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Many-body theory of spin-current driven instabilities in magnetic insulators
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We consider a magnetic insulator in contact with a normal metal. We derive a self-consistent Keldysh effective
action for the magnon gas that contains the effects of magnon-magnon interactions and contact with the metal
to lowest order. Self-consistent expressions for the dispersion relation, temperature, and chemical potential for
magnons are derived. Based on this effective action, we study instabilities of the magnon gas that arise due
to spin current flowing across the interface between the normal metal and the magnetic insulator. We find that
the stability phase diagram is modified by an interference between magnon-magnon interactions and interfacial
magnon-electron coupling. These effects persist at low temperatures and for thin magnetic insulators.
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I. INTRODUCTION

Understanding the interplay between magnetization dy-
namics and spin currents is a fundamental issue that is rel-
evant for spintronic devices [1–4]. In particular, there is a
growing interest, both theoretically [5–13] and experimen-
tally [14–20], in magnetic insulators such as yttrium iron
garnet (YIG) in contact with heavy metals like Pt (YIG|Pt
bilayers). In these hybrid systems, magnons and magne-
tization dynamics are excited via interfacial spin-transfer
torques [21,22]. The realization of a Bose-Einstein conden-
sate (BEC) of magnons through this mechanism has recently
been proposed [23]. Auto-oscillations driven by the spin Hall
effect [24] and thermal spin current [25,26] have very recently
been observed. Earlier, a condensate has been realized at room
temperature in YIG by other means, namely via parametric
pumping [27]. This is an example of a nonequilibrium con-
densate of quasiparticles [28–34]. Such nonequilibrium BECs
have attracted a great deal of attention and occur in different
physical systems such as excitons [35–37], phonons [38], po-
laritons [39], and photons [40]. Specifically, condensation of
magnons has stimulated efforts to control coherent transport
of spin waves at room temperature [41].

In this paper, we present a microscopic study of magnon in-
stabilities (such as Bose-Einstein condensation and/or swas-
ing [42]) in insulating ferromagnets (F ) induced via spin-
current injection through the interface with an adjacent normal
metal (M; see Fig. 1). The interfacial spin current is gen-
erated by the combined effects of a thermal gradient across
the interface [7,43] and the spin Hall effect in the normal
metal (leading to a spin accumulation in the normal metal
at the interface). We derive a Keldysh effective action for
the magnons in the F up to second order in the coupling
with the normal metal. Through this approach, self-consistent
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relations are derived for the thermodynamic variables and
the dispersion relation of magnons. We use this description
to find the stability phase diagram. Besides introducing a
different theoretical framework, this approach improves the
previous treatment [42] by including interference effects be-
tween magnon-magnon interactions and interfacial magnon-
electron coupling. These effects are finite at low temperature,
and may prevent instabilities if they are very strong.

The remainder of this article is organized as follows. The
following Sec. II introduces our model to describe the magnon
dynamics and its coupling to electrons. In Sec. III, we proceed
to derive the effective action for the magnons within the
functional formulation of the Schwinger-Keldysh formalism.
In Sec. IV, we construct the stability phase diagram. We end
in Sec. V by summarizing our results with a brief discussion
and conclusion. In the Appendixes, we detail various technical
steps of the calculations.

II. MODEL

The system under consideration is a F in contact with a
M as is displayed in Fig. 1. We assume a three-dimensional
system of localized spins in quasiequilibrium at temperature
Tm and magnon chemical potential μm [44,45]. The normal
metal is at temperature Te and has a spin accumulation �μ.

The spin Hamiltonian is introduced by labeling the square
lattice site by the position x, with the spin operator Ŝx at
position x. The nearest-neighbor Hamiltonian is

ĤS = −Je

∑
〈x,x′〉

Ŝx · Ŝx′ − B
∑

x

Ŝz
x + Kz

2

∑
x

(
Ŝz

x

)2
, (1)

where Je > 0 is the exchange coupling between nearest neigh-
bors, Kz is an easy-plane anisotropy constant, and B is the
external magnetic field in units of energy. We consider lin-
earized spin excitations, magnons, around the z direction
for sufficiently large fields. These are introduced by the
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FIG. 1. Schematic illustration of spin-transfer induced spin-wave
excitations of the insulating magnetic film in contact with a normal
metal (F |M). A spin accumulation �μ is induced in the metal via the
spin Hall effect. The magnons are assumed to be in quasiequilibrium
with a chemical potential μm. In turn, the spin accumulation exerts
a torque on the magnetization in F . A temperature gradient Tm − Te,
applied longitudinally also contributes to the net spin-current flow
through the interface.

