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Two-dimensional magnetic insulators exhibit a plethora of competing ground states, such as ordered
(anti)ferromagnets, exotic quantum spin liquid states with topological order and anyonic excitations, and
random singlet phases emerging in highly disordered frustrated magnets. Here we show how single-spin qubits,
which interact directly with the low-energy excitations of magnetic insulators, can be used as a diagnostic of
magnetic ground states. Experimentally tunable parameters, such as qubit level splitting, sample temperature,
and qubit-sample distance, can be used to measure spin correlations with energy and wave-vector resolution.
Such resolution can be exploited, for instance, to distinguish between fractionalized excitations in spin liquids
and spin waves in magnetically ordered states, or to detect anyonic statistics in gapped systems.
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I. INTRODUCTION

The subtle interplay between strong correlations, geomet-
ric or exchange frustration, disorder and quantum fluctuations
in insulators with spin degrees of freedom can lead to a
variety of ground states that often compete closely in energy
[1-3]. The most common phases exhibit long-range magnetic
order, which spontaneously break the underlying spin-rotation
symmetry of the Hamiltonian. Alternatively, strong quantum
fluctuations in lower-dimensional systems can lead to exotic
quantum spin liquid (QSL) phases, which are characterized by
intrinsic topological order and anyonic excitations described
by lattice gauge theories [4,5]. Another possible ground state
is the valence bond solid (VBS), which preserves spin-rotation
symmetries but breaks the discrete translation symmetry of
the crystal [6,7]. In the presence of strong disorder in the
exchange coupling between neighboring spins, the VBS can
form a random singlet phase, which statistically preserves all
symmetries, but is topologically trivial with no long-range
quantum entanglement [8,9]. Given the wide spectrum of pos-
sibilities, it is of primary importance to develop experimental
probes that can distinguish between these competing ground
states and find convincing signatures of their corresponding
emergent collective excitations.

The recent introduction of single-spin qubits, such as ni-
trogen vacancy (NV) centers in diamond [10], as nanoscale
probes of correlated materials enables new pathways to access
the physics of magnetic insulators. Optical initialization and
read-out capabilities of their spin states, precise manipulations
by resonant microwave pulses, efficient coupling to local
magnetic fields, and excellent spatial resolution, make spin
probes an ideal tool to probe both statics and dynamics of
magnetic systems. Since the Zeeman splitting of the spin qubit
can be measured optically with great accuracy, spin probes can
be used to image local magnetic textures, even those induced
by a single spin [11]. Furthermore, the spin relaxation time
induced by intrinsic fluctuations in a material can be used to
probe charge and spin dynamics. For instance, the relaxation
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time can be used as a diagnostic of different regimes of
electronic transport, ranging from ballistic to diffusive to hy-
drodynamic [12], spin-charge separation in one-dimensional
systems [13], and magnetic monopoles in spin-ice materials
[14]. In metallic states, noise is dominated by transverse
fluctuations of charge currents, provided the system is not
extremely localized [12]. However, in an insulator with a large
gap to charged excitations, the magnetic noise is dominated by
spin fluctuations. Thus spin qubits can serve as a novel probe
to distinguish between different competing ground states in
insulating materials.

In the present work, we find the characteristic signatures
of the underlying magnetic ground state on the spin qubit
relaxation time. By tuning experimental parameters, we show
how such signatures can be exploited to diagnose ground
states. The timescale for the relaxation of a spin qubit with
level splitting w depends on the magnetic noise spectrum of
an insulator, which in turn is related to the spin-spin (retarded)
correlation function

Capli, j, w) = —i/o dre' ([ S (1), sf(O)]), (1)

where (---) is a short-hand notation for ensemble average.
In magnetically ordered states, Cys is dominated by gap-
less single-particle collective modes called spin waves, or
magnons, which are the S =1 Goldstone bosons of the
spontaneously broken spin-rotation symmetry, see Figs. 1(a)
and 1(b). In quantum spin liquid (QSL) phases, the exci-
tations carry fractional quantum numbers corresponding to
the global symmetries of the Hamiltonian. For example, the
spin-carrying excitations are S = 1/2 spinons, each of which
may be understood as “half a magnon.” While these can be
created only in pairs by local operators, they can propagate
as independent collective modes and therefore lead to a broad
two-particle continuum in the dynamic spin structure factor,
see Fig. 1(c). This is distinct from the sharp peak that is seen
for single particle excitations such as magnons. Finally, in
a clean valence bond solid (VBS) state, the excitations are
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FIG. 1. (a) Experimental setup showing a spin qubit located at a
distance d from a two-dimensional magnetic insulator. (b) Detection
of low-energy S = 1 excitations in magnetically ordered phases
using a single-spin qubit. (c) Schematic depiction of the detection
of S = 1/2 fractionalized excitations in spin liquids. (d) Detection
of low-energy excitations in disordered valence bond solids.

gapped S = 1 triplons—gapless Goldstone modes are absent
as the relevant broken symmetry (i.e., lattice translation) is
discrete. In a random singlet phase, which is the theoretically
proposed fate of VBS phases in highly frustrated inorganic in-
sulators in presence of disorder [8], the elementary excitations
are gapped. However, the system appears gapless as the there
is a distribution of low-energy levels, induced by pairing of
unbonded spins [Fig. 1(d)], which scales as a power law of
energy for sufficiently large samples.

The emergent excitations for gapped spin liquids may
have anyonic statistics, which have been difficult to detect
in traditional settings. Inspired by the recent proposal [15]
to use threshold spectroscopy to detect anyonic statisics, we
also outline how magnetic noise spectroscopy via spin probes,
with its excellent energy and spatial resolution, can provide
convincing signatures of nontrivial braiding statistics.

Importantly, spin qubits offer several significant advan-
tages over conventional experimental probes of solid state sys-
tems. As we show explicitly below, the spin qubit is sensitive
to the magnetic noise at wave vectors ¢ ~ d~' [d being the
sample-probe distance, see Fig. 1(a)] and frequency w, which
is the level splitting of the qubit. Thus, by using both distance
and transition frequency as tuning parameters, the dynamic
spin structure factor can be measured with energy (up to
several millidegrees Kelvin) and momentum resolution (up to
a few nanometers). One major issue with most probes is that
the physical observable they measure depend upon responses
from multiple parts of the system, which can be difficult to
isolate from one another. For example, the neutron-scattering
cross-section and specific heat measurements in insulators
depend on the cumulative contributions from spin excitations
and phonons. Single-spin qubits bypass the problem by de-
tecting spin fluctuations directly without contamination from
phonons. Spin qubits do not require the sample to be placed
in a magnetic field for measurements, and therefore are not
resolution-limited by magnetic field gradients unlike NMR.
Further, because they are pointlike probes with nanome-

ter resolution, they have the potential to bridge the large
length-scale gap between scanning tunneling microscopy and
global transport or thermodynamic susceptibility measure-
ments. In addition, as the spin probe does not require a driving
field, it is minimally invasive. This is not generally true
for transport probes that distinguish different magnetic states
[16—18]; these run the risk of driving the system into nonlinear
responses via external perturbing fields, making the results
challenging to interpret. Quite a few probes, which have been
suggested to provide smoking gun evidence for exotic states in
quantum magnetism, have significant experimental hurdles to
their realization [5]. On the contrary, spin qubits are currently
being used to measure local magnetic textures [19-21], spin
chemical potentials [22], and ferromagnetic phase transitions
in metals [23] over a wide range of physical parameters like
temperature/pressure. As a result, they hold great promise for
detection of novel phases in insulating magnets, particularly
in layered quasi-two-dimensional materials or the surfaces of
three-dimensional materials.

The rest of the paper is organized as follows. In Sec. II,
we develop the general formalism for noise magnetometry
in insulating two-dimensional states, and explicitly compute
the relaxation timescale 7} as a function of spin-correlation
functions. In Sec. III, we apply the formalism to magnetically
ordered states, quantum spin liquids and clean/disordered
VBS states, and discuss their salient features which can be
used to pinpoint the ground state in a given material. In
Sec. IV, we derive the dependence of the relaxation time
on the anyonic statistics in gapped systems. In Sec. V, we
discuss the implications of our results for promising material
candidates for the different phases. In Sec. VI, we summarize
our main results. The Appendices contain the details of the
calculations.

