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Microscopic origin of ferromagnetism in the trihalides CrCl3 and CrI3

Omar Besbes,1 Sergey Nikolaev,2 Noureddine Meskini,1 and Igor Solovyev2,3,*

1Faculty of Sciences, University Tunis El Manar, 2092 Tunis, Tunisia
2International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki,

Tsukuba, Ibaraki 305-0044, Japan
3Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Mira str. 19, 620002 Ekaterinburg, Russia

(Received 28 January 2019; published 27 March 2019)

Microscopic origin of the ferromagnetic (FM) exchange coupling in two Cr trihalides, CrCl3 and CrI3,
their common aspects and differences, are investigated on the basis of density functional theory combined
with realistic modeling approach for the analysis of interatomic exchange interactions. For these purposes, we
perform a comparative study based on the pseudopotential and linear muffin-tin orbital methods by treating
the effects of electron exchange and correlation in generalized gradient approximation (GGA) and local spin
density approximation (LSDA), respectively. The results of ordinary band structure calculations are used in
order to construct the minimal tight-binding type models describing the behavior of the magnetic Cr 3d and
ligand p bands in the basis of localized Wannier functions, and evaluate the effective exchange coupling (Jeff )
between two Cr sublattices employing four different technique: (i) brute force total energy calculations; (ii) the
second-order Green’s function perturbation theory for infinitesimal spin rotations of the LSDA (GGA) potential
at the Cr sites; (iii) enforcement of the magnetic force theorem in order to treat both Cr and ligand spins on a
localized footing; and (iv) constrained total-energy calculations with an external field, treated in the framework
of self-consistent linear response theory. We argue that the ligand states play crucial role in the ferromagnetism
of Cr trihalides, though their contribution to Jeff strongly depends on additional assumptions, which are traced
back to the fundamentals of adiabatic spin dynamics. Particularly, by neglecting the ligand spins in the Green’s
function method, Jeff can easily become antiferromagnetic, while by treating them as localized, one can severely
overestimate the FM coupling. The best considered approach is based on the constraint method, where the
ligand states are allowed to relax in response to each instantaneous reorientation of the Cr spins, controlled by
a constraining field. Furthermore, the differences of the electronic structure of Cr trihalides in GGA and LSDA,
and their impact on the exchange coupling are discussed in details, as well as the possible roles played by the
on-site Coulomb repulsion U .
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I. INTRODUCTION

Cr trihalides, CrX3 (where X = Cl, Br, or I), and other van
der Waals compounds with the rhombohedral structure have
recently attracted much attention due to discovery of two-
dimensional (2D) ferromagnetism [1,2], which has tremen-
dous importance for the development of ultracompact spin-
tronic devices. Furthermore, there is a general fundamental
interest in the microscopic origin of this phenomenon. Ba-
sically, there are two main questions: (i) the existence of
ferromagnetic (or any other long-range magnetic) order at
finite temperatures in the 2D case, which formally contradicts
to Mermin-Wagner theorem [3]; and (ii) the origin of ferro-
magnetic (FM) interactions themselves. The first restriction is
known to be removed by anisotropic interactions [4], as was
recently confirmed for van der Waals magnets [1,5–7]. Re-
garding the second issue, the ferromagnetism of Cr trihalides
is basically a bulk property. For instance, bulk samples of
CrBr3 and CrI3 are known to be ferromagnetic with the Curie
temperature of 33 and 68 K, respectively [8,9], while CrCl3 is
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a layered antiferromagnet (i.e., also consisting of FM layers)
with the Néel temperature of 17 K [9].

Then, why are Cr trihalides ferromagnetic? An easy an-
swer would be the following: Cr is trivalent, located in the
octahedral environment, and the Cr-X -Cr angle is close to
90◦. Therefore the Cr-Cr coupling is expected to be ferro-
magnetic according to the Goodenough-Kanamori-Anderson
(GKA) rules [10], mainly due to the intraatomic exchange
interaction responsible for Hund’s first rule at the ligand (X )
sites. However, the GKA rule for the 90◦ exchange is not very
conclusive, as it relies on specific paths and processes for
the exchange coupling, while in reality there can be several
competing mechanisms supporting either ferromagnetism or
antiferromagnetism, so that the final answer strongly depends
on the ratio of relevant physical parameters [11]. In fact,
Kanamori himself admitted that there are exceptions from
this rule in the 90◦ case [10], and in our work we will show
that the exchange coupling in Cr trihalides can easily become
antiferromagnetic, depending on the considered model.

Another important issue is how these GKA rules work in
practical first-principles calculations based on density func-
tional theory (DFT), and how to map properly this or any
other theory of interacting electrons onto an effective spin
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model and not to lose the contributions that can be responsible
for the GKA rules [12–15]. The problem is indeed very
complex and there are many tricky issues in it. Particularly,
the mapping onto the spin model frequently assumes the local
character of exchange-correlation (xc) interactions, following
a similar concept of local spin density approximation (LSDA),
which often supplements DFT calculations and is also “local.”
However, the main FM mechanism of the 90◦ exchange is
basically nonlocal: the magnetic 3d states spread from two Cr
sites to the neighboring ligand site and there interact via the
Hund’s rule coupling [10], which has the same origin as the
canonical direct exchange interaction proposed by Heisenberg
almost a centaury ago [16]. In this respect, it is interesting
to note that CrBr3 was indeed regarded as a rare example of
materials (together with CrO2) where ferromagnetism arises
from the direct exchange interaction [17].

There is a rather common tendency in electronic structure
calculations: if (typically due to additional approximations)
such calculations underestimate the FM coupling, the missing
effect is ascribed to the direct exchange [15,18,19]. Neverthe-
less, this step looks somewhat irrational, because, in principle,
the effect of direct exchange interactions is already included
in LSDA, which is used as a starting point for many electronic
structure calculations, even despite being formally “local.”
Furthermore, LSDA also includes the important effects of
screening for the direct exchange interactions due to electron
correlations. Indeed, the xc energy in LSDA is given by

ELSDA
xc [n, m] =

∫
drn(r)εxc[n(r), |m(r)|] (1)

(n and m being the total electron and spin magnetization
density, respectively). Thus, at each point, the xc energy is
given by n and m at the same point, which is the definition
of locality of the LSDA functional. However, n and m can be
equivalently expanded in terms of a complete set of localized
Wannier functions for the occupied states [20]. In this repre-
sentation, m(r) is the sum of Wannier function contributions
coming from different magnetic sites. Therefore, although
ELSDA

xc is local with respect to the total magnetization density,
it includes nonlocal effects caused by the overlap of individual
contributions to m centered at different magnetic sites in the
Wannier representation.

