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We represent an approach to calculate micromagnetic model parameters such as the tensor of exchange
stiffness, Dzyaloshinskii-Moriya interaction (DMI), as well as spin-wave stiffness. The scheme is based on the
fully relativistic Korringa-Kohn-Rostoker Green function (KKR-GF) technique and can be seen as a relativistic
extension of the work of Lichtenstein et al. [J. Magn. Magn. Mater. 67, 65 (1987)]. The expression for Dzα

elements of DMI differ from the expressions for Dxα and Dyα elements as the former are derived via second-order
perturbation term of the energy caused by spin-spiral while the latter are associated with the first-order term.
Corresponding numerical results are compared with those obtained using other schemes reported in the literature.
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I. INTRODUCTION

To map the DFT total energy onto the Heisenberg model
and its extensions, different schemes have been reported in
the literature [1–5], giving access to first-principles calcula-
tions of the exchange coupling parameters. An expression to
calculate within multiple scattering theory (MST) or, equiv-
alently, Korringa-Kohn-Rostoker Green function (KKR-GF)
formalism the the isotropic exchange parameters entering
the classical Heisenberg Hamiltonian has been derived first
by Lichtenstein et al. [1]. The classical Heisenberg model
has been extended to account for relativistic effects on the
inter-atomic exchange interactions, accounting first of all for
the Dzyaloshinskii-Moriya interaction (DMI). An approach to
calculate the corresponding interaction parameters, also based
on the MST formalism, was suggested by Udvardi et al. [4].
Both approaches mentioned above use the magnetic force
theorem that allows to evaluate the energy change associated
with a distortion of the magnetization of a system via the
expression:

�E ≈
∫ EF

dE (E − EF ) δn(E ), (1)

where n(E ) is the density of states (DOS) of the electrons. The
use of multiple scattering formalism allows the direct calcu-
lation of the interatomic exchange interaction using Lloyd’s
formula [6], which gives the energy integrated DOS (NOS)
N (E ). This leads to an explicit expression for the energy
change due to the tilting of two magnetic moments in the
FM ordered system and as a result to the exchange coupling
parameters. Using the extended Heisenberg Hamiltonian HH

in the form suggested by Udvardi et al. [4],

HH = −1

2

∑
i �= j

eiJ i je j +
∑

i

K (ei ), (2)

the isotropic exchange interaction and DMI parameters are
deduced from the symmetric and antisymmetric parts of the

exchange tensor Ji j :

Ji j = 1
3 Tr Ji j

and

Dν
i j = ελμν

Jλμ
i j − Jμλ

i j

2
,

with ελμν the Levi-Civita tensor. A similar formulation for the
exchange tensor, also on the basis of MST, has been suggested
in our previous work [5].

Adopting a micromagnetic approach the free-energy den-
sity may be expressed by [7]

F (�r) =
∑

α

Aαα

(
∂m̂

∂rα

)2

+
∑
αν

Dνα

(
m̂ × ∂m̂

∂rα

)
ν

. (3)

Also in this case, the various parameters can be evaluated from
first principles calculations. In particular, the spin-wave stiff-
ness Dαα can be evaluated from the second-order derivative
of the spin-spiral energy E (�q) [8]:

Dαα = 2g

M

∂2E (�q)

∂qα∂qα

. (4)

The corresponding expression for the closely connected ex-
change stiffness Aαα = DααM/(2g) (where g is the Landé
factor and M is the total magnetic moment [9]) has been
derived by Liechtenstein et al. [10] by means of nonrelativistic
multiple scattering theory.