II. GENERAL FORMALISM FOR RELAXATION TIME

We start by developing a general formalism to relate the
relaxation time 7} of a spin qubit induced by the magnetic
noise generated by a two-dimensional insulating sample. This
treatment closely follows the corresponding formalisms for
two-dimensional metals and one-dimensional Luttinger lig-
uids [12,13].

We consider the spin qubit placed at rq = (0, 0, d), above
the two dimensional insulator on the x-y plane, as shown in
Fig. 1. The spin probe can be treated as a two-level system
with an intrinsic level splitting of @y, which can be varied by
a static Zeeman field B. The Hamiltonian of the combined
probe and magnet system is given by

H=Hq+ Hqm + Hn- 2)
The term H, is the spin-qubit Hamiltonian (% = 1),

Hy= ity 0, 3)

where 14 is the unit vector along the direction of a)oﬁ; + By,
and fz:l is the direction of the intrinsic polarizing field of the
qubit. For instance, in the case of NV centers in diamond, ﬁél
is the axis of the NV defect in the diamond lattice. Thus w =
(a)g + Bg + 2woBy - ﬁa)l/ 2 is the resulting probing frequency.
The term H,, is the Hamiltonian of the two-dimensional
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magnetic sample, which will be specified below for different
ground states. Finally, the term Hq., is the qubit-magnet
coupling induced by dipole-dipole interactions:

HoMB S 3(8S;-rr;
Hqm = Upo - B, B=?Z|:r_-3’_ JrSJ /:|.(4)

J J

Here, B is the time-dependent magnetic field at the position
of the probe induced by spin fluctuations in the 2D magnet,
and r; = (x;, y;, —d) is the relative position between the jth
spin in the two-dimensional lattice and the probe.

The relaxation time of the qubit can be related to the
retarded correlators of the fluctuating magnetic field arising
from the sample via Fermi’s “golden rule” and the fluctuation-
dissipation theorem. In thermal equilibrium at temperature
T, the 2D insulator is described by the density matrix p =
>, Pnln)(n|, with |n) the eigenstates of H,, with energy &,,,
and p, = e ®/T. The absorption rate 1/ Ty, and emission
rate 1/ Ty, is obtained from Fermi’s “golden rule” using the
initial state |i) = |[—)q ® p and |i) = |[+)q ® p, respectively,
(for g = 2)

1/Tabs.em =2m Z pnB;EnB,fna(w =+ Smn)» (5)

where B, = (n|B¥|m), BX = B* £iB”, and &, is the en-
ergy difference between states m and n, &,,, = &, — &,. The
relaxation rate, defined as 1/ Ty = [1/ Typs + 1/ Tem]/2, can be
expressed as

1 2 oo .

T, 2

o]

where {,} denotes anticommutation. Using the fluctuation-
dissipation theorem, 1/7] can be expressed in terms of the
retarded correlation function as

b _ (moms)?
T, 2

CR po(@) = —i/oodtel‘w’([B“(r,z), Bf(r,0)).  (7)
0

coth (5= ) (= Im[CF 4. (@)]).

Finally, 1/T) can be expressed in terms of spin-spin correla-
tion functions by inserting Eq. (4) into Eq. (7) and going into
momentum space (a = lattice spacing):
U pomy (2) 4°q 24 >
— = coth( — —e
T 8a? 2T (2m)?

x[CL (g, 0)+C_(q,0)+4C] (g, )], (8)

which is the central result of this section. Here, Cop(q, @) =
= > e riTrCos(i, j, ) is the spatial Fourier transform of
the spin-correlation function defined in Eq. (1), where we have
used its translational invariance (N = number of lattice sites),
and C;ﬁ = —Im[Cyp].

The relaxation time has several experimentally tunable
knobs, which can be varied to provide valuable information
about spin-spin correlations in the sample. Equation (8) shows
that the ¢ integral has an argument of g®e~2¢¢ originating
from the dipole-dipole interaction represented in momentum
space and the Jacobian for 2D integration, resulting in a
filtering function which is peaked around ¢ ~ d~'. Such d

dependence allows to selectively probe Cqp at different wave
vectors. By the same token, it is also possible to vary w with
a static magnetic field at fixed 7 and study the relaxation
time at different energies or, alternatively, study the relaxation
time as a function of temperature 7 at fixed w. All of these
furnish valuable information about the spin correlations in the
insulating sample with energy and momentum resolution.

To illustrate how the relaxation time varies as a function of
experimentally tunable parameters, we consider the simplest
case of probing paramagnetic fluctuations at different values
of d. In this case, it is possible to relate 7} to the magnetic
field created by spins within a length scale D of the sample.
Typically, D ~ d is related to the sample-probe distance, but
it can also be determined by other emergent length scales in
the system (for instance, magnon momentum at frequency o,
see below). The relaxation time is proportional to magnetic
field fluctuations, which are induced by magnetic dipoles,
B ~ pougS; /D3, which results in

1
7 % Kotk D _([Si/ D, Sia/ Do
ij

_ MoMg

D6

In the last step, we have made a continuum approximation,
and used translational invariance of the spin correlations to
separate the integration into center of mass and relative coor-
dinates (R and r, respectively), both of which are integrated
over regions of linear dimensions D. For a trivial paramagnet
(as well as gapped spin liquids), the spin correlations decay
exponentially with a correlation length of a few lattice spac-
ings. Therefore the integral over r gives a constant, the R
integral gives a factor of D?, resulting in a relaxation time that
scales as D~ for paramagnetic insulators with a spin gap.

Different power laws of D are obtained in mag-
netic materials with power-law correlations of the form
([Se(r), S (0)]),, o< 1/r%, such as gapless spin liquids. The
precise exponent § depends on the dispersion of the gapless
excitations, presence of disorder and nature of gauge fluctua-
tions in the spin liquid phase. In this case, the integral over
r results in fdzr([Sa(r), S4(0)1), ~ D*? and, hence, the
relaxation time scales as D~*+% with distance.

In other regimes, the length scale D is emergent from
the sample physics and is related to the frequency depen-
dence of the dynamic spin correlations. In magnetically or-
dered phases, the transverse spin correlations at low ener-
gies have a delta function of the type §(w — vsq?), where
y =2 (1) for (anti)ferromagnets (and vy is the inverse ef-
fective mass/spin-wave velocity). This fixes a length scale
D =q ' = (w/v,)" that is tied to the probe frequency. In
spin-liquid phases at low temperatures, the imaginary part of
spin-correlations have a step function form 6 (w — vgq), which
again define the relevant distance scale D = v/w for low
probe frequencies. In such cases, the power law in D translates
to power laws in the probe frequency w. All these regimes will
be discussed case by case below.

Our results are valid for a single two-dimensional layer
of insulating magnetic material. In the case of a quasi-two-
dimensional material, as is relevant for several frustrated
magnets, the weakly coupled layers within a distance D will

/ &R / Pr{Sy(r). SeOlo. )
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FIG. 2. The honeycomb lattice of the Kitaev model. n; and n,
are the two Bravais lattice vectors, and §; (i =1, 2, 3) indicate
nearest neighbors. The orange and gray circles correspond to the
two sublattices. The rounded triangle at each site shows the four
Majorana fermions used to write the Pauli spin operators. The free
¢ Majorana fermion is indicated by the brown dot. The red, green,
and blue dots refer to b7, b}, and b} Majorana fermions, and the
corresponding bonds denote the bond variables uf; along the x, y,
and z links, respectively. W), is the flux operator defined in the main
text, W, = —1 correspond to gapped vison excitations.

give rise to independent contributions that add incoherently,
and therefore the observed power law will be D~(+9 The
case of fully three-dimensional materials require us to go
beyond the independent layers approximation, and is left for
future work.