In this work, we will address this problem in details
by considering two characteristic examples of Cr trihalides:
CrCl3 and CrI3. Particularly, how should one calculate the
interatomic exchange interactions within DFT in order to take
into account all relevant processes, responsible for the FM
coupling in the 90◦ case? To this end, we will argue that it may
not be enough to consider the reorientation of only transition-
metal spins (for instance, within the commonly used Green’s
function perturbative approach for infinitesimal spin rotations
[12]), as there is a large contribution to the exchange energy
associated with the ligand sites [21], which should also be
taken into account. Nevertheless, it does not automatically
guarantee the “right” solution of the problem because the
answer strongly depends on how the ligand spins are treated,
tracing back to the fundamentals of adiabatic spin dynamics.
For instance, by enforcing the magnetic force theorem in
order to treat the Cr and ligand spins on the same localized
footing, one can severely overestimate the FM coupling. It

FIG. 1. Fragment of the crystal structure of CrCl3. The Cr and
Cl atoms are denoted by large and small spheres respectively. The Cr
atoms belonging to different sublattices are shown by different colors
and numbered as “I” and “II.”

turns out that the best considered approach is to fully relax
the ligand states for each instantaneous configuration of the
Cr spins: it correctly describes the FM coupling, both in
CrCl3 and CrI3, and yields the effective exchange coupling
constant comparable with results of brute force total energy
calculations. We will show how this problem can be efficiently
solved in the framework of self-consistent linear response
theory [22].

The rest of the paper is organized as follows. In Sec. II,
we will describe our method based on the construction and
analysis of the minimal tight-binding type models for the
Cr 3d and ligand p bands of CrCl3 and CrI3 in the ba-
sis of localized Wannier functions. All our calculations are
based on either LSDA or generalized gradient approximation
(GGA) as implemented in, respectively, the linear muffin-
tin orbital (LMTO) and pseudopotential QUANTUM ESPRESSO

(QE) methods. The on-site Coulomb repulsion U should not
play a decisive role in the origin of ferromagnetism in Cr
trihalides, as argued in Appendix A. Then, in Sec. III, we will
consider different approaches for calculations of the effec-
tive intersublattice exchange coupling: the Green’s function
technique (Sec. III A), magnetic force theorem (Sec. III B),
and constrained calculations with an external magnetic field
(Sec. III C). Finally, in Sec. IV, we will give a brief summary
on our work.

II. METHOD

We use the R3 structure for both CrCl3 and CrI3 (shown in
Fig. 1) with the experimental parameters reported in Refs. [23]
and [24], respectively. As for the electronic structure cal-
culations, we perform a comparative study based on the
LMTO method in the atomic-spheres approximation (ASA)
[25] and the pseudopotential QE method realized in the plane-
wave basis [26]. Furthermore, all LMTO calculations have
been performed in LSDA, while in QE we employed the
generalized gradient approximation (GGA) with the Perdew-
Burke-Ernzerhof exchange-correlation (xc) functional [27].
We use the mesh of 8 × 8 × 8 (10 × 10 × 10) k points in
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FIG. 2. Total and partial densities of states of CrCl3 (left) and CrI3 (right) as obtained in the LMTO (top) and QE (bottom) methods,
supplemented with LSDA and GGA, respectively. The shaded area shows contributions of the Cr 3d states. Positions of the main bands are
indicated by symbols. The Fermi level is at zero energy (shown by dot-dashed line).

the Brillouin zone in the case of QE (LMTO) and the energy
cutoff of 110 Ry in the QE calculations.

Corresponding electronic structure, obtained for the FM
state, is shown in Fig. 2. Owing to the octahedral environment
of the Cr sites, the magnetic 3d states are split into the low-
lying t2g (t) and high-lying eg (e) groups. In CrCl3, the Cr
3d bands are well separated from the Cl 3p one, so that even
for the majority (↑) spin channel there is a finite gap between
these two groups of bands. Therefore, in this case, one can
consider two types of models: the dp one, which explicitly
includes the 3d states of Cr as well as the p states of the
ligand atoms, and the pure d one, consisting only of the Cr
3d states. Nevertheless, in CrI3, due to the additional upward
shift of the I 5p states, the ↑-spin Cr t2g band merges into the
I 5p one. Therefore, in this case we are able to consider only
the more general dp model. The electronic structure of CrCl3

and CrI3 obtained in the QE method is in excellent agreement
with the results of previous GGA calculations [28]. The dif-
ferences between the LMTO and QE results will be discussed
below.

Next, we construct the Wannier functions spanning the
subspace of the Cr 3d and ligand p bands and define the model
tight-binding dp Hamiltonian, Ĥ↑,↓ = [Hab

i j ]↑,↓, separately
for the majority (↑) and minority (↓) spin states, as the matrix

elements of the original LSDA (GGA) Hamiltonian in the
basis of Wannier functions, which are numbered by indices
a and b at sites i and j. In order to construct the Wannier
functions, we use the projector operator method and the
maximally localized Wannier functions (MLWF) technique
(implemented in the WANNIER90 package) in the case of,
respectively, LMTO and QE [14,20,29]. For the trial orbitals
in LMTO we use basis functions for the Cr 3d and ligand p
states. The completeness of the Wannier basis guarantees that
the obtained band structure in the region of the Cr 3d and
ligand p bands fully coincides with the original LSDA (GGA)
one. After that, the d model for CrCl3 was constructed by
starting from the dp model and eliminating the Cr 3p band by
means of the projector operator technique, both in the LMTO
and QE methods.

It is true that the construction of the Wannier functions is
not unique, so that, in principle, the matrix elements of the
tight-binding Hamiltonian and Green’s function depend on
the choice of the Wannier basis. In this respect, we would
like to note that the definition of the ligand states themselves
always depend on the basis. Therefore the issue is very general
and not limited to our work. In practice, however, such basis
dependence can be minimized by considering the following
steps. (i) The Wannier functions are always chosen so as to
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FIG. 3. Atomic level splitting in the dp model for CrCl3 (top) and CrI3 (bottom) as obtained in the LMTO method and maximally localized
Wannier functions (MLWF) technique, based on the QE method: [(a) and (c)] Cr 3d states and [(b) and (d)] ligand p states. The majority and
minority spin states are denoted by red (light) and blue (dark) colors, respectively.

reproduce the physical bands (the ligand p and Cr 3d bands
in the case of the pd model and the Cr 3d bands alone in the
case of d one). These bands carry distinct magnetic properties,
which can be described in the Wannier basis. Therefore, from
this point of view, the construction is totally legitimate. (ii)
The Wannier functions reproduce the contributions of the tar-
get bands to the electron and spin magnetization densities, and
this property is again exact [20]. Furthermore, each Wannier
function consists of a “head” located at some central site
and “tails” spreading to all neighboring sites. Therefore the
Wannier function can be associated with the certain atomic
site indicating the position of its “head.” Then, the arbitrari-
ness with the choice of the Wannier functions can be largely
removed by maximizing their “heads” and minimizing the
“tails.” This is achieved by the maximal localization proce-
dure in the case of QE and the proper choice of the trial wave
functions in the case of LMTO. Ideally, each such Wannier
function will have a large head at the central site and only
small tails, which are necessary to fulfill the orthonormality
condition [20]. The corresponding degree of localization can
be assessed by monitoring the interatomic matrix elements
of the tight-binding Hamiltonian, which should rapidly decay
in space. For these purposes, it is especially important to
perform a comparative analysis based on two different tech-
niques, such as QE and LMTO. Finally, the localized Wannier
functions are also used to calculate the local properties, such
as local magnetic moments associated with different atomic
sites, which are used in constraint calculations.