Holstein-Primakoff transformation [46–48] that quantizes
the spins in terms of bosons, Ŝ+

x =
√

2S − b̂†
xb̂xb̂x, Ŝ−

x =
b̂†

x

√
2S − b̂†

xb̂x and Ŝz
x = (S − b̂†

xb̂x) with S the spin quantum
number. One magnon, created (annihilated) at site x of the
lattice by the operator b̂†

x(b̂x), corresponds to changing the
total spin with +h̄(−h̄). Expanding up to fourth order in
the magnon operators, the spin Hamiltonian becomes ĤS �
Ĥ(2)

S + Ĥ(4)
S , where terms up to order 1/

√
S are kept. In

momentum space the quadratic part of the Hamiltonian is
given by

Ĥ(2)
S =

∑
q

εqb̂†
qb̂q. (2)

In the long-wavelength limit, the magnon dispersion is εq =
Aq2 + ε0, where ε0 = B − SKz is the magnon gap and A =
3SJea2 is the spin stiffness with a the lattice spacing. Further-
more,

Ĥ(4)
S =

∑
q1,q2,q3,q4

V (2,2)
q1,q2,q3,q4

b̂†
q1

b̂†
q2

b̂q3 b̂q4 , (3)

where momentum conservation is implicit in V (2,2). This part
of the Hamiltonian represents magnon-magnon interactions
that result from exchange and anisotropy that causes the ther-
malization of magnons in the F [47]. In the long-wavelength
limit the interaction between magnons is dominated by the
anisotropy energy. Henceforth we consider magnons with
sufficiently long wavelengths since we are interested in long-
wavelength instabilities in the F . Thus we approximate the
scattering amplitude by V (2,2)

q1,q2,q3,q4
= (Kz/2N )δq1+q2−q3−q4 ,

with N the total number of spins. The exact result contain-
ing contributions from the exchange interactions is found in
Appendix A.

The electronic degrees of freedom in the metal are de-
scribed by the tight-binding Hamiltonian

Ĥe = −t
∑

〈x,x′〉,σ
ψ̂†

x,σ ψ̂x′,σ −
∑
x,σ

μσ ψ̂†
x,σ ψ̂x,σ , (4)

in terms of second-quantized operators ψ̂†
x,σ (ψ̂x,σ ) that create

(annihilate) an electron at site x in M with spin σ . The hopping

amplitude is t and the spin-dependent chemical potential is
μσ . The latter results from the spin Hall effect in the M and
defines a nonzero spin accumulation �μ = μ↑ − μ↓.

We assume the magnons and electrons predominantly in-
teract via an exchange coupling between the spin density of
electrons and localized magnetic moments facing the F |M
interface. The Hamiltonian that couples metal and insula-
tor is Ĥe−m = −∑

x,x′ Jxx′ Ŝx · ŝx′ , where Jxx′ is the coupling
strength that depends on the interface details. The spin density
of electrons at site x is ŝx = ∑

σ,σ ′ ψ̂†
x,σ τσσ ′ψ̂x,σ ′ , with τ the

Pauli matrix vector. After the Holstein-Primakoff transfor-
mation on the spins in the insulator, the electron-magnon
Hamiltonian is

Ĥe−m = −
∑
x,x′

Jxx′ [
√

2S(b̂†
xψ̂

†
x′,↓ψ̂x′,↑ + H.c.)

+ (S − b̂†
xb̂x)(ψ̂†

x′,↑ψ̂x′,↑ − ψ̂
†
x′,↓ψ̂x′,↓)], (5)

up to quadratic order in the magnon operators. Hence,
when an electron flips its spin at the interface it creates
(or annihilates) one magnon in the insulating F [5,6]. The
electron-magnon interaction has been studied in various re-
lated contexts [13,49–54]. Its evaluation through the self-
energy has been useful for the study of magnetic damping
and noise [55], magnon-induced superconductivity [56], and
spin transport [57]. In our work we go further by studying,
in combination magnon-magnon interactions, its effect on the
single-magnon energy. Additionally, thermodynamic proper-
ties like temperature and chemical potential of the magnon
gas are computed self-consistently with the electron-magnon
coupling as the perturbative parameter.

III. NONEQUILIBRIUM THEORY

In this section, we derive an effective action for the magnon
gas using a functional Keldysh approach [58]. We also calcu-
late the self-energy that magnons acquire by their interaction
with the electrons.

A. Self-energy due to electron-magnon coupling

The starting point is the functional integral

Z =
∫

Dφ∗DφDψ∗Dψexp

{
i

h̄
S[ψ,ψ∗, φ, φ∗]

}
. (6)

The action is expressed in terms of bosonic fields φx(t ),
describing magnons, and fermionic fields ψx,σ (t ), describing
electrons. Thus,

S[ψ,ψ∗, φ, φ∗] =S0[φ, φ∗] +
∫
C∞

dtdt ′ ∑
xx′

∑
σσ ′

ψ∗
x,σ (t )

× Kxx′
σσ ′ (t, t ′)ψx′,σ ′ (t ′), (7)

with S0[φ, φ∗] = ∫
C∞ dt[

∫
dxφ∗ih̄∂tφ − HS[φ, φ∗]], the ac-

tion for magnons uncoupled with the electrons. The magnon
Hamiltonian is in the continuum limit given by

HS[φ, φ∗] =
∫

dxφ∗
(

−A∇2 + ε0 + Kz

2
|φ|2

)
φ, (8)

and follows directly from evaluating the Hamiltonian in
Eqs. (2) and (3) for the bosonic fields and taking the

104426-2



MANY-BODY THEORY OF SPIN-CURRENT DRIVEN … PHYSICAL REVIEW B 99, 104426 (2019)

continuum limit. The time integration in Eq. (7) is over
the Keldysh contour C∞, whereby the functional integral in
Eq. (6) is over all fields φx(t ) and ψx,σ (t ) that evolve forward
in time from −∞ to t0, and backwards from t0 to −∞. The
kernel in Eq. (7) is defined as