III. APPLICATIONS TO GAPLESS SYSTEMS

In this section, we discuss the characteristic 1/ T; behavior
for two-dimensional gapless phases, including magnetically
ordered states with Goldstone modes, topologically ordered
spin liquids with Dirac cones or Fermi surfaces, and dirty
VBS phases with gapless spin defects that form random
singlets. The phases discussed in the present section, with the
exception of U(1) spin liquids, can be obtained from a spin
Hamiltonian on the honeycomb lattice with local interactions:

Hn=D ) Jifofof+) Bi-oi (10

(ij o

This Hamiltonian is an extension of the Kitaev model [24]
with additional perturbations and/or disorder. In Eq. (10),
the link connecting nearest-neighbor sites in the direction
u=x,y,z is labeled as (ij)* (see Fig. 2) and B; is a
local magnetic field. A priori, the magnetic field and all the
couplings are allowed to vary spatially so that we can describe
both the clean and dirty limits, which give rise to qualitative
distinct behaviors.

We emphasize that Eq. (10) is not a description of any
particular candidate material. Instead, it is constructed for the
sole purpose of describing magnetic phases in different limits.
Importantly, the character (dispersion, statistics, etc.) of low-
energy spin-carrying excitations in continuous symmetry-
breaking or topological ordered phases, which are responsi-
ble magnetic fluctuations, are robust and independent of the
details of the parent Hamiltonian. Hence, H;, in Eq. (10)
provides a convenient starting point to study magnetic noise
in several phases.

A. Magnetically ordered states

Let us consider first the Heisenberg Hamiltonian with
Ji’j‘.'a = —Jy < 0, such that

Ho=—Ju Yy 00 (11)
(i)

Assuming that the system is in the ferromagnetically ordered
phase below the critical temperature 7T, and without loss of
generality, we set the z axis as the axis of spin polarization
(which may be canted from the two-dimensional plane of the
systems). Defining the operators cr]#E =0} £io;, the Hamil-

tonian can be expressed as

Jn + - -+ 7.2
Hn = -5 (O‘i o, +o; 0/ + 20; aj). (12)
(i,J)

The low-energy, effective theory of the Heisenberg ferromag-
net can be described in terms of bosonic degrees of free-
dom using the Holstein-Primakoff transformation for spin-1/2
operators, ;" = a/ V1 —ala;, 07 =~/1—dala;al, and 67 =

—-1/2+ ajai, where [a;, a}] = §;, ;. To quadratic order in q;

and al.T , this results in the spin wave Hamiltonian H,, =~ Hy

Hu=—Ju Y alaj+Jny ala. (13)

(i, J)
After taking Fourier transform, a; = \/LﬁZl ekrig; and

al = \/LN >, e7ikrigl the Heisenberg Hamiltonian describ-

ing low-energy spin waves is obtained:
JH ik-8;
Hi= 00 - voman. =) e (14)
k J

Here, 8; denotes the nearest-neighbor vectors in the honey-
comb lattice, see Fig. 2. Interactions between spin waves are
governed [25] by the coupling constant Ja?(k - p) and are
negligibly small when temperature or energy (and thus the
momenta k and p of colliding particles) is small. As such,
the spin correlation functions are determined within single-
particle physics,

q°

C;;:$(q’ w) = 8(60 + Eq), 6q = %7

where quadratic dispersion is valid for ga < 1. The correlator
C.., instead, is a four-point correlation function which probes
magnon transport. Usually it takes a diffusive form C,, ~
1/(w+iDg?) and gives a contribution much smaller than
Ci+ when o lies in the spin-wave continuum.

As aresult, the relaxation time of a spin qubit in close prox-
imity to a 2D ferromagnet is governed by emission/absorption
of long-wavelength magnons with energy w. In particular,
the frequency, temperature and distance dependence of the
relaxation time can be obtained from Eq. (8) combined with
Eq. (15), which gives rise to a relaxation time given by

coth(%)e‘z"”d, (16)

with g, the magnon wave vector g, = /4w/3Ju. Note
that, when the wavelength of the magnon is larger than the

m=2/3Ja* (15)

1 pipg o
Ti  36mwa® J}
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TABLE I. Characteristic dependence of 1/7; on the probe fre-
quency w and the sample probe distance d, considered in the limit
o < T, with do/v < 1, wd*> < D; (see definition of D, in main
text). «; are positive numbers proportional to the disorder strength
for weak disorder.

T dependence d dependence

wkLT clean dirty clean dirty
7, Dirac T? T2~ d-3 d—3t«
Z, FS T° T d=3 d—
U(1) FS T T d=3 d?

probe-to-sample distance, 1/7) is independent of distance.
Otherwise, 1/ T} decays exponentially with d, with a charac-
teristic length given by the inverse magnon wave vector.

The behavior for 1/7; for an antiferromagnet is qualita-
tively similar to that in Eq. (16), but with minor differences.
First, the dispersion relation is linear with w, g, ~ w/Jua.
Second, the spin-spin correlator for the antiferromagnet ac-
quires an extra factor of g because spins are antialigned
in the bipartite lattice. This extra factors lead to 1/7}

ot © ) ,—2q0d
7 coth(35)e .

B. Gapless quantum spin liquids

Quantum spin liquids are long-range entangled states that
lack long-range magnetic order, and possess excitations that
carry fractional values of global symmetries such as spin-
rotation [2,4,5]. Since gapless fractionalized bosonic excita-
tions would condense at low temperatures, here we are inter-
ested in spin models with emergent charge-neutral fermionic
excitations. However, the local Hilbert space is bosonic,
and this implies that individual fermionic excitations must
be nonlocal and occur in pairs. Theoretical descriptions of
spin liquids require the nonlocal fermionic excitations to be
coupled to emergent gauge fields, which can be gapped Z,
[gapless U(1)] and mediate short-range (long-range) interac-
tions between the fermions [26]. For the sake of concreteness
and better analytical control, we primarily focus on the Z,
spin liquids with low-energy spin-half fermionic excitations
within the framework of the Kitaev honeycomb model [24]
with added perturbations. However, our results depend only
on the nature of low-energy excitations and, as a result,
they are more general. We also comment on relaxation times
for gapless U(1) spin liquids, which are theoretically less
controlled due to strongly coupled gapless excitations in both
gauge and matter sectors. In all cases, the relaxation times
show qualitatively distinct behavior as a function of the probe
frequency, sample-probe distance and temperature. Our main
results are summarized in the Tables I and II. The details of
several computations may be found in Appendix B 1. The
physically applicable regime according to the current exper-
imental capabilities is w < T as typical spin probes operate
at gigahertz frequencies, which are roughly hundred times
smaller than the typical operating temperatures 7 ~ 4-300 K
[22]. However, we consider both the w > T and w K T
regimes, keeping in mind the possibility of lower temperatures
or larger spin-probe level splitting  in the future.

TABLE II. Characteristic dependence of 1/7; on the probe fre-
quency o and the sample probe distance d, considered in the limit
T < w (the other limits/notations are identical to Table I).

w dependence d dependence

T<Kw clean dirty clean dirty
7, Dirac o’ RELE d° d—o
Z, FS w w d? d?
U(1) FS w 1) d3 d?

1. Clean Z, QSL with Dirac spinons

We focus on the honeycomb spin liquid [24] beyond the
Kitaev limit [27,28]. The ground state of the pure Kitaev
honeycomb model is a Z; spin liquid and zero flux of
the Z, gauge field through the hexagonal plaquettes [24].
The emergent low-energy excitations are gapless fermions
with a Dirac dispersion, and a gapped flux or vison. While
the original honeycomb model has gapped spin correlations
because a local spin operator necessarily creates a pair of
gapped fluxes [29,30], it was shown in Ref. [27] that, in
presence of symmetry-allowed perturbations expected to be
present in material candidates [31,32], this gap disappears. As
a result, the low-energy spectral weight from the emergent
Dirac fermion has a major contribution to the dynamic spin
structure factor at energies w below the vison gap A,,.