Recently, Freimuth et al. [11] demonstrated that the param-
eters entering the relativistic free energy density in Eq. (3),
i.e., the Dzyaloshinskii-Moriya interaction and exchange stiff-
ness, can be computed by using the Berry phase approach. The
microscopic DMI parameters in this case are evaluated as the
slope of the spin-wave energy E (�q) at �q = 0:

Dνα =
(

∂E{[ẑ × δm̂(�q)]ν}
∂qα

)
q=0

. (5)
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In the present work we represent an approach for the
calculation of the parameters of the Heisenberg and mi-
cromagnetic models performed on the same footing within
the fully relativistic spin-polarized Korringa-Kohn-Rostoker
Green function (KKR-GF) method. This approach, described
in Sec. II B, is based on the expansion of the total energy in
powers of wave vector components characterizing a spin spiral
with a small q-values treated as a perturbation. Considering
the ferromagnetic state as a reference state of the system, it
is demonstrated in Sec. II C, that the spin-stiffness constant
is associated with the second-order term of the energy expan-
sion. Also, it will be shown in Sec. II D, that the expressions
for the parameters Dxα and Dyα are given by the first-order
term of the energy expansion, while Dzα is associated with the
second-order energy term. In Sec. III we analyze the results
of calculations of the spin-wave stiffness and the DMI tensor,
which are based on the present approach, and compare these
results with others calculations and with experimental data.

II. THEORETICAL BACKGROUND BASED ON
THE SPIN SPIRAL APPROACH

A. Representation of the electronic structure

To derive explicit expressions for the various interaction
parameters on the basis of electronic structure calculations, we
start from the Dirac Hamiltonian set up within the framework
of relativistic spin-density functional theory [12]:

HD = −ic�α · �∇ + 1
2 c2(β − 1) + V (�r) + β�σ · �Bxc(�r), (6)

where �Bxc(�r) is the spin-dependent part of the exchange-
correlation potential and all other quantities have there usual
meaning [13,14].

Instead of representing the electronic structure in terms of
Bloch states derived from the Hamiltonian in Eq. (6) it is much
more convienient for our purposes to use the electronic Green
function G(�r,�r ′, E ) instead. Within the KKR-GF approach
G(�r,�r ′, E ) is represented in real space by the expression [14]:

G(�r,�r ′, E ) =
∑

1
2

Zn

1

(�r, E )τ nn′

1
2

(E )Zn′×

2

(�r ′, E )

−
∑

1

[
Zn


1
(�r, E )Jn×


1
(�r ′, E )�(r′ − r)

× Jn

1

(�r, E )Zn×

1

(�r ′, E )�(r − r′)
]
δnn′ . (7)

Here Zn

1

(�r, E ) and Jn

1

(�r, E ) are the regular and irregular
solutions of the single site Dirac equation and τ nn′

is the
so-called scattering path operator matrix [14].

The specific form of the Dirac Hamiltonian in Eq. (6) also
allows to express the impact of the change in the potential
�V (�r) due to the rotation of the magnetic moments on the
atomic sites in a very simple way. Assuming that �Bxc(�r) on
site i is aligned along the orientation of the spin moment m̂i,
i.e., �Bxc(�r) = Bxc(�r)m̂i, and taking into account that m̂i = ẑ
for a ferromagnetic (FM) state, the potential change �V (�r)
connected with the tilting of rigid magnetic moments has the
form

�V (�r) =
∑

i

β(�σ · m̂i − σz )Bxc(�r). (8)

B. Basic properties of the exchange interactions

Similar to our previous work [5], the present approach
is based on the magnetic force theorem. As a starting point
we use the ferromagnetic (FM) state as a reference state and
neglect for the moment all temperature effects, i.e., assume
T = 0 K. In this case, a change of the total energyg caused by
the formation of a spin spiral in the system is given by Eq. (1).
However, instead of using the Lloyd formula, we represent the
change of the density of states �n(E ) in terms of the Green
function G0(E ) for the FM reference state, which is modified
due to the perturbation. Denoting the corresponding change in
the Green function �G(E ) and neglecting temperature effects
one can write the change of the total energy:

�E ≈ − 1

π
Im Tr

∫ EF

dE (E − EF ) �G(E ), (9)

where EF is the Fermi energy. Assuming that the perturbation
is small, the induced change of the Green function can be
represented by the following perturbation expansion

�G(E ) = G0(E )�V G0(E )

+ G0(E )�V G0(E )�V G0(E ) + ..., (10)

where �V is a perturbation operator, Eq. (8), describing
the creation of a spin-spiral in the FM system. Substituting
Eq. (10) into Eq. (9) and using the sum rule dG

dE = −GG for the
Green function, one obtains an expression for the total energy
change associated with the spin spiral:

�E = − 1

π
Im Tr

∫ EF

dE (E − EF ) G0(E ) �V G0(E )

+ 1

π
Im Tr

∫ EF

dE (E − EF ) �V G0(E )�V
dG0(E )

dE
.