The atomic level splitting, which is obtained by diago-
nalizing the site-diagonal part of Ĥ↑,↓, is shown in Fig. 3.

The ↑-↓ spin splitting of the Cr 3d states, driven by the
xc interactions in LSDA (GGA), is larger than the t2g-eg

crystal-field splitting within each projection of spin. In the
ASA-LMTO method, the ↑-↓ level splitting is nearly rigid and
well described by the phenomenological expression ICrMCr,
where ICr ≈ 0.85 eV is the Stoner parameter and MCr = 3μB

is the local spin moment of Cr3+, as expected in LSDA [30].
In the QE (MLWF) method, however, this simple picture is no
longer valid and there is an additional splitting between the
t2g and eg orbitals, which also depends on spin. Particularly,
the t2g-eg splitting for spin ↓ is substantially smaller than that
for spin ↑, which reflects similar behavior of the density of
states in Fig. 2. Nevertheless, this is to be expected because
the QE method takes into account the asphericity of the
Kohn-Sham potential [31], which is totally ignored in ASA.
Furthermore, this asphericity is additionally amplified in GGA
(in comparison with LSDA). The spin splitting of the ligand
p levels is small in comparison with the crystal field splitting
within each projection of spin. The latter effect is again larger
in the QE calculations.

Figure 4 shows the behavior of the averaged transfer in-
tegrals, t̄i j =

√∑
ab Hab

i j Hba
ji , for CrCl3. Despite a substantial

difference in the details of QE and LMTO calculations, the ob-
tained parameters are very similar in two considered methods.
The transfer integrals around the Cr sites are basically lim-
ited to the neighboring Cr-Cl and Cr-Cr bonds. The transfer
integrals around the ligand sites involve more ligand-ligand
bonds. Nevertheless, all transfer integrals are short-ranged
and practically vanish at the distance d ∼ 4.5 Å. Very similar
tendency was found for CrI3, which is not shown here.
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FIG. 4. Distance dependence of the averaged transfer integrals around the Cr and Cl sites in the dp model for CrCl3 as obtained in the
LMTO method and maximally localized Wannier functions (MLWF) technique based on the QE method.

Parameters of the d model for CrCl3 are summarized in
Fig. 5. The elimination of the Cl 3p bands considerably
increases the crystal-field splitting between the t2g and eg

orbitals, being consistent with an old conjecture by Kamanori
that the 10Dq splitting results mainly from the hybridization
of the transition-metal 3d states with the ligand p states [32].
Nevertheless, the structure of the atomic Cr 3d levels remains
quite different in LMTO and QE (MLWF). As we shall see
below, this difference strongly affects the behavior of nearest-
neighbor (nn) exchange interactions. As expected, the transfer
integrals become more long-ranged in comparison with the
ones in the dp model [33]. However, in all other respects,
their behavior is very similar in LMTO and QE. We consider
this agreement as very encouraging. It clearly shows that two
different techniques, based on different strategies and starting
conditions for the construction of the Wannier functions, are
able to produce a similar dependence of interatomic matrix
elements of the tight-binding Hamiltonian. Thus we believe
that we have been able to minimize the effect of the basis
dependence of the model Hamiltonian and can now address
the intrinsic magnetic properties of CrCl3 and CrI3, which will
be considered in the next section.

III. MAGNETIC INTERACTIONS

In this section, we explore the abilities of different models
and techniques for the evaluation of interatomic exchange
interactions in CrCl3 and CrI3. Our ultimate goal is to elu-
cidate the microscopic origin of the FM coupling in these
compounds and we will show that the problem is indeed very
nontrivial. The basic idea is to map the total energy difference

associated with the reorientation of the Cr spins onto the
model

HS = −1

2

∑
i j

J jei · ei+ j, (2)

where ei is the direction of spin at site i, and Jj is the
corresponding exchange coupling between (central) site i and
the one located at the lattice point i + j. Unless specified
otherwise, we will concentrate on the behavior of the effective
coupling between two Cr sublattices I and II (see Fig. 6):
Jeff = ∑

j∈II Jj (provided that the central site belongs to sub-
lattice I). If interactions with other Cr sites, except the nn ones,
are negligibly small, we will have a trivial relation Jeff ≈ J1,
which holds approximately for CrCl3 and CrI3.

The most straightforward estimate for Jeff is to use the
total energy difference between the antiferromagnetic (AFM)
and FM states in the QE method, �E = EAFM − EFM, which
yields 21.35 and 34.93 meV per one formula unit of CrCl3 and
CrI3, respectively, corresponding to Jeff = �E/3 = 7.12 and
11.64 meV. Nevertheless, we would like to emphasize here
that this brute force total energy mapping onto the Heisenberg
model (2) is quite different from other techniques, which will
be used below for the evaluation of Jeff and which are based
on the calculations of the second derivative of the total energy
with respect to the infinitesimal rotations of spins near the FM
state. Formally speaking, only the energies of infinitesimal
rotations of spins can be rigorously mapped onto the model (2)
[12], being a more general property of the perturbation theory
for the energy, which can be presented as a sum of pairwise
interactions [34]. The finite energy difference between the FM
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FIG. 5. Results of the d model for CrCl3 as obtained in QE and LMTO methods (see text for details of the construction of the model):
(a) atomic level splitting of the Cr 3d states and (b) distance dependence of averaged transfer integrals around Cr sites.

and AFM states does not hold this property. Furthermore, the
scopes of applicability of these two methods can be also quite
different: while the finite energy difference indicates at the rel-
ative stability of two (and more) collinear magnetic states, the
second derivative is the measure of the local stability of each
magnetic state with respect to the noncollinear excitations of
the spin-wave type [12,35]. In this respect, it is needless to
say that there are extreme examples when the reorientation of

FIG. 6. Notations of exchange interactions in CrCl3 and CrI3 up
to six nearest neighbors. Atoms belonging to different Cr sublattices
are denoted by different colors.

spins leads to a dramatic change of the electronic structure
and the corresponding exchange interactions, which cannot
be described by the finite energy difference between collinear
magnetic states [36]. Nevertheless, in most cases, the finite
energy difference can still be used for the semiquantitative
estimate of Jeff , especially in such systems as CrCl3 and CrI3,
where the behavior of interatomic exchange interactions is not
complicated by other factors such as orbital and/or charge
ordering. Particularly, �E clearly indicates that the coupling
is indeed ferromagnetic and stronger in the case of CrI3, and
this result can be used as a reference for other models and
approximations.