We  consider the  Kitaev-Heisenberg-I'  model
[27,28,32-34], where the original Kitaev Hamiltonian Hg is
supplemented by Heisenberg and cross interactions:

m—JKZa“6“+ZZJp<U aa +0; a)

(i) u(vy) (ij)"

+Jy Y oi-0;. (17)

(i,7)

Here, v and y are the remaining two indices distinct from
W, which is either x, y, or z depending upon the direction
of the link (see Fig. 2). In the clean Dirac limit, we need
to consider the Hamiltonian in Eq. (10), with translation
invariant couplings Jg, Jy, and Jr and no magnetic field
B =0.

We begin by recapitulating the Kitaev’s exact solution to
his original model. The bare Kitaev Hamiltonian Hg is given
by setting Jr = Jy =0 in Eq. (17), and where the bond
connecting nearest-neighbor sites in the direction u = x, y, z
is labeled as (ij)* (see Fig. 2). For each hexagonal plaquette,
the local flux operator W, = 070503 05 o5 Zo¢ is conserved by
Hg, and has eigenvalues %1 (zero or 7 flux). Kitaev’s solution
involves writing each spin operator as the product of Majorana
operators as follows:

o' =iblc;, where b}b;} bic; = 1 (18)

in the physical subspace. The bond operators defined by
ugje = ib!'b" have eigenvalues £1, and commute with Hg.
Each u; )« can be thought of as a Z valued lattice gauge field,
which couples the gauge-charged Majoranas. A theorem by
Lieb [35] guarantees that the ground state of this model is in
the flux-free sector (W, = 1 for all plaquettes), where one can
make a gauge choice of u;;;» = 1 (i and j belong to even and
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odd sublattices, respectively). This leads to the free Majorana
hopping Hamiltonian description for the bare Kitaev model,
Hm ~ Hx, given by
i J
LY

) CiCjts- (19)

j.8
Here the sum is over all honeycomb sites j and three nearest
neighbors 6 shown in Fig. 2. The single-particle excitation
spectrum is given by e(k) = Jx|1 4+ e*™ 4 ¢*"2| where
n; and n; are basis vectors corresponding to the underlying
Bravais lattice (see Fig. 2). There are two Majorana cones at K
and K’ points at the inequivalent corners of the Brillouin zone,
which can be conveniently combined into a single Dirac cone
at K. Expanding about the K point in terms of continuum
Dirac fields v/4,p(r), where A and B refer to the sublattice
indices,

Yar)e KT+ He.,iec A

- _ , 20
Yp(r)eKT + He.,ieB (20)

Ci

and carrying out a gradient expansion of Hg, it is found that

Hg =Y ylwo -k, @1
k

where v = 3Jx /2 and Y = (Y4 (k), ¥z (k))T. Thus, below
the flux gap, the low-energy excitations of the bare Kitaev
model are Dirac fermions. One can show that a uniform
magnetic field BZ acts as a Dirac mass for the fermions [24],
while a staggered magnetic field (switching signs between
sublattices A and B) acts as a chemical potential [17]. Hence,
the Hamiltonian on adding a magnetic field that also breaks
sublattice symmetry (or more generally, a time-reversal sym-
metry breaking term) is

Hy =Y Yo -k+mo® + uo’ ). (22)
k

with m = 0 = p if TRS is present. For the solvable model,
one needs the magnetic field to couple to all three spin
components, and m and p are cubic on the applied field.
However, on adding perturbations Jy and Jr, this will no
longer be necessary [27]. Additionally, m and p are linear in
the external magnetic field and exist for any field orientation.
For m > p, we get a Chern insulator of spinons, while for
m < [, we have a spinon Fermi surface.

In order to find spin-spin correlators, one needs to find a
representation of the spin-operators o* in terms of the low-
energy Majorana fermions. For the bare Kitaev Hamiltonian,
this involves additional gapped flux excitations. However, ad-
ditional perturbations, corresponding to the Jy and Jr terms
in Eq. (17), renormalize the spin operator [27] and result in an
effective spin-operator of the form:

o =yimiy + ... (23)

Here, m® are 2 x 2 matrices whose specific form depends
on the precise microscopic Hamiltonian, and the ellipsis cor-
respond to gradient terms of i, which will give subdom-
inant contributions to the spin-spin correlations. Since we
are interested only in the scaling of the correlations with
distance/frequency/temperature, and because 1/7; has con-
tributions from all (c*o ™), (c7o™) and (0%0%), here we

v/d w

FIG. 3. Schematic diagram indicating different regimes for 1/7;
as a function of d, T, and w valid for Dirac spinons, see Egs. (25)
and (26), and spinon Fermi surfaces, see Egs. (28) and (30).

simplify the discussion by choosing m® = ¢°. This reduces
the problem to calculating density density correlations for
nearly free Dirac fermions (the gapped gauge field can only
mediate short-range interactions), for which analytical results
are readily available [36]. Choosing a different Pauli matrix
o?, or treating the sublattice index more carefully, are ex-
pected to lead to the same scaling form of the retarded spin-
spin correlations. Further, we always assume that all relevant
energy scales (7, w) are much smaller than the gap A, associ-
ated with Z, magnetic flux excitations, also known as visons
(defined by W, = —1 in Fig. 2). Beyond these regimes, vison
fluctuations can significantly affect the spin correlations, and
the problem needs to be investigate numerically [28].

With all these considerations in mind, the low-energy
dynamic spin-spin correlator in the 7 < w limit is given by
(see details in Appendix B):

q2

Jo? = (vg?

For calculating the relaxation time of a clean Z, spin liquid
with Dirac spinons, it is sufficient to use only C, _, as C_, and
C.; will scale identically because of spin-rotation invariance
of the spin liquid phase. As illustrated in Fig. 3, the emergent
temperature scale set by the inverse distance, 7; = hiv/kpd,
will be important for the discussion. Taking v &~ 10° m s~!
as a typical velocity scale and d between 1 nm and 1 um,
T4 varies between 1-103 K, which implies that both large and
small 7 /7, limits are experimentally accessible. Considering
different limits of w/7; leads to the scaling

C, (g, @)~ 6(w —vq) (24)

5
1 {a) Jdofv L1, (A) 25)

T " e dofv>1, (B)

valid in the regime w <« T (regions A and B are shown in
Fig. 3). We can also compute the relaxation time at large
temperatures, but still smaller than the vison gap, i.e., ® <
T <« Ay, so that the contribution to spin correlations comes
primarily from the nearly free gapless spinons. This leads to
the scaling

T2
1 dw/v L1,
_T X ;%5/2 ~2wd/v_g 1 Eg; (26)
1 76 s U)/U > 1,

where regions C and D are shown in Fig. 3.
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2. Clean Z, QSL with spinon Fermi surface

A spinon Fermi surface can be obtained from the extended
Kitaev honeycomb model by adding either a staggered mag-
netic field or three-spin interaction terms that breaks time-
reversal symmetry (a uniform magnetic field results in a Chern
insulator in the bare Kitaev model) [17,24]. This implies
that one takes the Hamiltonian in Eq. (10) with translation
invariant Jg, Jy, and Jr and B; = n; BZ, where ; = =1 on
the two sublattices of the honeycomb lattice. On different
lattices, one can obtain a spin liquid with a Fermi surface even
in presence of time reversal [37,38], and our results should
hold irrespective of the physical origin of the spinon Fermi
surface. One signature that one may expect from the spinon
Fermi surface would be coming from the nonanalyticity of the
Lindhard function at momentum g = 2kp. This is different
for Dirac fermions at finite chemical potential, as opposed
to Fermi liquids with quadratic dispersion as emphasized
in Refs. [39,40]. However, for kr of the order of inverse
lattice spacing, the signal is very small at accessible distances
d > 1/kp, and the main contribution again comes from the
long-wavelength modes near ¢ = 0. Therefore we do not need
to consider both cases separately. To make analytical progress,
we will assume that the chemical potential wu is the second
largest energy scale in the problem after the vison gap (A, >
uw>T,w,7Ty). In the zero-temperature (T < w) limit, this
gives rise to a spin-spin correlation

2 wi?