(11)

By performing integration by parts for the second equa-
tion in Eq. (11) and taking into account that (E −
EF ) �V G0(E )�V G0(E )|E=EF = 0, the total energy change
�E is given by

�E = − 1

π
Im Tr

∫ EF

dE (E − EF ) G0(E ) �V G0(E )

− 1

π
Im Tr

∫ EF

dE �V G0(E )�V G0(E ) (12)

= K (1) + K (2). (13)

Here only the first- and second-order terms of the expansion
are kept as they are responsible for the effects discussed
below. Note, however, that higher-order terms can also be non-
negligible leading to corresponding higher-order exchange
interaction terms in the Heisenberg Hamiltonian, which, how-
ever, are not discussed in the present work.

C. Spin-wave stiffness

We first consider a spin spiral characterized by its wave
vector �q, with the magnetic moment direction on site (i) given
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by the expression

m̂i = (sinθ cos(�q · �Ri ), sinθ sin(�q · �Ri ), cosθ ), (14)

implying the same cone angle θ for all atomic sites.

For the sake of convenience, we start with the Heisenberg
model. When the spin-spiral is given in the form of Eq. (14),
one gets the following change in energy �EH with respect to
the FM state with its magnetization direction along ẑ,

�EH = −θ

N∑
i �= j

Dx
i j[sin(�q · �Ri ) − sin(�q · �Rj )] − θ2

N∑
i �= j

{
Dz

i jsin(�q · �Rj − �Ri ) + 1

2

[(
Jxy

i j + Jyx
i j

)
sin(�q · �Rj + �Ri )

+ (
Jxx

i j − Jyy
i j

)
cos(�q · �Rj + �Ri ) + (

Jxx
i j + Jyy

i j

)
cos(�q · �Rj − �Ri )

] }
+ ..., (15)

where we restrict the expansion up to second order with respect to the angle θ , and focus in the following on the term proportional
to θ2.

Using the expressions for the Green function given in Eq. (7) and for the perturbation due to the formation of a spin spiral
according to Eq. (8), one obtains an expression for the free energy contribution K (2) given in the multiple scattering representation

K (2) = −θ2

π

N∑
i �= j

Im Tr
∫ EF

dE

{
1

2

(
T i

x τ i j T j
x τ ji + T i

y τ i j T j
y τ ji

)
cos[�q · (�Rj − �Ri )]

+ 1

2

(
T i

x τ i j T j
x τ ji − T i

y τ i j T j
y τ ji

)
cos[�q · (�Rj + �Ri )]

+ 1

2

(
T i

x τ i j T j
y τ ji − T i

y τ i j T j
x τ ji

)
sin[�q · (�Rj − �Ri )]

+ 1

2

(
T i

x τ i j T j
y τ ji + T i

y τ i j T j
x τ ji

)
sin[�q · (�Rj + �Ri )]

}
. (16)

Considering for the sake of simplicity a system with one atom per unit cell one has the following matrix elements representing
the change in the potential

Tx,
1
2 (E ) =
∫

�0

d3rZ×

1

(�r, E ) β σx Bxc(�r)Z
2 (�r, E ),

Ty,
1
2 (E ) =
∫

�0

d3rZ×

1

(�r, E ) β σy Bxc(�r)Z
2 (�r, E ), (17)

with T i
μ = T j

μ = T μ. By doing a one-to-one comparison of the energy terms associated with a pair of sites (i, j) as given by
Eqs. (15) and (16), respectively, one gets expressions for the elements Jyx

i j and Jxy
i j of the Ji j tensor, as well as the interatomic

DMI terms Dz
i j , which have the same form as those derived previously by us using the Lloyd formula [5].