Kxx′
σσ ′ (t, t ′) ≡ G−1

xx′;σσ ′ (t, t ′)δ(t, t ′) + δKxx′
σσ ′ (t, t ′), (9)

where G−1 is the inverse of the free Green’s function for the
electrons that obeys∑

x′′

[
ih̄δxx′′

∂

∂t
+ txx′′;σ

]
Gx′′x′;σσ ′ (t, t ′) = h̄δ(t, t ′)δσσ ′δxx′ ,

(10)

with txx′;σ = [t (δx,x′+1 + δx,x′−1) + μσδxx′ ], where the nota-
tion ±1 denotes all next-nearest neighbors. The interactions
between electronic spin and magnetic moments are des-
cribed by

δKxx′
σσ ′ (t, t ′) =

√
2Sδxx′

∑
x′′

Jx′′x′

[
φ∗

x′′ (t )τ+
σσ ′ + φx′′ (t )τ−

σσ ′

+ 1√
2S

[S − φ∗
x′′ (t )φx′′ (t )]τ z

σσ ′

]
δ(t, t ′), (11)

where τ± = (τ x ± iτ y)/2.
We now integrate out the electronic degrees of freedom in

Eq. (7). The functional integration can be done exactly since
the fermionic part of the action is a Gaussian integral. This
leads us to an effective theory for magnons in the F , Z =∫
Dφ∗Dφexp{iSm[φ∗, φ]/h̄}, where Sm contains all the elec-

tronic information and its influence on the magnon dynamics.
To second order in the electron-magnon coupling, the action is
written as Sm = S0 + iTr[GδK] + iTr[GδKGδK]/2h̄, where
the last two terms correspond to electron-magnon scattering
processes that we describe below. For more details, please see
Appendix B.

We are interested in the limit when the F is thin enough.
In this case the spin waves only propagate parallel to the
interface. In Fourier space the action simplifies to

Sm = S0 −
∫
C∞

dtdt ′
∫

dq
(2π )2

φ∗
q (t )h̄�st;q(t, t ′)φq(t ′), (12)

where q is the in-plane wave vector. The self-energy is de-
noted as h̄�st and describes processes that dress the magnons
due to the electron-magnon coupling; see the Feynman dia-
grams in Fig. 2. The self-energy is given (in real space) by

h̄�st;xx′ (t, t ′) = 2S
∑
x1x2

Jxx1 Jx′x2�
↑↓
x1x2

(t, t ′)

− δxx′δ(t, t ′)
∑

x1

Jx1x′δn̄(x1, t ), (13)

where the electron bubble reads �σσ ′
xx′ (t, t ′) =

− i
h̄ Gxx′;σ (t, t ′)Gx′x;σ ′ (t ′, t ), which contains the information

of the electronic quasiparticles in the M. The first term
on the right-hand side accounts for the creation and
annihilation of magnons by means of a spin-flip process; see
Fig. 2(a), while the second term describes a field produced
by an unbalanced electronic density at the interface; see

FIG. 2. Feynman diagrams contributing to the magnon dynamics
due to electron-magnon interactions at the F |M interface. (a) Elec-
tron bubble diagram representing the annihilation and creation of
magnons via spin-flip processes. (b) Diagram for the enhanced spin
polarization. The momentum carried by the magnon is denoted by p.

Fig. 2(b). This imbalance is defined by δn̄ = n̄↑ − n̄↓, where
n̄σ (x1) = nσ − S

∑
x2x3

∫
C∞ dt ′Jx3x2�

σσ
x1x2

(t, t ′)τ z
σσ .

The self-energy in Eq. (12) is written in momentum space
where h̄�st;q = ∑

k⊥ h̄�st;k, with h̄�st;k being the Fourier
transform of Eq. (13). The summation on k⊥ represents a
sum over all electronic wave vectors perpendicular to the
interface. In order to find concrete results, we give ex-
pressions for the retarded/advanced component of the self-
energy, h̄�

(±)
st;xx′ (t, t ′) = 2S

∑
x1x2

Jxx1 Jx′x2�
↑↓,(±)
x1x2 (t, t ′), which

we need later on. Details of its derivation are found in
Appendix C. In addition, we assume that the interfacial ex-
change coupling is nonzero only at the F |N interface, i.e.,
Jxx′ = Jδxx′δxx0 , with x0 the position of the interface. Thus
the Fourier transform of the electron bubble, in energy and
momentum space, is

�↑↓,(±)(k, ε) = 1

2
N (0)a3

[
1

3

(
k

2kF

)2

− 1

]
− N (0)a3ε�μ

16ε2
F

×
[(

2kF

k

)2

+1

]
± i

πN (0)a3kF

8εF |k| (�μ− ε)

× 


[
1 −

( |k|
2kF

)2
]
, (14)

with N (0) the electronic density of states at the Fermi level,
and kF and εF the Fermi wave number and energy, respec-
tively. The 
 function represents the Heaviside step function.