C, (g, )~ 6(vg — “))\/vzqqz—_wz (vg)®

In the limit 7 < w < u, this results in a relaxation time
given by

27

1 Wle?[2d
7o ”22’ [TwKo(Zdw/v) + K1(2dw/v)}
L do/v <L 1,
) {Z’m e oo 1. (B) @8
e ,dow/v > 1.

In the high-temperature (w < T') limit, the spin correlation
takes the form
2 2
L [2og,(2)
/v2q2 — a)2 vq 2T
2
Q—Z(l — e*w/ZT).
w? — g2 2

C._(q, )~ Ovg — w)

+O(w — vgq)

(29)

The relaxation time in this limit, assuming 7; < T, is
given by

| ple?[2d
7o “2;" [Tle(Zda)/v) + K2(2da)/v):|
F.dw/v <1, (©)
Ol WL (30)
vk @ /”,da)/v > 1. (D)

In the physically relevantregime v < T K panddw/v < 1,
the inverse relaxation timescales as d~> as a function of dis-
tance, and is independent of the frequency w and temperature
T for the QSL with a spinon Fermi surface.

3. Dirty Z, QSL with Dirac spinons

In the presence of quenched disorder, there is a drastic
change in the nature of spin fluctuations in the extended Ki-
taev model. The precise characteristic of the change depends
on the type of disorder introduced. A random bond disorder,
corresponding to a random Jg or Jy to the Hamiltonian in
Eq. (10), preserves time-reversal symmetry and translates to a
random vector potential on the Dirac fermion [17,41], while
disorder that breaks time-reversal can induce either a random
mass term or a random potential term. A slowly varying
random mass term will result in energy gaps in most parts of
the system, with gapless edge modes along the boundaries of
the islands where the mass changes sign. These edge channels
can be modeled as spinful charge-neutral Luttinger liquids,
which will have their own signatures as discussed in Ref. [13].
On the contrary, a potential disorder will induce a lifetime for
the Dirac fermions, and we will discuss this case in greater
detail.

First, we consider the case of time-reversal symmetric
disorder. In this case, the disorder takes the form of a vec-
tor potential (A) in the low-energy Hamiltonian. We further
assume that the quenched vector potential disorder is short-
range (delta-function) correlated in real space:

H=Y o kdp+ Ay -0y,
kK

(Ag-Ag) = (277)25(4 + q/)AA-

The low-energy behavior of Dirac fermions in the presence
of vector potential disorder has been investigated in detail in
Ref. [42]. The system is described by a line of fixed points,
characterized by scaling exponents that vary continuously
with disorder. In particular, the dynamic critical exponent is
found to be z =1 4+ A4/m, and this difference in scaling of
space versus time shows up in the relaxation time (note that
a Dirac cone with no disorder has z = 1). In the physically
relevant regime of w < T', we can express the relaxation time
as a scaling function,

€19}

LSS e @ 7V, (32)

T
where W, (dT'/*) reflects the anomalous scaling of the relax-
ation time as a function of temperature and distance from
the sample. An exact analytical expression for W, in only
available in the clean limit (see Appendix B 1). However, we
note that the relaxation time will scale with some nonuniversal
exponent of the distance that changes with disorder strength.
At a fixed disorder strength, the noise data measured by
changing T and d can be collapsed onto a single curve and
tell us the value of the dynamic critical exponent z. We add
that an analogous calculation also gives us the scaling of the
relaxation time as a function of w in the zero-temperature limit
(T € w):
Ti T<8 06-D/2 g, (d /7). (33)
1
We checked that for z = 1 (or, equivalently, A4 = 0), corre-
sponding to clean Dirac fermions, the scaling functions we
analytically obtain give relaxation times that precisely match
our previous results in the zero disorder case. For v < T,
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W, (y) ~ y~3 in the clean limit. On adding disorder, we expect
a correction to the power law, which is proportional to the
disorder strength, i.e., W;(y) ~ y~37“%4 for some constant
ca, which, for weak disorder, is independent of the disorder
strength. This insight can be used to work out the relaxation
time for the dirty Dirac Z, QSL to linear order in disorder
strength, and we find that the following scaling holds:

1 T2—(4—CA)A A

F]O(w,a)d/v < 1. (34)
Some intuition for these results can be obtained by studying
the increase in the density of states per unit area p(w) at low
energy. In presence of disorder, a simple scaling argument
shows that p(w) oc @®~?/%, where the exponent is less than
one for z > 1 [42]. Hence, we expect the dirty Dirac Z, QSL
interpolates between the clean Dirac Z, QSL and the Z, QSL
with a spinon Fermi surface (which we study next). Analogous
arguments can be used for the scaling function W, to find the
temperature and distance scaling of the relaxation time in the
T < w limit—the results are presented in Table II.

If the disorder breaks time-reversal symmetry, then both
potential and mass disorder are allowed along with the vector
potential disorder. A detailed discussion on the effects of these
different kinds of disorders are contained in Ref. [43]. For in-
stance, random mass disorder turns out to be marginally irrel-
evant and the system flows back to the clean limit. This would
be the case for random (but unidirectional) magnetic fields in
the Kitaev model. In the case of random potential disorder,
the system is in the Wigner-Dyson symplectic class with an
additional topological 6 term that leads to delocalization. In
this limit, a disordered Dirac fermion system is argued to
behave like a metal. In the absence of precise analytical results
for the susceptibility, we conjecture that the spin correlations
would exhibit a diffusive behavior. Therefore the relaxation
time should have the same behavior as the dirty spinon Fermi
surface case discussed next. At least two of these types of
disorder automatically generates the third type by a renor-
malization group flow [43], and the system flows to the IQH
transition fixed point. The lack of analytical knowledge of the
critical exponents at this fixed point renders it difficult to make
a prediction for the scalings of the relaxation time in this limit.

4. Dirty Z, QSL with spinon Fermi surface

Finally, we consider the case of a Z; spin liquid with a
spinon Fermi surface in the presence of weak disorder. This
can be realized within the Kitaev honeycomb model with a
staggered magnetic field, which induces a Fermi surface as
discussed before. In the presence of disorder and short-range
interactions mediated by the gapped Z, gauge field, the spin
susceptibility at low T takes the following diffusive form [44]
that holds as long as the relevant energy scales 7', w are much
smaller than the Fermi energy.

vD,q? _ vDsq*w
—iw+ Dyq? | @+ D2g*’

C,_(q,0)~ —Im[ (35)
where v is the spinon density of states at the Fermi surface,
and Dj is the spin-diffusion constant. Using this form, we can
again calculate the relaxation time in the limits of large and
small distance d. In the zero-temperature limit (w > T), 1/ T}

takes the form:

2 A 36
T Lo wd® > D. (36)

wd®’

1 {ﬁ,wd2 < Dy,

For T <« w < W, this behaves as

1 {d%,wdz < Dy,
— 37
T — &, wd® > D;.

In a typical dirty spin liquid with a spinon Fermi surface, we
expect that Dy = vpl/2 =~ 107* m? s7!, assuming a spinon
Fermi velocity of 10° m s~! and a mean-free path £ of tens of
lattice spacing. On the other hand, for existing spin qubits w ~
10° Hz and a sample-probe distance, which can vary between
from nanometers to microns, an upper bound of 1073 m? s~!
can be found for wd?. Therefore wd? < Dj is the physically
relevant limit for measurements.

5. Clean U(1) QSL with spinon Fermi surface

Certain quantum spin liquids are described by Dirac cones
or Fermi surfaces of low-energy fermionic spin-half spinons
with a conserved spinon number. These phases have gapless
neutral spin-carrying fermionic excitations at a Fermi surface
or Dirac cones, and these spinons are strongly coupled to an
emergent dynamical compact U(1) gauge field. Hence, these
phases have U(1) topological order, with gapless photons and
anovel gapped magnetic monopole [5,45]. At temperature and
energy scales far below the monopole gap, the spin dynamics
are controlled by the gapless spinons which are strongly
renormalized by gauge-field fluctuations.