In contrast to our previous work, the goal of the present study is to get expressions for the micromagnetic interaction
parameters. This is achieved by performing a Fourier transformation for the scattering path operator

τ i j = 1

�BZ

∫
�BZ

d3kei�k(Rj−Ri )τ (�k) (18)

leading to an alternative expression for the energy change caused by the formation of a spin-spiral

K (2) = − θ2

2π
ImTr

∫ EF

dE
1

�BZ

∫
�BZ

d3k
1

�BZ

∫
�BZ

d3k′

×
{

1

2
[T x τ (�k, E ) T x τ (�k′, E ) + T y τ (�k, E ) T y τ (�k′, E )][δ(�k + �q − �k′) + δ(�k − �q − �k′)]

+ 1

2i
[T x τ (�k, E ) T y τ (�k′, E ) − T y τ (�k, E ) T x τ (�k′, E )][δ(�k + �q − �k′) − δ(�k − �q − �k′)]

+ 1

2
[T x τ (�k, E ) T x τ (�k′, E ) − T y τ (�k, E ) T y τ (�k′, E )][δ(�k + �q − �k′) + δ(�k − �q − �k′)]δ(�k − �k′)

+ 1

2i
[T x τ (�k, E ) T y τ (�k′, E ) + T y τ (�k, E ) T x τ (�k′, E )][δ(�k + �q − �k′) − δ(�k − �q − �k′)]δ(�k − �k′)

}
. (19)
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The last term in Eq. (19) is equal to zero, while the third one corresponds to the nonlocal MCA discussed by Udvardi et al.
[4], which gives for the present geometry the contribution to the MCA within the xy plane

�EMCA = − θ2

2π
Im Tr

∫ EF

dE
1

�BZ

∫
�BZ

d3k[T x τ (�k, E ) T x τ (�k, E ) − T y τ (�k, E ) T y τ (�k, E )]. (20)

To consider the first two terms in Eq. (19), one can use a Taylor expansion of the τ matrix for small �q vectors,

τ (�k ± �q, E ) = τ (�k, E ) ±
∑

α

∂τ (�k, E )

∂kα

qα + 1

2

∑
α,β

∂2τ (�k, E )

∂kα∂kβ

qαqβ, (21)

which gives the corresponding contribution K (2)
1−2 to K (2)

K (2)
1−2 = − θ2

2π
Im Tr

∫ EF

dE
1

�BZ

∫
�BZ

d3k
1

2

[
T x τ (�k, E ) T x

(
2τ (�k, E ) +

∑
α,β

∂2τ (�k, E )

∂kα∂kβ

qαqβ

︸ ︷︷ ︸
T 1

)

+ T y τ (�k, E ) T y

(
2τ (�k, E ) +

∑
α,β

∂2τ (�k, E )

∂kα∂kβ

qαqβ

︸ ︷︷ ︸
T 2

)

+ 1

i

(
T x τ (�k, E ) T y

∑
α

2
∂τ (�k, E )

∂kα

qα − T y τ (�k, E ) T x

∑
α

2
∂τ (�k, E )

∂kα

qα

)]
. (22)

Doing an integration by parts for the expression involving the term T 1 indicated in Eq. (22) (see Ref. [15]), one obtains

T 1 = − θ2

2π
Im Tr

∫ EF

dE
1

�BZ

∫
�BZ

d3k
1

2
T x τ (�k, E ) T x

∑
α,β

∂2τ (�k, E )

∂kα∂kβ

qαqβ

= θ2

4π

∑
α,β

qαqβIm Tr
∫ EF

dE
1

�BZ

∫
�BZ

d3kT x

∂τ (�k, E )

∂kα

T x

∂τ (�k, E )

∂kβ

. (23)

The same transformation can also be made for the term T 2.
Equating now the second order derivatives with respect to the �q vector for the microscopic and model energies in the limit

q → 0, (
∂2�E

∂qα∂qβ

)
q=0

=
(

∂2K (2)

∂qα∂qβ

)
q=0

=
(

∂2�EH

∂qα∂qβ

)
q=0

, (24)

one obtains the components of the exchange tensor. This leads to an expression for the spin-wave stiffness

Dαβ = 1

θ2

4

M

∂2E

∂qα∂qβ

= 1

πM
Im Tr

∫ EF

dE
1

�BZ

∫
�BZ

d3k

[
T x

∂τ (�k, E )

∂kα

T x

∂τ (�k, E )

∂kβ

+ T y

∂τ (�k, E )

∂kα

T y

∂τ (�k, E )

∂kβ

]
,

(25)

which can be seen as a relativistic generalization of the expression given by Liechtenstein et al. [1].