B. Effective action

We are interested in real-time dynamics of the magnon
gas, thus we expect the effective action to depend only on
the retarded part of h̄�st;q(t, t ′). Moreover, since the magnon-
magnon interactions resulting from the anisotropy are short
ranged, we can use the so-called ladder approximation [58].
We project, in Eq. (12), the fields onto the real-time axis
by the substitution φ± = � ± ξ/2, where momentum labels
were omitted. � represents the classical field and the symbol
± refers to the upper and lower branch of the Keldysh contour.
The field ξ denotes the quantum fluctuations which by the
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FIG. 3. (a) Feynman diagram for the dressed Green’s function of
magnons due to the coupling with the M. Bubble diagram represents
the self-energy given in Eq. (13). (b) Diagrammatic representation
for the interacting self-energy and (c) the T -matrix ladder approxi-
mation, where the wavy lines denote the contact interaction Kz. Note
that the self-energy and T matrix are determined by the dressed and
free propagators, respectively.

current purpose are disregarded. Details of this calculation are
outlined in Appendix D. Following Ref. [58], we ultimately
find a one-particle-irreducible long-wavelength effective ac-
tion for the classical field � that is given by

Seff[�,�∗] =
∫

dt
∫

dq
(2π )2

�∗(q, t )

(
ih̄

∂

∂t
− ε′(q) + μm

−a2Kznth − Kz

2
|�(q, t )|2

)
�(q, t ). (15)

The single-particle dispersion relation of magnons is renor-
malized by the magnon-magnon interactions and the coupling
with electrons, and obeying the self-consistent relation

ε′(q) = ε(q) + Re[h̄�(+)(q; ε′(q) − μm)]. (16)

Here, h̄� = h̄�st + h̄�in is the sum of contributions due to
the coupling with electrons and magnon-magnon interactions,
and μm is the chemical potential of magnons. Moreover, we
have included in the action Eq. (15) a mean-field interaction
with the thermal cloud of magnons, whose density is nth =
ζ (3/2)dF (kBTm/4πA)3/2, with dF the thickness of F and ζ the
Riemann zeta function. The derivation of nth is straightfor-
ward and can be found in Ref. [59]. The self-energy h̄�in due
to interactions is diagrammatically shown in Fig. 3. The real
part of h̄�in—which we need later on—reads

Re[h̄�
(+)
in (0, ε0 − μm)] = −a2Kz

∫
dq′

(2π )2

∫
dε′

(2π )
NB

(
ε′ − �μ

kBTe

)
Im[h̄�

(+)
st (q′, ε′)]

[ε′ − ε(q′) + μm]2

− a2K2
z

4A

∫
dq′

(2π )2

∫
dq′′

(2π )2
NB

(
ε(q′) − μm

kBTm

)
NB

(
ε(q′′) − μm

kBTm

) P
q′ · q′′ , (17)

where NB(x) = [ex − 1]−1 is the Bose distribution function
and P denotes the principal value of the integral. In Eq. (17)
we note that first term on the right-hand side represents the
interference between magnons and electrons. This can be
seen in Figs. 3(a) and 3(b) where magnons, and thus their
interactions, are dressed by their coupling with electrons. Its
evaluation is carried out using the result given in Eqs. (13)
and (14). Additionally, the second term corresponds to the
usual shift of the energy due to the two-particle interaction.
To obtain Eq. (17) it has been assumed that the momentum h̄q
is much smaller than the thermal momenta h̄/�th [58], with
�th = √

4πA/kBTm the thermal de Broglie wavelength for the
magnons.

When the energy of the single-particle state ε′(q → 0)
becomes less than μm − a2Kznth, the magnon system becomes
unstable. This signals the formation of a magnon Bose-
Einstein condensate, a precessional instability, or magnetiza-
tion reversal. The criterion for such an instability is thus

ε′(q → 0) + a2Kznth − μm < 0. (18)

Based on this condition, a phase diagram is determined in the
next section. It is worthwhile to comment that Eq. (18) in-
volves self-consistent physical quantities such as the magnon
energy, Eq. (16), magnon temperature, and chemical potential.
Unlike previous works [23,42], all these quantities can be
evaluated self-consistently at leading order in the interfacial

coupling J with the electrons as we outline below. Before
proceeding to evaluate Eq. (18), however, we need to de-
termine the magnon chemical potential and temperature for
a given electron spin accumulation and temperature. This is
done through the Boltzmann equation for magnons with the
metallic coupling acting as an electronic reservoir that trans-
fers spin and energy. Details of this calculation are outlined in
Appendix E. A Gilbert damping constant α, parametrizing the
coupling with phonons, is phenomenologically added. Finally,
a steady state is required in the kinetic equations for the
total density of magnons and total energy. In this limit, we
find relations at thermodynamic equilibrium for the magnon
temperature Tm and chemical potential μm in terms of the
temperature Te and spin accumulation �μ of the electrons.
These read

(1 + χ )Li2(z) + ε0(χ − μ̄) − �μ

kBTm
Li1(z) = ζ̄ ε0Te

kBT 2
m

, (19)

1 + χ

2
Li3(z) + ε0(2χ − μ̄) − �μ

kBTm
Li2(z)

+ ε0[ε0(χ + μ̄) − �μ]

k2
BT 2

m

Li1(z) = ζ̄ 2ε2
0 Te

6k2
BT 3

m

, (20)

where we used the PolyLogarithm function Lis(z) =
�−1(s)

∫ ∞
0 dyys−1/(eyz−1 − 1), with �(s) the gamma function
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FIG. 4. Chemical potential (top panel) and temperature of
magnons (bottom panel) in the steady state as a function of spin
accumulation. The plots are displayed for different values of the
temperature of the electrons.

and z = e(μm−ε0 )/kBTm . Equations (19) and (20), are solved for
the quantities μm = μm(�μ, Te) and Tm = Tm(�μ, Te),
with the following dimensionless parameters: χ =
8αεF /kF SJ2N (0)a4, μ̄ = (μm − ε0)/ε0, and ζ̄ = 8Ak2

F /ε0,
under consideration.