Here, we focus on a U(1) QSL with a spinon Fermi surface.
Such a phase is described by an action of quantum electrody-
namics in two spatial and one time dimensions (QEDjs):

S = /dtdr[fjﬁ(a, —iap — M)fr,a

bV — i o + (et |, (38)
oo r.o 4g2 v Oy s

where the low-energy f fermions (with effective mass m)
are related to the spin operator S(r) by S(r) = fj,aoa,g fr.8s
w is the chemical potential, m is an effective mass, and a,,
is an emergent U(1) gauge field, with €,,,d,a, being the
corresponding field strength tensor.

This problem has been studied extensively, and the clean
system can be described by a strong coupling fixed point
[46]. The large N expansion, which can justify RPA has
been shown to be uncontrolled [47]. However, the higher
loop corrections, which also contribute to the same order
should leave the relative scaling of momentum, frequency
and temperature unchanged [47]. Therefore using the RPA
results should not affect the scaling of the relaxation time
although it may affect the exact numerical prefactors. With
this prelude, we use the RPA spinon Green’s function given in
Ref. [45], assuming a quadratic dispersion &, = % — pu for
the fermionic spinons:

1
o—& — Z(w)
where &' (w) = —Cw?> forw > 0, and C ~ ', (40)

Gk, w) = 39)
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The dominant contribution to the dynamic spin susceptibility
at low energies can be computed from four point functions of
the f fermions, comes from the anomalous imaginary part of
the self-energy due to scattering by fluctuating gapless gauge
bosons. The spin-spin correlations at low energy in a U(1)
QSL is given by (see Appendix B 2)

@

JVRgt + C2e3

where ¢ = max(w, T). The relaxation time is given in differ-
ent limits by the following expressions when w > T':

C. (g, )~ (1)

13
L %,wd/vp < (";’) <1,

T |wr 2
o wd/vp > 1.

In the alternate limit of w < T, the correlation function is
dominated by T and hence the relaxation times are as follows:

1/3
U Fedpr < Tapr < (5) 7 <1,

. i 43)
LR Td e > 1.

6. Dirty U(1) OSL with spinon Fermi surface

Introduction of disorder to the clean U(1) spin liquid with
a Fermi surface of spinons is likely to lead to a flow away
from the z = 3 critical point to a diffusive Fermi liquid of
spinons [48]. Since the gauge field does not contribute directly
to spin susceptibility except via its effect on renormalization
of the spinon energy, we expect an identical behavior for the
relaxation time as the Z, spin liquid with disorder as discussed
earlier.

C. Disordered VBS states

Frustrated magnets which do not order at low temperatures
can also have ground states that spontaneously break transla-
tion symmetry (and possibly certain rotation symmetries) of
the lattice, but preserve spin-rotation symmetry. These para-
magnetic states are called valence bond crystals or valence
bonds solids (VBS) [6,49]. Our focus in this section is on
gapless systems, which is the likely fate of VBS states in
presence of disorder [8,9]. However, we first study a clean
VBS phase to set the stage. Such phases typically have gapped
particle-like triplon excitations with quadratic dispersion near
the band minimum with some effective mass m [6,7]. The
retarded spin-spin correlator at low energy and temperatures
(w, T < J, where J is the spin-exchange scale) is dominated
by single bosonic triplon excitations:

C._(q, ) =8 — Ar — g*/2m). (44)

This implies that the relaxation rate detected by the spin probe
can be calculated to be

1
— ~mP(w — Ap)e2WV2mOmADQ () — Ap).  (45)

T
This relaxation rate is similar to a trivial thermal paramagnetic
phase: it is nonzero above a threshold frequency equal to the
spin gap Ar, and shows exponential decay with sample-probe
distance d. Further, there is a distinct dip in 7} at an optimal

distance of d = [2m(w — A7)]~'/%, which can be used to
estimate the effective mass of the low-energy triplons.

Certain materials have the additional complication of
quenched randomness, which can give rise to random
strengths of magnetic exchanges. A theory for such disordered
frustrated quantum magnets was provided in Ref. [8]. In the
presence of weak random bond disorder, a gapped quantum
spin liquid state is typically stable. However, a paramagnetic
valence bond solid crystal is unstable to nucleation of vortices
in the VBS order parameter. For topological reasons, each
such defect will carry a dangling spin-half. In the opposite
limit of strong disorder, the naive expectation of a paramag-
netic phase made of randomly pinned singlets (called a “va-
lence bond glass” in Ref. [8]) fails, and spinful defects are nu-
cleated. Thus Ref. [8] argued that in two very different limits
(and hence possibly also at intermediate disorder), the system
may be described at low-energy scales by a random network
of defect spins with a broad distribution of exchange coupling.

This small subsystem of defect spin-half moments
dominate the thermal and quantum fluctuations at low-
temperatures. This leads to several interesting observable con-
sequences, the most prominent being the power-law behavior
of specific heat as a function of temperature with a sublinear
nonuniversal exponent. Further, Ref. [9] discussed the effect
of Dzyaloshinskii-Moriya (DM) interactions on these sys-
tems, which can modify the scaling of specific heat and other
observable properties. Below, we calculate the contribution
to magnetic noise of these defect spins will be the dominant
source of noise at any frequency @ <« Ag, where Ag is the
gap of the clean VBS phase.

The low-energy dynamics of the system, in absence of
spin-orbit coupling, is described by a random-bond Heisen-
berg model. This can be obtained by switching off all terms
except the Heisenberg exchange in our parent Hamiltonian in
Eq. (10), i.e., by setting Jx = Jr =0 = B;:

HH:ZJIJSZSJ’ Jl]:j—i—AJ,] (46)
ij

The typical distance between the defect spins is given by the
correlation length of the VBS order parameter, which is given
by &/a ~ exp[Cs J*/{AJ?*)] [50], where a is some appropri-
ate microscopic length-scale-like lattice constant and Cg is a
numerical constant of order unity. The physics at length scales
greater than £ is therefore described by the appropriate RG
flow of this random bond Heisenberg model. While this is
not well-controlled in two dimensions, Ref. [8] argues that,
for large length scales, we can treat this problem as spins
interacting with a continuous distribution of couplings with a
broad power-law tail that decays with a nonuniversal exponent
[51,52]. The zero-field specific heat of these materials over
a broad range of temperatures shows a power-law behavior
T“, which is argued to arise from a density of couplings
p[J]1=J%" (@ < 1) of the defect spins [8]. Assuming that
these spins are quite dense on the lattice scale (the VBS
correlation length is small, as it seems to be for YbMgGaO,),
the spin qubit, placed sufficiently far away, will be able to
sense fluctuations from the spins which are weakly coupled.
Hence, although these defect spins are localized (not long-
wavelength modes), yet useful information can be obtained by
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looking at the spin dynamics at long length scales as a function
of an applied magnetic field.

Reference [8] gives the transverse part of the dy-
namic structure factor, Sy[J, R](¢q, w) = S+_[J, R](q, w) +
S_+[J, R](gq, w), for two spins with an effective exchange J
at distance R, in presence of an applied field B as follows

(letting h = g/-’LBB)
Sr[J, Rl(g, w) = O(J — h)(M)

2
x ZS(w—Jﬂ:h)—i—@(h—J)
+

x [(%@'m)g(w_i_ J—h)

1+4+cos(qg-R
+( 2(q )

The full transverse structure factor may then be obtained by
integrating Eq. (47) over the density of states p[J] ~ J*~ !