A. Green’s function method

The first model we consider is based on the Green’s
function method [12]. The main idea here is to define the
xc field b̂i = (0, 0, b̂

z
i ), associated with an arbitrary site i,

where b̂
z
i = Ĥ↑

ii − Ĥ↓
ii , and consider the energy change caused

by infinitesimal rotations of this field, b̂i → b̂i = (θi, 0, 1 −
θ2

i /2)b̂
z
i (θi being the azimuthal angle), as a perturbation.

Then, to second order in θ , the corresponding energy change
will be given by Eq. (2) with the parameters

Ji = 1

2π
Im

∫ εF

−∞
dε TrL

{
b̂

z
0Ĝ↑

0i(ε)b̂
z
i Ĝ

↓
i0(ε)

}
, (3)

where Ĝ↑,↓
0i (ε) = [ε − Ĥ↑,↓]−1

0i is the one-electron Green
function between sites 0 and i, εF is the Fermi energy, and
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TABLE I. Nearest-neighbor exchange interaction (J1, in meV) in
the dp model for CrCl3 and CrI3 as obtained in the Green’s function
method for infinitesimal rotations of the Cr 3d spins (results of the
d model for CrCl3 are shown for comparison in parentheses). The
model was constructed in the LMTO method and using maximally
localized Wannier functions technique (MLWF) in the QE method.

CrCl3 CrI3

MLWF −1.63 (−2.75) 2.37
LMTO 4.07 ( 2.47) 2.98

TrL denotes the trace over orbital indices [12]. Importantly,
Eq. (3) describes the change of single-particle (Kohn-Sham)
energies for the occupied states, while other contributions
to the total energy are supposed to cancel out to second
order in θ as a result of the magnetic force theorem [12].
This technique is widely used in the LMTO method where,
owing to the pseudoatomic basis, one can easily define local
magnetic moments at each site. The advantage of the Wannier
basis is that it allows us to transfer this technique to other
methods, including those originally formulated in the basis of
plane waves, as in the QE method.

In principle, Eq. (3) can also be used for the calculation
of the exchange coupling between the Cr and ligand sites.
Nevertheless, we begin here with the standard procedure and
employ this equation only for the Cr-Cr interactions, while
assuming that the main role of the intermediate ligand states
is to assist these interactions by connecting two Cr sites. The
results of these calculations for J1 are summarized in Table I.

The LMTO and QE methods provide quite consistent
description for J1 in the case of CrI3, where the FM character
of this interaction is consistent with experimental data. Never-
theless, the situation is totally different in CrCl3, where even
the sign of J1 is different in LMTO and QE, thus putting the
latter data in clear disagreement with the experiment. This is
the first puzzle we need to solve and below we will argue that
such behavior is related to the electronic structure of CrCl3

and CrI3 in LMTO and QE.
Since the dp and d models provide qualitatively similar

results and encounter the same problem for CrCl3 (J1 > 0 in
LMTO, while J1 < 0 in QE), it is convenient to start our anal-
ysis with the simplest d model. An analytical expression for
J1 can be found by employing superexchange theory [37,38],
which relies on additional approximations but provides some
insight into behavior of J1. It yields

J1 ≈
(

1

�
↑↑
te

− 1

�
↑↓
te

)
t2
te − 1

�
↑↓
tt

t2
tt , (4)

where t2
te = ∑

a∈t,b∈e (Hab
01 )

2
, t2

tt = ∑
a,b∈t (Hab

01 )
2
, and � is

the intra-atomic energy splitting between the t2g and either
eg (te) or t2g (tt) levels with the same (↑↑) or opposite (↑↓)
directions of spin. Then, it is clear that smaller �

↑↑
te and larger

�
↑↓
te in LMTO [see Fig. 5(a)] favor the FM coupling. On the

other hand, smaller �
↑↓
tt , also in LMTO, will tend to stabilize

the AFM coupling. However, since t2
tt < t2

te (t2
te = 0.044 eV2,

while t2
tt = 0.028 eV2, according to MLWF calculations),

the last term plays a less important role. These tendencies

clearly explain why J1 > 0 in LMTO, while J1 < 0 in QE.
One of the lessons learned from this analysis is that the FM
coupling in the d model can be stabilized only if �

↑↑
te is rela-

tively small. This is the main reason why the ferromagnetism
totally disappears, even in LMTO, if one tries to correct
this superexchange picture by adding the on-site Coulomb
repulsion, which additionally increases �

↑↑
te , as discussed in

Appendix A. Similar conclusion can be arrived by considering
the so-called “double exchange” (DE) contribution to J1,
obtained in the second-order expansion for Ĝ↓

i0(ε) with respect
to (b̂

z
0)−1 = (b̂

z
i )−1 in Eq. (3) [15,35], which yields

JDE
1 = 1

2π
Im

∫ εF

−∞
dε TrL{Ĝ↑

01(ε)Ĥ↓
10}. (5)

In comparison with Eq. (4), this expression takes into account
the contributions proportional to 1/�↑↑ and neglects the
contributions proportional to 1/�↑↓, assuming that the latter
are small. As expected [35], JDE

1 is ferromagnetic and can
be estimated in LMTO and QE as 18.85 and 16.23 meV,
respectively. Thus, we again clearly observe the excess of
ferromagnetism in the case of LMTO, which is closely related
to the structure of intraatomic level splitting.

Then, why does not this problem occur in CrI3? Regarding
the intraatomic level splitting, the situation is pretty much
similar in CrCl3 and CrI3 (see Fig. 3): in both cases, the
LMTO and QE methods provide two different schemes of
atomic level splitting (but with a clear similarity between
CrCl3 and CrI3, if one compares separately the results of
either LMTO or QE calculations). Nevertheless, the LMTO
and QE methods provide rather consistent description for
J1 in CrI3 (see Table I). The reason is again related to the
electronic structure of CrI3, which can be classified as the
charge-transfer insulator [39]: the ↑-spin I 5d and Cr 3d bands
strongly overlap so that these two groups of states become
entangled with each other (see Fig. 2). In such situation,
the distribution of the Cr 3d states over the energy, which
mainly controls the value of J1 in Eq. (3), is determined by
the dp hybridization, while the atomic level splitting is less
important. This naturally explains similarity of the LMTO and
QE data for CrI3.

In order to further elucidate the impact of the electronic
structure on interatomic exchange interactions in CrCl3 and
CrI3, it is instructive to consider the band-filling dependence
of J1, which is again calculated using Eq. (3), but varying the
position of the Fermi level (7).