D. Dzyaloshinskii-Moriya interaction

Taking the first-order derivative of K (2)
1−2 with respect to the components of the �q-vector the last term in Eq. (19) gives in the

limit q → 0 the elements Dzα of the DMI tensor:

Dzα = 1

θ2
lim
q→0

∂K (2)

∂qα

=
(

1

2π

)
Re Tr

∫ EF

dE
1

�BZ

∫
�BZ

d3k

[
T x τ (�k, E ) T y

∂τ (�k, E )

∂kα

− T y τ (�k, E ) T x

∂τ (�k, E )

∂kα

]
.

(26)

To calculate the tensor elements Dxα and Dyα , it is convenient to use a spin spiral given in the following rather general
form [16]:

m̂i = m̂μsin(�q · �Ri ) + m̂zcos(�q · �Ri ), (27)
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where m̂i characterizes the direction of the magnetic moments on site Ri with m̂i ≡ m̂(�Ri), μ = {x, y} and the wave vector �q can
have any direction. Assuming a weak deviation of the magnetic moments �mi from the ẑ direction, this setting allows to get rid of
the first-order derivatives with respect to qα , related to the term K (2) in Eq. (13) and to focus on the term K (1).

With this, the elements Dμα of the micromagnetic tensor representing the DMI as defined by Eq. (5) are determined
exclusively by the first-order term K (1) in Eq. (13). The term K (1) associated with the perturbation Eq. (8) induced by a spin
spiral as described by Eq. (27) has the following form:

K (1) = − 1

2π

∑
i �= j

Im Tr
∫ EF

dE (E − EF )

× {
sin[�q · (�Ri − �Rj )]

[
O j (E ) τ ji(E )T i

μ(E ) τ i j (E )︸ ︷︷ ︸
T 1

− T j
μ(E ) τ ji(E )Oi(E ) τ i j (E )︸ ︷︷ ︸

T 2

]

+ [cos[�q · (�Ri − �Rj )] − 1]
[

O j (E ) τ ji(E ) T i
z(E ) τ i j (E )︸ ︷︷ ︸

T 3

− T j
z (E ) τ ji(E ) Oi(E ) τ i j (E )︸ ︷︷ ︸

T 4

]}
. (28)

In the case of one atom per unit cell one has for the matrices occurring in Eq. (28) Oi(E ) = O(E ) and T i
μ(E ) = T μ(E ), with

T μ(E ) given by Eq. (17) and the overlap matrix given by

O
1
2 (E ) =
∫

�0

d3rZ×

1

(�r, E )Z
2 (�r, E ). (29)

Calculating the derivative ∂K (1)

∂qy
in the limit q → 0, the terms T 1 and T 2 in Eq. (28) giving the only nonvanishing contributions

to the DMI parameters are

T 1 → − 1

π
lim
q→0

∂

∂qα

{
Im Tr

1

2i

∫ EF

dE (E − EF )

×
[

O(E )
1

�BZ

∫
�BZ

d3k τ (�k, E ) T μ(E ) τ (�k − �q, E ) − O(E )
1

�BZ

∫
�BZ

d3k τ (�k, E ) T μ(E ) τ (�k + �q, E )

]}
(30)

T 2 → − 1

π
lim
q→0

∂

∂qα

{
Im Tr

1

2i

∫ EF

dE (E − EF )

×
[

T μ(E )
1

�BZ

∫
�BZ

d3k τ (�k, E ) O(E ) τ (�k − �q, E ) − T μ(E )
1

�BZ

∫
�BZ

d3k τ (�k, E ) O(E ) τ (�k + �q, E )

]}
. (31)

Equating for the microscopic and model energies the derivatives with respect to components of the �q-vector one obtains in the
limit �q → 0 the elements Dμα of the micromagnetic DMI tensor:

Dμα = lim
q→0

∂

∂qα

K (1) = εμν

1

π
Re Tr

∫ EF

dE (E − EF )

× 1

�BZ

∫
d3k

[
O(E ) τ (�k, E ) T ν (E )

∂

∂kα

τ (�k, E ) − T ν (E ) τ (�k, E ) O(E )
∂

∂kα

τ (�k, E )

]
, (32)

with μ = {x, y} and ν = {x, y} and εμν the elements of the

transverse Levi-Civita tensor ε = [ 0 1
−1 0].