)8(0) - h)]. A7)

Sr(q, w) = / plJ1Sr[J, R[J])(g, ®). (48)
J

The function R[J], which quantifies the singlet size as a
function of its energy splitting, is not exactly known for
two-dimensional systems. However, we do not need exact
knowledge of R[J] if we assume statistical rotation symmetry
of our system, which is reasonable for random location of the
defects. In this case, the angular integral cos(q - R) vanishes
when integrated over ¢ (as the prefactor depends only on g).
We can see that the noise at low temperatures 7 < &, @ is
given by

1

1
7 ﬁ[/o(w +h) +60(w —2h)p(w — h)

+0(h — w)p(h — w) + gp(h)éi(a) - h)]. (49)

The most noticeable feature is the delta function at the Zee-
man energy, which is due to the resonance between S, = 0 and
S, = 1 triplet states. The distribution of effective J ensures
that it will be present at any magnetic field, with a gradually
increasing strength till the field hits a saturation value. The re-
laxation time will accordingly show a sharp drop at this reso-
nance. The other noticeable features are the step functions that
arise from the distinct singlet-triplet transitions that contribute
to the spin correlations for J < h and J > h (see Fig. 4).
For example, for J < h, the triplet to singlet transition has
a frequency w = h — J, which always contributes because of
the power-law distribution of J across the system. Therefore
there is an associated step function ®(4 — w) coming from the
positivity of J, and the corresponding density of states p(J =
h — w). Such distinctive step functions may also be accessed
via tuning of the magnetic field from small to large values.

For completeness, we also provide a computation of the
longitudinal structure factor. We can again find it for the two-
spin Hilbert space with separation R and effective coupling J,
and then integrate it over the density of states:

S:[J,RI(g, w) = [6(J — h)(1 — cos(q - R)S(w — h)
+6(h — J)(1 + cos(q - R)S(w)], (50)

y—
J=nh

FIG. 4. The power-law distribution of couplings J, with the level
structures of a pair of weakly coupled impurity spins at J > h and
J < h showing the transitions that contribute to the dynamic spin-
structure factor.

where
S.(q,w) = / plJ1S:[J, R[J]l(g, w). (5D
J

Since the probe only detects at a finite frequency w > 0, the
relevant contribution to the relaxation time is again the delta
function at @ = h, which has the same physical effect on 7}
as the transverse correlators, namely, a sharp drop in 77 at this
resonance.

We reiterate that our results are valid for the lowest temper-
ature scales (T < J) when the random singlet phase is a good
description of the system. At higher temperatures, we expect
the spin correlations to become unimportant, and the defect
spins to behave as nearly free spins. In other words, the dimer
physics is replaced by independent fluctuating spins, and the
phase is no longer distinct from a thermal paramagnet.

IV. DETECTION OF ANYONIC STATISTICS
IN GAPPED SYSTEMS

In two spatial dimensions, the quantum mechanical wave-
function of two identical particles can pick up phase fac-
tors different from £1 when the particles are exchanged
(or braided) adiabatically [53]. These particles are said to
have anyonic statistics. Each anyon can be thought of as a
flux-charge composite, with a statistics parameter o which
indicates that an adiabatic exchange of two identical gapped
anyons results in a phase factor of ¢/ in the quantum
wave-function of the state [54,55]. In two dimensions, «
can be arbitrary, in contrast to three (or higher) dimensions
where « is either zero (bosons) or one (fermions). Inspite of
their discovery in quantum Hall states long ago, experiments
to directly detect anyonic statistics are challenging. In this
section, we argue that spin probes can detect anyonic statistics
provided these anyons arise as emergent low-energy spin
carrying excitations in an insulator. This is true, for example,
for the chiral spin liquid where the emergent quasipaticles
have semionic statistics (¢ = 0.5) [56-58]. Such a phase
has also been proposed within the framework of the Kitaev-
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Heisenberg-I" model that we discussed in Eq. (17), in presence
of a magnetic field [59].

For phases with gapped spin excitations, we need to tune
the energy gap w of the probe so that it is larger than the
minimum gap to local excitations in order to have accessi-
ble relaxation rates. The relaxation rate as a function of the
probe energy-gap at a fixed temperature 7' provides crucial
information about the statistics of the particles. In particular,
the threshold behavior at the frequencies close to the spin gap
at low temperature has a universal power-law growth where
the exponent is fixed by the braiding statistics of the anyonic
excitations and is robust to short-range interactions.

A. Free bosons

As a warm-up problem, we first discuss a simple phase
where the emergent low-energy degrees of freedom are
gapped fractionalized spin-half excitations with bosonic self
statistics. These excitations, called spinons, are characteristic
of frustrated spin-models in phases that exhibit Z, topological
order [60]. They are similar to the e particle in the toric code
[61], but they also carry spin-half in addition. One can de-

J

1
Gk, iw,) = o —E
n

scribe such a phase using the Schwinger boson representation
of S = 1/2 spins [60,62,63], where the spin operator S(r) is
written in terms of bosonic operators b, , with an additional
local constraint:

1
S(r) = Ebi,aao,,gb,,ﬁ, bl by = 1. (52)

Such models also have emergent fluxes on the underlying
Z, gauge field, analogous to the m particle of the toric
code. These fluxes, called visons, do not carry any spin, have
bosonic self-statistics and have semionic mutual statistics with
the spinons. In the regime where the vison gap A, is much
larger than the spinon gap A and the temperature 7', we can
safely neglect the visons as their only effect is to induce short-
range interaction between the spinons. Although such inter-
actions do affect bosons, as a first approximation we treat the
spinons as approximately free quasiparticles. In this limit, we
can write the spinon Green’s function, defined by G,(r, t) =
—(T; [b,,a(r)bg,a(O)]), as that of a free boson, with a generic
quadratic dispersion above the gap A;. Converting to momen-
tum and Matsubara frequency, it takes the following familiar
form close to the band minimum (m is the effective mass):

k2

, where & = Ay + —. (53)

2m

The retarded spin-spin correlator C ff(q, ) can be found by analytic continuation of the Matsubara correlator C_(q, iw,):

CJr*(qs lwn)
ki
T—0 de 1
(27[)2 iwn - Sk - €k+q

1 : . .
ﬁ Z Gy(k +4q,i%2, + iw,)Gs(—k, —i2,) =

d*k 14 ng(&) + np(Eeiq)
Q) iwy — &k — Ekiq

" - d%k 2
=C (q.0) =% ~Im[C._(q.iw, > 0 +i0")] =7 / oy Y0~ B~ i) = %@(m(a) Ay — f—m>. (54)

From this, the relaxation time can be calculated for v > T,
when coth(w/2T) ~ 1. Leaving the detailed interpolating
functions to Appendix B 2, here we focus on certain limits.

(35)

1 {(w —2A,70(w — 2A,), 0d < 1
X
T

70 —2A,), 0d > 1

Here, Q = /4m(w — 2A) denotes a momentum scale corre-
sponding to excitation energy above the spin gap of 2A; and
which limits the ¢ integral. Since our continuum approxima-
tion to the dispersion holds close to the bottom of the band, we
expect the Od < 1 limit to be more accessible. In this limit,
the relaxation time is independent of the distance d and grows
as a power law with @ — 2A;, the energy above the threshold.

B. Anyons

The nonlocal nature of the anyons implies that a single
isolated anyon cannot be created locally. We assume that
any local quantum fluctuation creates a couple of anyons, as
in chiral QSLs. The braiding phase « that arises from the
exchange of two anyons can be theoretically characterized

(

by a Chern Simons vector potential @ = (ca/q)V ¢, where ¢
is the angle made by the vector connecting the two anyons
(relative to an arbitrary reference), g is their charge under
the Chern Simons gauge field and c is the speed of light.
This term takes care of the exchange statistics, or in other
words, mediates a long-range statistical interaction between
the anyons while the Hamiltonian acts on bosonic wave func-
tions [64]. For a pair of anyons with quadractic dispersion, the
Hamiltonian is

p2 2 —a)?
N E

where R is the center of mass coordinate, r = (r, ¢) is the
relative coordinate, m is the mass of each anyon and V (r, ¢)
represents some short-range interaction between the anyons.
Such a formulation was used by Ref. [15] to write down a
robust expression for the general two-anyon structure factor
at the threshold of the gap. While such structure factors are
accessible by neutron scattering, in principle, the threshold
behavior requires a probe with excellent energy resolution at
low energies. Spin qubits are well-suited for this purpose, and
hence we use the results for the correlation function of local
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bosonic operators (including the spin operator) in presence of
a Chern-Simons field from Ref. [15] to calculate the relaxation
rate, again working under the assumption that 7 is smaller
than the spin gap (which is 2 A, in our convention):