In CrCl3, J1(ε) practically vanishes after integration over
the Cl 3p band, spreading from −5 to −1 eV (see Fig. 7), even
though there is a substantial variation of J1(ε) within the band.
Thus, the contribution of the Cl 3p band to J1 is small, that
justifies the use of the d model for these purposes, as was done
above. Then, in the QE method, the shape of J1(ε) in the Cr t2g

band (spreading from −1 to 0 eV) is nearly symmetric relative
to the band center so that the total contribution of this band to
J1 vanishes. This means that the FM and AFM interactions
originating from virtual excitations from the Cr t2g band to
unoccupied states cancel each other. In the LMTO method,
the shape of J1(ε) in the Cr t2g region is slightly deformed,
leading to some asymmetry, which is in turn responsible for
the appearance of uncompensated FM interactions, as was
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FIG. 7. Band-filling dependence of the nearest-neighbor exchange interaction in the case of CrCl3 (left) and CrI3 (right). The true Fermi
level, corresponding to the nominal number of valence electrons, is at zero energy (shown by dot-dashed line).

discussed above. In CrI3, however, the I 5p and Cr t2g states
form a common band. The magnetic interactions in this band
obey some general principles: namely, the ferromagnetism is
expected at the beginning and at the end of the band filling,
while the antiferromagnetism is expected in the middle of the
band filling [40,41]. Obviously, if the band were fully isolated,
we would have J1(εF) = 0. Nevertheless, the interaction with
unoccupied states makes it ferromagnetic, both in LMTO and
QE calculations.

Parameters of the main exchange interactions, spreading up
to six nearest neighbors (see Fig. 6), are reported in Table II.
One can see that the nn interaction clearly dominates, so
that Jeff ≈ J1 holds for CrCl3 and to lesser extent for CrI3.
Furthermore, using the obtained parameters Ji and employ-
ing Tyablikov’s random-phase approximation [42], the Curie
temperature for CrI3 can be estimates as 83 K, which is in fair
agreement with the experimental value of 68 K [9].

Summarizing this part, the Green’s function based expres-
sion, Eq. (3), correctly describes the FM coupling in CrI3,
but not in CrCl3. The FM character of exchange interactions
obtained for CrCl3 in the ASA-LMTO method is probably
fortuitous as it does not properly treat the asphericity of the
Kohn-Sham potential, as was demonstrated by more rigorous
full-potential QE calculations. Thus we are still missing some
important mechanism that stabilizes the FM ground state in
CrCl3 (and probably plays some role also in CrI3). In the
remaining part of this section, we will go beyond Eq. (3) for
the analysis of interatomic exchange interactions and argue

TABLE II. Parameters of the exchange interaction (in meV) as
obtained using the QE (MLWF) method, supplemented with the
Green’s function method for the infinitesimal rotations of the Cr 3d
spins. Notations of exchange interactions are shown in Fig. 6.

J1 J2 J3 J4 J5 J6

CrCl3 −1.63 −0.10 0.21 0.09 0.07 −0.28
CrI3 2.37 0.25 0.84 0.46 0.68 −0.26

that missing FM contributions are related to the ligand p
states, though the answer strongly depends on how these
contributions are treated.

B. Enforcement of the magnetic force theorem

First, we note that the expression (3) suffers from a sys-
tematic error: although it follows from the magnetic force
theorem, which allows us to replace the total energy change
by the change of single-particle energies, it formally violates
this theorem. The magnetic force theorem can be proven if
a certain rotation of the xc field b̂i → R

↔
θi b̂i rotates the spin

magnetization by the same angle: m̂i → R
↔

θi m̂i. Note that
in these notations, b̂i is the vector b̂i = (b̂

x
i , b̂

y
i , b̂

z
i ), where

each of its components is the matrix in the Wannier basis,
while R

↔
θi is the 3 × 3 tensor acting on b̂

x
i , b̂

y
i , and b̂

z
i . Then,

since the xc energy is invariant under spin rotations, the total
energy change is described by the single-particle part given
by Eq. (3) [43]. This property holds in LSDA, unrestricted
Hartree-Fock approximation, and for any xc functional sat-
isfying the condition of gauge invariance [43]. However,
the rotation b̂i → R

↔
θi b̂i (which is typically used in practical

calculations) does not necessarily lead to the rotation m̂i →
R
↔

θi m̂i. More specifically, considering an iterative process
inherent to solving the Kohn-Sham equations, the rotation
b̂i → R

↔
θi b̂i will indeed lead to the rotation m̂i → R

↔
θi m̂i at the

input of each iteration. However, at the output of the same
iteration, the magnetization will tend to relax to the ground
state configuration and additionally rotate away from R

↔
θi m̂i.

This problem was noticed, for instance, by Stocks et al. [44]
and considered in details by Bruno [45], who also proposed
to adjust the magnetization by applying a constraining field
fixing the direction of the spin magnetization along R

↔
θi m̂i for

a given rotation of the xc field, b̂i → R
↔

θi b̂i. Below, we closely
follow this strategy, also using for these purposes the linear
response theory [22].
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FIG. 8. Magnetic geometries used in calculations of the effective
exchange coupling between Cr sublattices. (a) The Cr spins were
rotated “antiferromagnetically” by θ and −θ (θ being the azimuthal
angle). (b) The spins were rotated “ferromagnetically” by the same
angle θ in both sublattices. The ligand spins were fixed to have the
same directions and values as in the ferromagnetic state.

Namely, let �b be the column vector composed of b̂i at
different sites of the unit cell (including ligands), (�b)T =
( . . . , b̂i, . . . ), and �m be a similar vector for the
magnetization. Then, knowing the x component ( �mx )T =
( . . . , θim̂

z
i , . . . ) of the rotated magnetization, one

can find the constraining field �h = (�hx, 0, 0), which re-
produces �mx, using the linear response theory as �hx =
[(R↑↓)

−1 + (R↓↑)
−1

] �mx − �bx, where R↑↓ and R↓↑ are the
matrix elements of the response tensor, whose explicit expres-
sion can be found in Ref. [22]. Note, that throughout this work
we use the notations where the spin magnetization is related
to the density matrix n̂ as m̂ = TrS{σ̂n̂} (σ̂ being the vector
of Pauli matrices and TrS being the trace over spin variables)
and the magnetic field (both constraining and xc one) enters
the Kohn-Sham equations as 1

2 ĥ · σ̂, which holds at each site
of the system.

Using �h and �b, one can calculate the total energy corre-
sponding to the “rotated” configuration of spins as is typically

TABLE III. Parameters of the effective exchange coupling (in
meV) as obtained using the QE (MLWF) method and Eq. (6) for
the energies of infinitesimal rotations of spins, which enforces the
magnetic force theorem. JA

eff and JF
eff are the values obtained for the

antiferromagnetic and ferromagnetic rotations of spins in two Cr
sublattices, as shown in Figs. 8(a) and 8(b), respectively, and Jeff =
JA

eff − JF
eff is the total coupling. The results of LMTO calculations are

shown in parentheses for comparison.