The steady-state result for μm and Tm is shown in Fig. 4
as a function of spin accumulation and various temperatures
Te. These plots were determined for typical values of physi-
cal parameters, namely ε0 ≈ 50 μeV, S = 1, and α = 10−5.
Through the standard value for the spin-mixing conductance
in the YIG|Pt interface, g↑↓ = 1014 cm−2 [14,60], we estimate
the interfacial exchange coupling to be J ≈ 50 meV [60].

IV. CONDENSED AND NORMAL PHASES OF THE
MAGNON GAS

In order to obtain results, we evaluate the instability crite-
rion in Eq. (18). To do so, we first rewrite this equation in the
dimensionless form

ε′(q → 0) + a2Kznth − μm

[JN (0)a3]kBTe
≡ F [δμ, η]. (21)

Here δμ = (�μ + μm − ε0)/kBTe represents the effective
chemical potential and η = Tm/Te is the ratio between
magnons and electrons temperature. Thus, a simplified

expression for the instability criterion is obtained via
F [δμ, η] = e0 + e1η

3/2 − e2δμNB(−δμ) − δμ. The coeffi-
cients e0, e1, and e2 are dimensionless parameters that obey

e0 = ε0 − μm

kBTe

(
1

JN (0)a3
− 1

)
+ 2JS

kBTe
− K2

z

4aAkBTeJN (0)

×
∫

dq′

(2π )2

∫
dq′′

(2π )2
NB

(
ε(q′) − μm

kBTm

)

× NB

(
ε(q′′) − μm

kBTm

) P
q′ · q′′ , (22)

e1 =
[

ζ (3/2)

(4π )3/2

](
kBTe

A

)1/2 KzdF

AJN (0)a
, (23)

e2 = a3kF KzJS

2ε0εF

∫
dq′

(2π )2
P

ln
[ 1+

√
1−(q′/2kF )2

q′/2kF

]
(1 − ε(q′)/ε0)2 . (24)

These parameters show the effect from interfacial cou-
pling, magnon-magnon interactions, and thermal cloud on the
magnon gap. Note that e2 is proportional to the magnon-
magnon interaction Kz and the magnon-electron coupling
J , thus representing the interference between magnons and
electrons. In fact, the two-particle interaction occurs between
magnons that are dressed by their coupling with electrons.
Taking ε0 ∼ Kz and the critical temperature of the F Tc ∼
A/a2kB � Te we estimate the dimensionless parameters as
e0 ∼ [1 − ( Kz

A/a2S )]( Kz

kBTe
)( εF

J ), e1 ∼ ( Te
Tc

)
1/2

( Kz

kBTc
)( εF

J )( dF
a ), and

e2 ∼ ( J
εF

). For typical values we expect e2 � 1, e0 = O(1),
but that e1 can be rather large.

The phase diagram is shown in Fig. 5 as a function of
the effective chemical potential δμ and thermal imbalance
η, respectively. It consists of a stable and unstable magnon
phase, separated by the line F [δμ, η] = 0, for different values
of e2 [panel (a)] and e1 [panel (b)]. It is worthwhile to note
that in the limit e2 � 1, i.e., for J � εF , the criterion for
instability reduces to that for a Bose-Einstein condensation
in a Bose gas in the Popov approximation [59], for which the
critical temperature is ∝(δμ − e0)2/3. On the other hand, the
unstable region diminishes as we increase both parameters
e1 and e2. In particular, when e2 > 1 the unstable region is
suppressed. This can be further analyzed by taking the limit
η → 0 in Eq. (21), where we see that F → e0 + (e2 − 1)δμ,
for large δμ. Clearly, when e2 > 1 the magnon gas never
shows an instability if e0 > 0. The term proportional to e2

stems from combined effects of magnon-electron coupling
and magnon-magnon interactions. We thus find that if these
combined effects are sufficiently strong, an instability does
not occur. While our perturbative approach is not valid in
this regime, it still hints at interesting strong-coupling effects.
Finally, we remark that at zero spin accumulation, e0 and e2

reflect the shift in the energy of single-particle ground state
due to the electron-magnon coupling.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a formalism to microscop-
ically investigate how spin currents across a F |M interface
lead to instabilities in the magnetic insulator. Our study has
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FIG. 5. Phase diagram for the stability of a driven magnon
system as a function of the thermal imbalance η and effective
chemical potential δμ in units of the thermal energy kBTe. Each
curve delimits both phases, being the right-hand side of the graph
where the condition Eq. (18) is fulfilled and thus corresponding to the
unstable phase of magnons. In panel (a) we have e0 = 0.1, e1 = 0.5,
and e2 = 0.1 − 0.9. Meanwhile, in panel (b) e0 = 0.1, e2 = 0.1, and
e1 = 0.1 − 0.9.

been based on a minimal microscopic model for the electrons
and magnons in the magnetic insulator, and their coupling.
While a direct connection between our results and exper-
iments might be hard to establish, we do find that strong
electron-magnon coupling and magnon-magnon interactions
may prevent instabilities from occurring. This finding may be

of relevance once interfacial electron-magnon interactions are
being experimentally explored beyond the YIG-Pt paradigm.