This formulation obviously gives access to a discussion
of the DMI parameters in terms of specific features of the
electronic band structure in a similar way as suggested in
Ref. [17]. As the present formulation is given within the
KKR-GF formalism, it allows to deal both with ordered
and disordered materials, where disorder may be treated
using the coherent potential approximation (CPA) alloy
theory.

In addition, it is worth noting that only the elements Dxα

and Dyα are defined for the FM state with its magnetization
along ẑ direction, as only the x and y directions are allowed
for a change of the transverse spin moment component. The
elements Dxα and Dyα originate from the interatomic DMI

components Dx
i j and Dy

i j , respectively, characterizing for m̂||ẑ
the nonzero magnetic torques acting on one atom i( j) from
another atom at site j(i) (see, e.g., Ref. [18]). As it follows
from Eq. (15), the terms related to Dx

i j and Dy
i j appear in

first-order within an expansion of the energy with respect
to the angle θ characterizing the deviation of a magnetic
moment from the ẑ direction. However, the DMI component
Dz

i j and analogously the element Dzz of the DMI tensor give
the contribution to the energy which is of the order of θ2:
Since the DMI component Dz

i j couples the components of the
magnetic moments of atoms i and j, mx

i, j ∼ θ and my
i, j ∼ θ ,

respectively, both components should be nonzero to give a
contribution to the energy change; in contrast to the terms
Dx(y)

i j that couple the components mz and mx(y)
i, j ∼ θ of the

magnetic moments.
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FIG. 1. Calculated spin-wave stiffness Dxx (see text) of Fe1−xNix

alloys, with fcc (left) and bcc (right) crystal structures, represented
as a function of the concentration in comparison with experiment:
Nakai [19] (filled circles), Hatherly et al. [20] (open circles), and
Rusov [21] (filled squares).

III. RESULTS

Figure 1 represents the spin-wave stiffness parameter Dxx

for the body-centered cubic (bcc) and face-centered cubic
(fcc) phases of disordered Fe1−xNix alloys calculated using
Eq. (25) (open diamonds).

In the case of the fcc alloys, the results are compared with
the spin-wave stiffness deduced from the energy dispersion
E (�q) of a spin-spiral described by means of the generalized
Bloch theorem and neglecting spin-orbit coupling (SOC) [22]
(full diamonds). In spite of the very different approaches used,
both curves are close to each other over the whole range of
concentration considered. However, one should stress that a
very dense k-mesh is required to obtain reliable results for
the Brillouin zone (BZ) integral in Eq. (25). For that reason
a sequence of calculations with an increasing number of k-
points has been performed to ensure convergence. The final
results have been obtained using a 144 × 144 × 144 k-mesh
spanning the whole BZ.

Figure 1 shows in addition experimental data obtained
using different techniques. As one can see, the calculations re-
produce the experimental data fairly well. For the bcc as well
as fcc alloys, agreement between theory and experiment is
best in the regime of concentrated alloys and gets less satisfy-
ing when approaching the Fe or Ni, respectively, rich regimes.

To demonstrate the application of the derived expression
for the micromagnetic DMI tensor, we consider here two
different noncentrosymmetric system types, Mn1−xFexGe and
Co1−xFexGe, having the cubic B20 structure, and the strongly
anisotropic multilayer system (Cu/Fe1−xCox/Pt)n. Focusing
first on the B20 systems, Fig. 2 represents results for the three
diagonal elements Dxx, Dyy, and Dzz of the micromagnetic
DMI tensor, with the Dxx and Dyy terms calculated in two
different ways.