JA
eff JF

eff Jeff

CrCl3 207.74 (286.10) 95.98 (145.11) 111.76 (140.99)
CrI3 193.23 (203.14) 124.63 (144.78) 68.60 (58.36)

done in the constraint method:

E ( �m) = Esp(�b + �h) − 1
2 TrL{�h · �m}, (6)

where Esp(�b + �h) is the sum of the occupied Kohn-Sham
energies calculated for the field �b + �h, and �h · �m stands for the
dot product of two vectors with the summation over atomic
sites. For �h = 0, Eq. (6) is reduced to Eq. (3).

In order to obtain Jeff , we first consider the magnetic
configuration shown in Fig. 8(a), where the spins in two Cr
sublattices are rotated by θ and −θ relative to the FM axis z.
The corresponding energy (per one unit cell including two Cr
sites) is denoted as E (θ,−θ ).

We call these rotations “antiferromagnetic,” referring to the
alignment of transversal components of the rotated spins. The
corresponding exchange coupling can be evaluated as

JA
eff = 1

3

∂2E (θ,−θ )

∂ (2θ )2
, (7)

where the prefactor 1/3 takes into account three nn bonds in
the xy plane. The obtained energies are shown in Fig. 9 and
the corresponding parameters are summarized in Table III.

FIG. 9. Results of constraint calculations for the energies (per two formula units) of canted spin configurations, as obtained in the QE
(MLWF) method for CrCl3 (left) and CrI3 (right). The “rigid” constraint is based on Eq. (6), where the magnetization density is constrained at
all sites, including the ligands, in order to fulfill the magnetic force theorem. “A” and “F” correspond to the antiferromagnetic and ferromagnetic
rotations of the Cr spins, as shown in Figs. 8(a) and 8(b), respectively, and “total” is the difference of A and F. The “soft” constraint is based
on Eq. (11), where the directions of spins are controlled by the external field applied only at the Cr sites. The calculated values are shown by
symbols, while the interpolation E = 6Jeffθ

2 is shown by solid curves.
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TABLE IV. Local magnetic moments (in μB) at the Cr and ligand
sites as obtained for the dp model in the QE (MLWF) method. Re-
sults of LMTO calculations are shown in parenthesis for comparison.

Cr ligand

CrCl3 2.951 (3.145) 0.016 (−0.048)
CrI3 3.105 (3.370) −0.035 (−0.123)

The constrained energy reveals a perfect quadratic depen-
dence on the angle θ . Moreover, after enforcing the magnetic
force theorem, Eq. (6) correctly reproduces the FM coupling
for both CrI3 and CrCl3. However, the value of this coupling is
too large compared to typical energies of magnetic excitations
in transition-metal oxides and related compounds.

In the following, we will show that the reason is related to
a very fundamental problem of how to treat the contribution
of ligand sites to the exchange coupling between the Cr sites.
Indeed, the dp hybridization induces a feasible magnetization
at the ligand sites (Table IV).

The difference between the QE (MLWF) and LMTO data
are quite expected: the values of local magnetic moments
depend on the crystal-field splitting, which is very different in
QE and LMTO, as was discussed above (see Fig. 3). Neverthe-
less, the QE and LMTO data show the same tendency: the Cr
moment increases from CrCl3 to CrI3 (due to the increase of
dp hybridization and overlap of the I 5p and Cr 3d bands), and
this change is compensated by the ligand sites so as to keep the
total moment equal to 3 μB in both FM semiconductors CrCl3

and CrI3. Of course, Jeff may depend on the magnetization at
the ligand sites. Nevertheless, one should clearly understand
how this magnetization is treated and what is the relevant
physical picture behind Eq. (6). In this respect, we would like
to note that, in order to use the magnetic force theorem, the
constraining field should be applied at all sites of the system,
including the ligand ones. Therefore Eq. (6) implies that the
directions of the ligand spins are also rigidly fixed and there
is no conceptual difference between the Cr and ligand spins:
both groups of spins are treated as localized in the sense that
the rotation of the Cr spins has absolutely no effect on the
ligand spins and vice versa. Moreover, Fig. 8(a) implies that
the directions of the ligand spins are fixed to be the same
as in the FM state. Certainly, this is an approximation and
apparently very crude one.

The simplest correction to JA
eff can be obtained by noting

that, besides the interaction between the Cr spins, it also
includes the interaction with the FM background of the ligand
spins. The latter can be corrected by considering the “ferro-
magnetic” rotations, where the spins in both Cr sublattices are
rotated by the same angle θ [Fig. 8(b)]. The corresponding
parameter JF

eff = 1
3

∂2E (θ,θ )
∂ (2θ )2 describes the interaction with the

FM background of the ligand spins, and the proper coupling
between the Cr spins can be found as Jeff = JA

eff − JF
eff . All

these parameters are listed in Table III. One can see that
the interaction JF

eff is indeed very strong and substantially
reduces the total value of Jeff . Nevertheless, the absolute
values of Jeff ∼ 100 meV are still much too high from the
viewpoint of magnetic excitation energies, meaning that we
can be facing another serious problem and the magnetic

excitations described by Eq. (6) may be not the lowest energy
ones.

C. Constrained calculations with the external field

Then, what is wrong and what is missing in the corrected
Green’s function theory, described by Eq. (6)? In this respect,
it is important to recall that the theory of spin dynamics, un-
derlying Eqs. (3) and (6), is based on the so-called adiabaticity
concept [46,47], which states that one can distinguish two
types of variables, slow magnetic and fast electronic, so that
for each instantaneous magnetic configuration the electronic
variables have sufficient time to relax and reach equilibrium.
In practical terms, this means that for each constraining
field, which controls the direction of the magnetization, one
should solve self-consistently the set of Kohn-Sham equations
and calculate the total energies, which then can be used
for the description of low-energy magnetic excitations. This
property is implied in derivation of Eqs. (3) and (6), where
the total energies are additionally replaced by the sum of
Kohn-Sham energies, owing to the magnetic force theorem.
Then, it is clear that the magnetization at the Cr sites, to
a good approximation, can be treated as a “slow” variable.
However, what is the nature of the ligand states? Should they
be treated as “slow” magnetic or “fast” electronic variables?
The question is rather nontrivial. On the one hand, the ligand
magnetization is induced by the Cr one by means of the dp
hybridization. From this point of view, it can be viewed as
an “electronic” variable. On the other hand, since it is a part
of the total magnetization, it is always tempting to treat it on
the same footing as its Cr counterpart, i.e., as the “magnetic”
variable. This is precisely what was done in Eq. (6), where we
rigidly constrained the direction of the magnetization at all
sites of the system, including the ligand ones. Furthermore,
�h in Eq. (6) has a matrix form in the subspace of orbital
variables, which is required in order to constrain a similar
matrix of the magnetization density �m. This is certainly a
very strong constraint imposed on the magnetic system. In
reality, however, we do not need to constrain all matrix
elements of �m. What we need is to fix only the directions of
the magnetic moment, Mi = TrL{m̂i}, while other constraints
can be released. This is also related to how we view the
adiabaticity concept. Eq. (6) implies that all variables of �m
are slow and magnetic, while the reality can be different: only
ei = M i/|Mi| are slow variables, while other elements of �m
are fast and have sufficient time to adjust to an instantaneous
change of ei.