Here, we have investigated electron-magnon and magnon-
magnon interactions perturbatively. Future work should ad-
dress the effects of strong interactions also by other means,
i.e., by using the renormalization group. Another interesting
direction is extending our theory beyond the linear stability
analysis performed here to include the description of the
dynamics in the unstable region of the phase diagram.
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APPENDIX A: MAGNON-MAGNON INTERACTION

Here we provide the exact expression for the in-
teracting Hamiltonian of magnons. This is obtained by
introducing the Holstein-Primakoff bosons approximated

up to order 1/
√

S; Ŝ+
x ≈ √

2Sb̂x − (2
√

2S)
−1

b̂†
xb̂xb̂x, Ŝ−

x ≈√
2Sb̂†

x − (2
√

2S)
−1

b̂†
xb̂†

xb̂x, and Ŝz
x = (S − b̂†

xb̂x). Then we
expand up to fourth order in magnon operators on the spin
Hamiltonian Eq. (1). Thus in momentum space the strength of
interaction obeys

V (2,2)
q1,q2,q3,q4

=
[

Jez

4N

(
γq1 + γ−q2 + γ−q3 + γq4− 4γq4−q2

) + Kz

2N

]

× δq1+q2−q3−q4 , (A1)

where N is the number of spins and γq = z−1 ∑
δ eq·δ , with

z the coordination number and the sum runs is over next-
nearest neighbours. In the long-wavelength limit (q → 0) the
strength of interactions becomes independent on the exchange
coupling, V (2,2)

q1,q2,q3,q4
= (Kz/2N )δq1+q2−q3−q4 .

APPENDIX B: DERIVATION OF EFFECTIVE ACTION
Sm[φ, φ∗] (Eq. (12))

In this section we derive the effective action given in
Eq. (12) from Eq. (7). To start with, we consider explicitly
the generating functional [Eq. (6)] as

Z =
∫

Dφ∗DφDψ∗Dψexp

{
i

h̄
S0[φ, φ∗]

+ i

h̄

∫
C∞

dtdt ′ ∑
xx′

∑
σσ ′

ψ∗
x,σ (t )Kxx′

σσ ′ (t, t ′)ψx′,σ ′ (t ′)

}

=
∫

Dφ∗DφDexp

{
i

h̄
S0[φ, φ∗]

}
det

[
− i

h̄
K

]
, (B1)

where K = G−1 − δK is the Kernel defined in Eq. (9). Next,
we use the identity det[A] = exp{Tr[Log(A)]} to expand
Eq. (B1) in powers of δK. Approximating up to second order

104426-6



MANY-BODY THEORY OF SPIN-CURRENT DRIVEN … PHYSICAL REVIEW B 99, 104426 (2019)

in the electron-magnon coupling we obtain

det[K] = exp{Tr[ln(G−1 − δK)]}

≈ exp

{
Tr[lnG−1] − 1

h̄
Tr[GδK]

− 1

2h̄2 Tr[GδKGδK]

}
, (B2)

where in the second line we have used Eq. (10). The two last
terms on the right-hand side of Eq. (B2) can be explicitly
written as

Tr[GδK] =
∫
C∞

dtdt ′ ∑
xx′

∑
σ

Gxx′;σσ (t, t ′)δKx′x
σσ (t ′, t ) (B3)

and

Tr[GδKGδK]

=
∫
C∞

dtdt1dt2dt3
∑

xx1x2x3

∑
σσ ′

Gxx1;σσ (t, t1)

× δKx1x2
σσ ′ (t1, t2)Gx2x3;σ ′σ ′ (t2, t3)δKx3x

σ ′σ (t3, t ). (B4)

Using the definition for δK given by Eq. (11) we rewrite
the sum of Eqs. (B3) and (B4) as

1

h̄
Tr[GδK] + 1

2h̄2 Tr[GδKGδK]

= i

h̄

∫
C∞

dtdt ′ ∑
xx′

φ∗
x (t )h̄�st;xx′ (t, t ′)φx′ (t ′), (B5)

with the self-energy defined by Eq. (13). Note that linear,
cubic contributions and quartic in φ do not appear in Eq. (B5).
The first two terms involve non-spin-conserving processes,
e.g., like those induced by spin-orbit coupling, which are
not considered in the model. Quartic terms in φ are nonzero
but their contribution at low temperatures becomes negligible
with corrections being of the order of O[�μ/(kBTe)2].

APPENDIX C: MAGNON SELF-ENERGY DUE TO
COUPLING WITH ELECTRONS

In this Appendix, we evaluate the self-energy of the
magnons due to their coupling with electrons. We start out
with some general remarks for functions on the Keldysh
contour.