Assuming first the magnetization to be oriented along ẑ, the
elements Dxx and Dyy (dotted lines and full squares, respec-
tively, in Fig. 2) were calculated on the basis of Eq. (32) by
integrating over the Brillouin zone. In this case, convergence
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FIG. 2. The elements Dxx , Dyy, and Dzz of the micromagnetic
DMI tensor calculated for Mn1−xFexGe (left) and Co1−xFexGe repre-
sented as a function of Fe concentration. The results for Dxx and Dyy

based on Eq. (33) were obtained calculating Dx
i j and Dy

i j as described
in Ref. [16]. The corresponding result for Dzz, however, is based on
Dz

i j calculated as described in Ref. [5].

with respect to the number of k-points is faster when com-
pared to the spin-wave stiffness calculations, and the results
presented in Fig. 2 could be obtained using a 60 × 60 × 60
k-mesh covering the whole BZ.

The second set of results for Dxx and Dyy shown in Fig. 2
(dashed line and open squares, respectively) is calculated
using the expression

Dαα =
∑
j �=0

Dα
0 j (�Rj − �R0)α, (33)

which is based on the interatomic DMI elements Dx
i j and Dy

i j
[16]. To ensure convergence of the real-space summation in
this expression all atomic sites j with | �Rj − �R0| � 6.5 a and
occupied by the transition metals have been included, where
a is the lattice parameter. The very small difference between
the two sets of results can be attributed first of all to this
restricted summation and excluding the indirect influence of
the Ge atoms.

Concerning the calculation of the Dzz element using the
expression in Eq. (26), one has to point out that it has a much
slower convergence with respect to the number of k-points
when compared to calculations of Dxx and Dyy. Although the
structure of the integrand in Eq. (26) is very similar concern-
ing the k-dependent scattering path operators when compared
with Eq. (32) for Dxx and Dyy, the corresponding BZ integrals
behave very different because of the different weighting fac-
tors. This makes the calculation of Dzz via Eq. (26) much more
demanding when compared to calculations of Dxx and Dyy.
Therefore, Dzz has been calculated here only using Eq. (33)
(open circles in Fig. 2), with Dz

i j obtained via an expression
reported previously [5]. In fact, this expression is related to
Eq. (26) in an analogous way as was discussed previously for
Dxx and Dyy on the one-hand side and Dx

i j and Dy
i j on the other

side [16].
Although the considered B20 systems have cubic Bravais

lattice, the elements Dxx, Dyy and Dzz are not the same because
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FIG. 3. The elements Dxy of the micromagnetic DMI ten-
sor for multilayer (Cu/Fe1−xCox/Pt)n system as function of Co
concentration.

of the reduced symmetry [23]. Nevertheless, the difference
between all three components is rather small. This is a rather
important result for the systems under consideration since the
expression used for the calculation of the term Dzz is rather
different from the one used for the two other terms. It should
be noted that the nonvanishing off-diagonal elements Dμα of
the DMI tensor are substantially smaller than the diagonal
elements [23] for the considered systems.

In contrast to the discussed B20 alloys, the symmetry of
the (Cu/Fe1−xCox/Pt)n multilayer system results in a van-
ishing of the diagonal elements of the micromagnetic DMI
tensor and only the elements Dxy and Dyx are nonzero for
the magnetization direction along ẑ, having opposite sign,
Dyx = −Dxy. This is in line with the symmetry properties
of the Fermi-sea contribution to the spin-orbit torque (SOT)
tensor discussed previously by Wimmer et al. [24], that
should be obeyed also by the DMI tensor due to the rela-
tionship between these two tensors [11,23]. The element Dxy

of the micromagnetic DMI tensor is plotted in Fig. 3 (open
diamonds) as a function of Co concentration, exhibiting a
monotonous increase with the increase of Co concentration.
Almost the same behavior is shown by the results obtained
via Eq. (32) (full diamonds) with a small deviation caused by
the cutoff in the summation over the neighboring shells in this
case.