Therefore, as the next step, we explore the opposite strat-
egy by assuming that all magnetic variables are restricted by
the Cr sites, while the ligand magnetization simply follows
the Cr one as any other electronic variable. Namely, like
in the constraint formalism, we rotate the Cr spins by applying
the external field �h = (�hx, 0, 0). The rotated configuration of
the Cr spins is the same as in Fig. 8(a). However, now this field
acts only at the Cr sites. Furthermore, each ĥi is constant in the
space of orbital variables, hab

i = hiδ
ab (δad being Kronecker

delta), and acts only at Mi, while other degrees of freedom are
found from the self-consistent solution of Kohn-Sham equa-
tions. In principle, this is a well known numerical technique,
which is widely used in electronic structure calculations
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TABLE V. Parameters of the effective exchange coupling (in
meV) as obtained using the QE (MLWF) method and Eq. (11) for
the constrained energies obtained as a self-consistent response to the
external field applied at the Cr sites.

Jeff

CrCl3 27.71
CrI3 41.55

[44,48]. In this work, we propose an analytical solution of this
problem based on the self-consistent linear response theory
[22], which allows us to find the self-consistent xc field �b
to first order in �h, the corresponding magnetization �m, and
the total energy to second order in �h, which are sufficient to
evaluate Jeff .

First, we approximate the xc energy in LSDA (GGA) as
[30]

Exc = −1

4

∑
i

TrL{m̂i Î im̂i}, (8)

where Î i is taken in the matrix form in order to describe
asphericity of the xc potential. The corresponding xc field,
b̂i = 2δExc/δm̂i, at site i is given by

b̂i = − 1
2 (m̂i Î i + Î im̂i ). (9)

By applying this equation for b̂
z
i and m̂z

i , obtained in collinear
calculations for the FM state, one can find the Stoner matrix
Î i (see Appendix B). We need this step in order to include the
self-consistency effects for noncollinear magnetic structures,
like the one shown in Fig. 8(a). Namely, by introducing the
rank-4 tensor I = [Iabcd ] with Iabcd = − 1

2 (Ibcδad + Iadδbc),

Eq. (9) can be rewritten in the compact form �b = I �m, which
implies summation over last two indices of I and both indices
of �m. Then, the change of the xc field caused by �h can be
found as [22]

δ�bα = ([1 − IRα]−1 − 1)�hα, (10)

where Rα is related to spin-dependent elements of the
response tensor as Rx = Ry = 1

2 (R↑↓ + R↓↑) and Rz =
1
2 (R↑↑ − R↓↓) [22]. Then, using �h and δ�b, one can find the

corresponding magnetization change as δ �mα = Rα (�hα + δ�bα )
and evaluate the constrained energy (i.e., including the penalty
term) to second order in �h as [22]

δE = − 1
4 TrL{�h · δ �m}. (11)

Finally, using δ �m one can find the canting angle θ and evaluate
the effective coupling constant Jeff from Eq. (7). The obtained
energies are also shown in Fig. 9, which reveals an excel-
lent quadratic dependence δE = 6Jeffθ

2. The corresponding
parameters Jeff are summarized in Table V.

One can clearly see that the new values of Jeff are substan-
tially reduced and become comparable with the ones derived
from the total energy difference between the FM and AFM
states. Furthermore, Jeff is larger in CrI3, being again in
total agreement with the trend obtained in the total energy
calculations. We would also like to emphasize that this Jeff

characterizes the local stability of the FM state. It can be
comparable with the total energy difference between the AFM
and FM states but does not necessarily need to reproduce this
difference exactly. The latter may include some other effects,
also related to the magnetic polarization of the ligand states,
which can be very different in the AFM and FM structures.

IV. CONCLUSIONS

Microscopic origin of the FM coupling in quasi-2D van der
Waals compounds CrX3 (where X = Cl and I) was investi-
gated on the basis of ab initio electronic structure calculations
within density functional theory. Although the FM coupling
in CrCl3 and CrI3 is formally expected from the GKA rules
for the nearly 90◦ Cr-X -Cr exchange path, the realization of
this rule in DFT calculations is somewhat nontrivial, which
requires special attention in the selection of practical methods
and approximations for calculations of interatomic exchange
couplings. In the considered Cr trihalides, the ligand states
play a crucial role in the origin of FM coupling. However,
its value strongly depends on the “philosophy” of how these
ligand states should be treated, which is traced back to the
fundamentals of adiabatic spin dynamics. To a certain extent,
the exchange coupling depends on the approximation, which
is used for the exchange-correlation potential and whether it
is treated on the level of LSDA or GGA. We have revealed
the microscopic origin of this difference, which is mainly
related to the intraatomic Cr 3d level splitting. More im-
portantly, this coupling depends on the approximations used
for the ligand states. Depending on the approximation, each
of which has certain logic behind, the interatomic exchange
coupling can vary from weakly antiferromagnetic to strongly
ferromagnetic. The best considered approximation, which is
consistent with brute force total energy calculations, is to
explicitly include the effect of ligand states, but to treat them
as electronic degrees of freedom and allow to relax for each in-
stantaneous change of the directions of Cr spins. This strategy
can be realized in constrained total energy calculations with
the external magnetic field, which can be efficiently treated in
the framework of self-consistent linear response theory.

APPENDIX A: d MODEL DECORATED WITH ON-SITE
COULOMB INTERACTIONS

In this Appendix, we explore the effect of the on-site
Coulomb and exchange interactions on the interatomic ex-
change coupling, following a general strategy of constructing
and solving the effective low-energy model for the Cr 3d
bands,

Ĥ =
∑

i j

∑
σ

∑
ab

Hab
i j ĉ†

iaσ ĉ jbσ

+ 1

2

∑
i

∑
σσ ′

∑
abcd

Uabcd ĉ†
iaσ ĉ†

icσ ′ ĉibσ ĉidσ ′ , (A1)

in the basis of Wannier orbitals [14], where ĉiaσ (ĉ†
iaσ ) stands

for the creation (annihilation) of an electron in the Wannier
orbital a at site i with spin σ . We start with a nonmagnetic
band structure, obtained in the LMTO method in the local
density approximation (LDA). Since the Cr 3d bands are well
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FIG. 10. Total and partial densities of states of CrCl3 (left) and CrI3 (right) in the local density approximation. The shaded area shows
contributions of the Cr 3d states. Positions of the main bands are indicated by symbols. The Fermi level is at zero energy (shown by dot-dashed
line).