A function F (t, t ′), whose arguments are defined on the
Keldysh contour, can be decomposed into analytic parts by
means of

F (t, t ′) = F δ (t )δ(t, t ′) + 
(t, t ′)F>(t, t ′) + 
(t ′, t )F<(t, t ′),

(C1)

with 
(t, t ′) the Heaviside step function on the Keldysh
contour and F δ (t ) represents a possible δ singularity. The
retarded and advanced components of F (t, t ′) are related to
the analytic parts by

F (±)(t, t ′) = ±
[±(t, t ′)][F>(t, t ′) − F<(t, t ′)], (C2)

where 
[±(t, t ′)] ≡ 
[±(t − t ′)]. We also have the Keldysh
component

F K (t, t ′) = F>(t, t ′) + F<(t, t ′) (C3)

that typically is associated to the strength of fluctuations.
Applying the above definitions to Eq. (13), we see that

the Fourier transform of the retarded (advanced) electron
bubble is

�σσ ′ ,(±)(k, ε) =
∫

dε′

(2π h̄)

∫
dε′′

(2π h̄)

∑
k′′

Ak+k′′ (ε′)Ak′′ (ε′′)

× NF (ε′ − μσ ) − NF (ε′′ − μσ ′ )

ε′ − ε′′ − ε± , (C4)

where Ak(ε) denotes the spectral function (k being a three-
dimensional wave vector), NF (ε) = [eε/kBTe + 1]−1 the Fermi
distribution function, and μσ the chemical potential of elec-
trons with spin projection σ . Ignoring electronic lifetime
effects, we use Ak(ε) = 2π h̄δ(ε − εk ) and approximate up
to first order in spin accumulation. We then find that in
the long-wavelength and small frequency limit the retarded
(advanced) and Keldysh components of electron bubble at low
temperatures read

�↑↓,(±)(k, ε) = 1

2
N (0)a3

[
1

3

(
k

2kF

)2

− 1

]
− N (0)a3ε�μ

16ε2
F

×
[(

2kF

k

)2

+ 1

]
± i

πN (0)a3kF

8εF |k| (�μ−|, ε)

× 


[
1 −

( |k|
2kF

)2
]

(C5)

and

�↑↓,K (k, ε) = − iπN (0)a3mkBTe

h̄2kF |k| 


[
1 −

( |k|
2kF

)2
]
, (C6)

with a the lattice constant, m the mass of electrons, and
N (0) = mkF /π2h̄2 the electronic density of states at the Fermi
level. The imaginary part of the self-energy Eq. (13) repre-
sents the rate of change of the number of magnons. From
Eq. (14), we see that the evolution of the number of magnons
corresponds to the competition between the spin transfer
(∝�μ ≡ μ↑ − μ↓) and spin pumping mechanisms (∝ε). In
principle, the magnon-electron coupling matrix element can
be determined in terms of the mixing conductance, but this
identification will not be pursued here [5,6].

APPENDIX D: LADDER APPROXIMATION

In Sec. III A, we derived an action for the gas of magnons,
which are excited by the combined effects of a thermal
gradient and the spin-transfer torque across the F |M interface.
Here, we discuss more details of this derivation.

We introduce the order parameter 〈φq(t )〉, that charac-
terizes the instability. This is accomplished by performing
a Legendre transformation [61] on the magnon field vari-
ables that ultimately leads to an effective action for �q(t ) ≡
〈φq(t )〉. With this aim we start out by introducing the
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generating functional for Keldysh Green’s functions, follow-
ing Ref. [58], as

Z[J, J∗] =
∫

D[φ∗]D[φ]

× exp

{
i

h̄
Sm[φ, φ∗] + i(Jαφα + c.c.)

}
, (D1)

where Jα and Jα are sources that are defined on the Keldysh
contour and summation over repeated indices means an inte-
gration over space and time coordinates. Then the Legendre
transformation [61]

�[�,�∗] ≡ �αJα + Jα�α − W [J, J∗], (D2)

where W [J, J∗] = −ilnZ[J, J∗] is the generating functional
for connected Green’s functions, which can be evaluated
in terms of a perturbation series. The order parameter is
then �α ≡ δW/δJα = 〈φα〉. The functional −h̄�[φ, φ∗], that
generates all one-particle irreducible diagrams, corresponds
to the effective action. We now do perturbation theory in
the interaction to evaluate the effective action in terms of

the coefficients �(2n) (up to n = 2) of the term that is of
order n in the fields. Those coefficients in momentum space
correspond to

h̄�(2)(q; t, t ′) = −
[(

ih̄
∂

∂t
− ε(q) + μm

)
δ(t, t ′)

− h̄�st(q; t, t ′)
]

+ h̄�in(q; t, t ′), (D3)

h̄�(4)(q, q′, Q; t, t ′) = T (q, q′, Q; t, t ′) + T (−q, q′, Q; t, t ′),

(D4)

where the interacting self-energy h̄�in was introduced by the
Dyson equation for the magnon Green’s function G = G0 +
G0 h̄�inG. Here G0 is the dressed magnon propagator due to
the contact with the M; see Fig. 3(a), according to Eq. (13).
The two-body interaction is evaluated within the T -matrix
(or ladder) approximation [58], diagrammatically indicated
in Fig. 3(c), which describes the scattering of two magnons
that at time t ′ have the momenta h̄(Q ± q′) and at time t the
momenta h̄(Q ± q). The exact interacting self-energy obeys
the relation

h̄�in(q; t, t ′) = i
∫

dq′

(2π )2
h̄�(4)(q − q′, q − q′, q + q′; t, t ′)G(q′; t ′, t ). (D5)

