay lengths discussed in this work, the transverse response
should be nontrivial. For such very short lengths, the theory
provides the appropriate number of parameters to interpret
experiments, even if the associated parameter values are not
known accurately.

We have not discussed an example of a semiconducting
magnet, where the length scales for both longitudinal and
transverse modes may be intermediate between the values for
conductors and insulators. Again, both transverse modes are
likely to be essential to describing the transverse response.

XI. SUMMARY AND CONCLUSIONS

We have studied the small-amplitude static transverse
modes of ferromagnets, both conducting and insulating. There
are four coupled transverse degrees of freedom and the

corresponding modes, which are excited according to the
boundary conditions. For the spin accumulation �m, these
are spin currents across the interface both conserved and
proportional to the difference across the interface in the spin
chemical potential, and for the magnetization �M these are the
usual micromagnetic boundary conditions, which may include
an exchange coupling between adjacent materials.

This transverse response has broad implications for spin-
tronics at the nanoscale. There, even for conducting magnets,
the system dimensions can be small enough that the transverse
mode characteristic lengths are long enough that their effect
cannot be interpreted as a phenomenon that occurs almost
immediately at the surface.
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APPENDIX

Use of (27) and (28) permits us to include the effect of
the mean-field exchange constant λ and of the cross decay
τmM on the real and imaginary parts of the wave vectors.
What follows is only exploratory, and therefore considers
only the case λ = 3300 and μ0H = 1 T. Figure 9 plots, for
YIG with χ f = 10−2, 10−4, 10−6 the eigenvalues k vs τMm.
Unfortunately, we know of no current experiments that yield
a value for τMm.

Figure 10 plots, for Py with χ f = 10−2, 10−4, 10−6 the
eigenvalues k vs τMm. The limit of negligible cross decay is
τMm → ∞. Unfortunately, we know of no current experiments
that yield a value for τMm.
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