isolated from the ligand bands, both in CrCl3 and CrI3 (see
Fig. 10), the construction of such model is rather straight-
forward. As in Sec. II, the one-electron parameters Hab

i j are
identified with the matrix elements of the LDA Hamiltonian
in the Wannier basis. The only difference is that, since now
we are dealing with the nonmagnetic band structure, these
parameters do not depend on spin indices. The parameters of
screened Coulomb interactions Uabcd have been evaluated in
the framework of constrained random-phase approximation
(cRPA), as described in Ref. [14]. The matrix Û = [Uabcd ]
can be fitted in terms of the on-site Coulomb repulsion U =
F 0, the intraatomic exchange interaction J = (F 2 + F 4)/14,
and “nonsphericity” B = (9F 2 − 5F 4)/441 (F 0, F 2, and F 4

being radial Slater’s integrals), responsible for the charge
stability, and first and second Hund’s rules, respectively. This
fitting yields (in eV): U = 1.79 (1.15), J = 0.85 (0.78), and
B = 0.09 (0.07) for CrCl3 (CrI3). We note that the screened
U is not particularly large. Furthermore, U is smaller in CrI3

due to the proximity of the I 5d band and, therefore, a more
efficient screening of Coulomb interactions in the Cr 3d band
by the ligand p band [14].

Then, the model (A1) can be solved in the mean-field
Hartree-Fock approximation and the exchange parameters can
be evaluated using Eq. (3) [14]. Alternatively, one can use su-
perexchange theory [37,38], which yields similar parameters
Ji. The results are summarized in Table VI.

In CrCl3, all interactions are antiferromagnetic. Therefore,
the FM order is clearly unstable, both in and between the xy
planes. At first sight, the situation in CrI3 looks somewhat
better: at least, the nn coupling J1 remains ferromagnetic.

TABLE VI. Exchange interaction parameters (in meV) obtained
from a solution of the model (A1) in the mean-field Hartree-Fock
approximation. Notations of exchange interactions are shown in
Fig. 6.

J1 J2 J3 J4 J5 J6

CrCl3 −0.97 −0.14 −0.26 −0.02 −0.03 −0.16
CrI3 1.12 −0.27 −0.36 0.02 0.07 −0.45

However, closer analysis shows that J1 is counterbalanced
by other AFM interactions, particularly by in-plane J3 and
J6 as well as by interplane J2. For instance, the parameter∑

i Ji, which is the measure of the Curie temperature in the
mean-field approximation and also the Curie-Weiss temper-
ature, turns out to be negative. Therefore the FM state is
also unstable in CrI3, contrary to experimental data. This is
consistent with the qualitative analysis based on Eq. (4): the
Coulomb U increases the t2g-eg level splitting �

↑↑
te and thus

suppresses the FM coupling.
Thus, to conclude this Appendix, we would like to stress

the following. (i) The simple d model (A1), incorporating
on-site Coulomb and exchange interactions, fails to describe
properly the FM ordering in CrI3 (and FM ordering in the xy
plane of CrCl3). The proper model should include the effects
of polarization of the ligand states. (ii) The screened Coulomb
interaction U is relatively small in CrCl3 and particularly
in CrI3. Thus plain LSDA (GGA) should provide a good
starting point for the analysis of magnetic properties of these
compounds, at least on a semi-quantitative level. To a certain
extent, the large t2g-eg splitting in QE calculations, based on
GGA, mimics the effect of a small on-site Coulomb repul-
sion U . A similar conclusion has been reached recently for
CrO2, which is another important FM compound, in the joint
experimental-theoretical study combining soft-x-ray angle-
resolved photoemission spectroscopy and first-principles elec-
tronic structure calculations [49].

APPENDIX B: CALCULATION OF STONER MATRIX

In this Appendix, we briefly discuss the solution of the
matrix equation,

b̂ = − 1
2 (m̂Î + Î m̂), (B1)

for the matrix Î . Here, b̂ and m̂ stand for the z component
of, respectively, the exchange field and magnetization density,
derived from LSDA (GGA) calculations. For simplicity, we
drop the site index i.

The basic idea is to use the representation that diagonalizes
m̂: ˆ̃m = ÔT m̂Ô, where ˆ̃m = [m̃aδab]. Then, Eq. (B1) can be
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FIG. 11. Eigenenergies of Stoner matrices Î .

rewritten as

ˆ̃b = − 1
2 ( ˆ̃m ˆ̃I + ˆ̃I ˆ̃m), (B2)

where ˆ̃b = ÔT b̂Ô and ˆ̃I = ÔT ÎÔ, for which the matrix ele-
ments of ˆ̃I can be found as

Ĩ ab = −2b̃ab/(m̃a + m̃b). (B3)

Finally, Î is obtained from ˆ̃I as Î = Ô ˆ̃IÔT . For further analy-
sis, it is convenient to use the representation, which diagonal-
izes Î . The results are summarized in Fig. 11.

At the Cr sites, the eigenvalues of Î split in two groups of
levels: threefold nearly degenerate t2g and twofold degenerate

eg. The t2g levels have practically the same energies for CrCl3

and CrI3 (about 3.3 eV), while the position of the eg levels
is different. However, this is to be expected: according to
Eq. (B3), the matrix elements Ĩ aa are inversely proportional
to m̃a. The value of m̃a for the eg states depends on the dp
hybridization, which controls the degree of admixture of the
formally unoccupied Cr eg states into the occupied p band of
ligands (see Fig. 2). This admixture is substantially larger in
CrI3, which yields larger m̃a and, therefore, smaller Ĩ aa for the
eg levels.

The averaged value of Î , which enters the regular Stoner
model, can be estimated from bav = IavM, where bav =
1
N TrL{b̂}, M = TrL{m̂}, and N is the number of orbitals (N =
5 for Cr 3d and N = 3 for ligand p states) as Iav = 1

N2 TrL{Î}.
For the Cr 3d states, it yields Iav = 1.55 (1.08) eV in the
case of CrCl3 (CrI3), which is pretty close to typical atomic
values of the Stoner parameter for the 3d elements [30]. At
the ligand sites, some of the eigenvalues of Î are negative,
so as Iav. The situation is certainly different from the atomic
limit. However, it should be understood that b̂ and m̂ at
the ligand sites have a different microscopic origin: b̂ is the
difference of site-diagonal elements of Ĥ↑,↓ between spins
↑ and ↓. This difference is small (see Fig. 3) and does not
play a decisive role in the formation of local moments at the
ligand sites. These moments are induced by the hybridization
with the Cr 3d sites and these processes are controlled by
off-diagonal elements of Ĥ↑,↓ with respect to the site indices.
Thus, the direction of m̂ at the ligand sites does not necessary
coincide with the one of b̂, as it follows from the above
analysis.
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