In Fourier space the expression for the retarded component of the interacting self-energy Eq. (D5) take the form

h̄�
(+)
in (q; ε) = i

∫
dq′

(2π )2

∫
dε′

(2π )
�

(+)
4 (q − q′, q − q′, q + q′; ε + ε′)G (+)(q′; ε′)h̄�<

st (q
′; ε′)G (−)(q′; ε′)

+ i
∫

dq′

(2π )2

∫
dε′

(2π )
�<

4 (q − q′, q − q′, q + q′; ε + ε′)G (−)(q′; ε′). (D6)

The evaluation of Eq. (D6) is carried out by expanding up to
second order in the coupling with the leads. In this approach
the various components of the Green’s function for magnons
are approximated by

G (±) = G (±)
0 + G (±)

0 h̄�
(±)
st G (±)

0 + · · · , (D7)

G< = G (+)h̄�<
st G (−) = G (+)

0 h̄�<
st G

(−)
0 + · · · , (D8)

as can be seen in Fig. 3(b). On the other hand, the magnon-
magnon interactions will be approximated by a contact in-
teraction, and therefore T(±)(q, q′, Q; ε) ≈ Kz

2 . After some
manipulations [58], we arrive at the semiclassical effective
action Eq. (15), describing the low-energy dynamics of the
interacting magnons.

APPENDIX E: SELF-CONSISTENT RELATIONS:
CHEMICAL POTENTIALS AND TEMPERATURES

In this section we compute the chemical potential and tem-
perature of magnons assuming that magnons are sufficiently
close to equilibrium.

The total spin-current flowing across the interface is quan-
tified by the rate of change of magnons in the F , that may be
obtained following standard methods described in Ref. [58].
It consists of analyzing the stochastic dynamics of magnons

due to the coupling with the M, that ultimately turns out in a
Boltzmann equation. For this purpose we split the magnon
field, in Eq. (12), into semiclassical and fluctuating parts
according to φq(t±) = ϕq(t ) ± ξq(t )/2, where t± refers to
the forward and backward branches of the Keldysh contour,
respectively, and ξq(t ) the fluctuations. After integrating out
the fluctuations ξq(t ) in the action, Eq. (12), we find that the
field ϕq(t ) obeys the Langevin equations

ih̄
∂

∂t
ϕq(t ) = (ε(q) − μm)ϕq(t )

+
∫

dt ′h̄�
(+)
st (q; t, t ′)ϕq(t ′) + ηq(t ) (E1)

and

−ih̄
∂

∂t
ϕ∗

q (t ) = [ε(q) − μm]ϕ∗
q (t )

+
∫

dt ′ϕ∗
q (t ′)h̄�

(−)
st (q; t, t ′) + η∗

q(t ) (E2)

with the Gaussian stochastic noise ηq(t ) and η∗
q(t ) is zero on

average and has the correlations

〈ηq(t )η∗
q(t ′)〉 = ih̄

2
h̄�K

st (q; t − t ′). (E3)

In the low-energy approximation we see that the strength
of the noise is evaluated directly from the combination of
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Eqs. (13) and (C6). This relation between noise and damping
stems from the fluctuation-dissipation theorem [62] and en-
sures us that the magnon gas relaxes to thermal equilibrium.

Note that to obtain Eqs. (E1) and (E2), as a first step, we
have not taken into account the interaction between magnons.
However, the collision terms will be included next in the
Boltzmann equation. We take into account the leading low-
energy contribution of the self-energy, i.e.,

∫
dt ′h̄�

(+)
st (q; t, t ′)

ϕq(t ′) � [h̄�
(+)
st (q, 0) + h̄�(+)′

st(q, 0)ih̄ ∂
∂t ]ϕq(t ). Finally, the

rate equation for the magnons due to the coupling at the
interface with the electron reservoir is written explicitly as

ih̄

(
∂n(q, t )

∂t

)∣∣∣∣
st

= 2iIm[h̄�(+)′
st(q, 0)](εq − μm)n(q, t )

+ 2iIm[h̄�
(+)
st (q, 0)]n(q, t ) − 1

2
h̄�K

st (q, 0)

(E4)

with n(q, t ) = 〈φ∗
qφq〉 and 〈. . . 〉 stand for averaging over

noise realization. Therefore, the full dynamics for the distri-
bution of magnons in the F is determined by the Boltzmann
equation

∂n(q, t )

∂t
= −2αωqn(q, t ) +

(
∂n(q, t )

∂t

)∣∣∣∣
st

(E5)

with α the Gilbert damping constant and where the collisions
term has been considered. Taking moments of Eq. (E5) we
obtain a closed set of equations for the total number of
magnons and energy. In equilibrium, there will be neither
spin flow nor energy transfer through the interface. This is
implemented by requiring ∂n(t )/∂t ≡ ∂

∂t

∑
q n(q, t ) = 0 and

∂ε(t )/∂t ≡ ∂
∂t

∑
q εqn(q, t ) = 0, that turn out in the pair of

Eqs. (19) and (20).
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