Additional calculations have been performed to find out
which atom type with its intrinsic SOC play the major role
concerning the strength of the DMI in the multicomponent
systems under consideration. In the case of B20 alloys the
DMI strength is mainly determined by the SOC of the 3d
atoms. This follows immediately from a gradual decrease of
the DMI when the SOC of these atoms is scaled to be zero.
The p states of Ge in the B20 materials are strongly hybridized
with the d states of the 3d atoms and therefore have a key role
in mediating the antisymmetric exchange interactions, as was
previously discussed in the literature (see, e.g., Ref. [25]). In
particular, the dependence of the DMI on the relative position
of the p states of Ge and d states of the transition metals
with respect to each other as well as with respect to the

FIG. 4. Spin- and element-resolved d-DOS for the d states in
the multilayer system (Cu/Fe1−xCox/Pt)n for x = 0.1 (a), x = 0.5
(b) and x = 0.9 (c): Pt (black line), Co (red line), and Fe (blue line).
The d-DOS for the Cu atoms in the systems are shown in (d) for three
different concentrations.

Fermi energy, leading to a sign change of the DMI parameters
upon variation of the composition in these alloys, has been
demonstrated [25].
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In the case of the multilayer system (Cu/Fe1−xCox/Pt)n,
switching off the SOC for the 3d atoms does not result in a
significant change of the DMI. A similar result is found when
the SOC for the Cu atoms is switched off (open circles); i.e.,
a weak increase of the DMI is seen almost over all the con-
centration region. However, the magnitude of the components
Dxy and Dyx drops down when the SOC of the Pt atoms (open
squares) is switched off and Dxy even changes sign at x ≈ 0.1.
Obviously, one reason leading to this behavior is the strong
SOC for the Pt atoms.

To allow for a more detailed discussion, we present in
Fig. 4 the element resolved DOS of (Cu/Fe1−xCox/Pt)n.
Figure 4(d) shows that the Cu d bands lie well below the
Fermi energy. The fact that they are rather narrow indicates
their relatively weak hybridization with the Fe and Co states.
As a consequence this results in a weak modification of the
d states of Cu, when the magnetic moments of the 3d atoms
within the (Fe,Co) layer are rotated to form a spin spiral in
the system. In addition, one can say that the SOC, which is
responsible for the antisymmetric exchange, is rather small for
the 3d states of the Cu atoms. Thus, both properties lead to a
small contribution of the Cu layer to the DMI strength. On the
other side, the heavy Pt atoms are characterized by a strong
SOC. The partially occupied Pt d bands are rather broad and
substantially overlap in energy with the Co and Fe energy
bands. This results (see Fig. 4) in a strong spin-dependent
hybridization of the Pt states with the states of Co (more
pronounced) and Fe (less pronounced) that in turn leads to a
stronger modification of the Pt states due to a tilting of the spin
moments in the (Co,Fe) layer, in particular, upon creation of a
spin spiral. The lack of inversion symmetry results in different
changes of the SOC-induced anticrossing gaps associated with
spin spirals having different spin helicity, which at the end
determines the sign and magnitude of the DMI vector (see
Ref. [26]). A larger exchange splitting and, as a result, larger
spin moment of the Co atoms can be responsible for a stronger
DMI in the Co-rich limit due to a stronger perturbation caused

in the neighboring layers upon rotation of the Co magnetic
moments.

IV. SUMMARY

In summary, we present in this work a general approach for
the calculation of the spin-wave stiffness and DMI parameters
based on perturbation theory expressed in terms of Green
functions. Considering spin waves with small �q-vectors as
a perturbation, the total energy expansion in powers of q
gives access to corresponding expressions for these quantities
which have been worked out within the framework of the fully
relativistic KKR Green function method. The expression for
the spin-wave stiffness obtained this way can be seen as a
relativistic extension of the nonrelativistic expression reported
previously in the literature [1]. In particular, it is shown that it
is given by the second-order term of the energy expansion.
This holds also for the DMI elements Dzα which are not
delivered in a first-order approximation and appear only via
the second order energy term. In contrast, the DMI elements
Dxα and Dyα are associated with the first-order term of the
energy expansion. As a consequence, the expressions for the
Dxα and Dyα elements differ from that for Dzα . Despite this
difference, we demonstrate that these expressions give almost
the same results in the cases when this is required by the
symmetry of the system. We also demonstrate full agreement
between the results obtained using explicit expression for
the spin stiffness and DMI tensors with those based on the
interatomic exchange and DMI parameters.
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