C,_(q.0)
o J2(ay/m(w — 2A,) — q2/4) O(m(w — 2A,) — ¢ /4),
(57)
which results in
1 (w — 2As)2+“ O(w —2Ay), 0d « 1
1 (58)

O( o
I 220 - 24), 0d > 1

In particular, we see that we recover our result for free bosons
with o =0, where 1/T) at the threshold w = 2A; is set
by (w —2A)? for small d, and by d=* for large d. For
general anyons with a statistics parameter o, the power law
at the threshold is modified to be 2 + «, which provides a
striking signature for detecting anyonic statistics in gapped
phases of 2d quantum matter. We specifically point out that
for gapped fermions, « = 1 and the relaxation time at the
threshold is proportional to (@ — 2A)3. Insulating phases
with gapped charge-neutral fermionic excitations occur in the
Kitaev honeycomb model in anisotropic limits or in presence
of additional time-reversal symmetry breaking terms, like a
uniform magnetic field discussed in Eq. (10) [24,27].

The relaxation times shown a different power-law de-
pendence on quasiparticle statistics in the limit Qd > 1.
However, the validity of our low-energy expressions for the
dynamic spin structure are doubtful in those limits, and a
more elaborate computation of the relaxation rate is required
to address this more accurately.

C. Effects of interaction

Short-range interactions do not affect the structure factor
for nonbosonic anyons at low energies, due to the rigidity
of the two-anyon wave function at short distances where the
interactions are the strongest, as argued in Ref. [15]. This
implies, for example, that in a chiral spin liquid phase with
semionic low-energy excitations, we should still see an inverse
relaxation time that goes as (w — 2A,)*/?, even if we add
in effects of interactions. However, free bosons are affected
crucially by short-range replusive interactions as they lack
any statistical replusion [15]. As seen both numerically [15]
as well as in field-theoretic calculations [65], for bosons
with short-range repulsive interactions C:__ (g, ) receives a
logarithm-squared correction:

O(w —2A, — g2/4)
[n([4m(w — 2Ay) — q21b%/16) + 2y ? + 72’
(59)

C,_(q.0)~

where y is the Euler Mascheroni constant and b is an ef-
fective range of interaction. This leads to a correction in
the relaxation time for weakly interacting gapped bosons,
which can be analytically computed in the limit when Qb <
1 (Q = /4m(w — 2A;) is the typical momentum scale of
excitations). Since the interaction range b is of the order of
a few lattice spacing (b ~ a), while the typical excitation

wavelength Q~! needs to much larger than the lattice spac-
ing/interaction range for the threshold behavior to hold, this
assumption is well-justified for most short-range interactions:

(=24, o _
i x In%(Qb) O(w 2AJ)’ Qd < ! (60)
I WG(O) —2Ay), 0d > 1

If the anyons carry charge under an external or emergent
gapless gauge field, then long-range power-law interactions
(like Coulomb) can affect the relaxation time significantly.
We will not solve the problem here in full generality, but we
note that an analogous detection scheme for gapped magnetic
monopoles interacting via gapless photons in spin-ice materi-
als have been suggested in Ref. [14].

V. IMPLICATIONS FOR MATERIAL CANDIDATES

In this section, we discuss the implications of our results
for specific materials. Indeed, a large number of candidates
exist for the different phases of quantum magnetism we
have discussed so far, including the more exotic ones with
topological order [4,31].

We chose to work on the perturbed Kitaev models, be-
cause spin-orbit coupled honeycomb lattice iridates provide
an avenue to realizing such spin liquid states [31-34]. The
Kitaev interaction is dominant in spin-orbit coupled iridates
like o-NaIrO3 [66], a-Lir IrO3 [67], and «-RuCl; [68]. None
of these materials are exactly described by a bare Kitaev
Hamiltonian, but the dominant Kitaev interaction is expected
to lead to a stable spin-liquid phase where the exotic nature of
excitations is independent of the details of the parent Hamil-
tonian. Indeed, neutron scattering and transport experiments
see strong signatures of the spin liquid phase being present
at large magnetic fields that suppresses magnetic ordering in
a-RuCl; [69-71]. Questions regarding the impact of phonons,
however, remain a challenge. Theoretical proposals also pre-
dict the possibility of different spin liquid phases as a function
of the magnetic field, including one with a spinon-Fermi
surface [72—74]. A noise magnetometry study, which depends
solely on the spin sector, would help to isolate the true nature
of the spin liquid phase. For another iridate H3Lilr,Og, which
does not order to very low temperatures and shows anomalous
gapless behavior quite distinct from the Kitaev model [75],
competing theories exist in terms of Majorana cones [76] and
random singlet phases [9]. Here, noise correlations can be
a very useful tool for mapping out the structure factor and
therefore figuring out whether the ground state is a quantum
spin liquid or not.

Triangular lattice insulating organic compounds like x-Et
or Pd-dmit have also been proposed as quantum spin liquid
candidates [77-79]. In-plane thermal transport experiments in
these materials show strong evidence of exotic gapless exci-
tations which do not carry electric charge. Measuring noise
correlations via magnetometry can provide strong evidence in
favor of these elementary excitations carrying a fractionalized
spin of half, and therefore a spin liquid ground state.

Another class of compounds include antiferromagnets
on the highly frustrated kagome lattice, like the intensely
studied herbertsmithite [80-86] and kapellasite [87]. While
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herbertsmithite appears to be gapped [88], kapellasite seems
to be gapless with the precise nature of the ground state still
unknown [87]. Therefore our study of noise in gapless spin
liquids of different kinds is very relevant for kapellasite (and
possibly other frustrated kagome compounds).

There is an ongoing debate over the precise nature
of the low-temperature paramagnetic states in compounds
like YbMgGaO, and YbZnGaOy4. The T°7 specific heat in
YbMgGaO, is reminiscent of the RPA calculation in a spinon
Fermi surface as such a QSL is expected to T?/* specific heat
[89,90]. Reference [8], instead, argues that the 0.7 exponent
is coincidental and the phase is actually described the random
singlet model discussed above, and the same phase describes
YbZnGaO,4 with an exponent 0.59. As we saw, these two
phases have very different signatures in the magnetic noise,
and therefore noise magnetometry can serve as a probe that
resolves the actual nature of the paramagnetic phase in these
compounds.

In the frustrated S =1 triangular lattice compound
Ba;NiSb,0g, several proposals exist for the ground state,
including a putative spin liquid [91], quadratic band touching
of spinons [92], and a spinon Fermi surface [93]. These phases
have distinct signatures in the magnetic noise and hence
studing the relaxation time can be used to distinguish these
candidate phases.

Regarding observation of anyonic statistics, the most likely
candidate would be a chiral spin liquid state. These phases
have recently been observed in a DMRG study of the Hub-
bard model on the triangular lattice [94], raising hopes of
finding such a ground state in the organic insulators dis-
cussed previously. The relaxation time provides a noninvasive
route to measure the braiding statictics in such a phase. For
fractional quantum hall states [95], spectroscopic methods
like measurement of local electronic density of states [96],
have been suggested to detect anyonic statistics. Since the
elementary anyonic excitations carry electric charge, the long-
range unscreened Coulomb interaction between anyons are
expected to strongly modify the threshold spectral function,
and the effect of long-range interactions on the relaxation time
is an interesting open problem left to future work.

Recent proposals suggest the use of quantum impurities to
study spin diffusion and magnon condensation in insulators,
and image antiferromagnetic domain walls [97,98]. The first
study is related to ours, and it is restricted to the spin-diffusive
regime in magnetically ordered states, where two-magnon
processes dominate over single-particle ones. As we argued,
for small external fields, one would expect single magnons
to dominate the magnetic fluctuations in an ordered state
down to the lowest-energy scales, whereas for a spin liquid
this would no longer hold true. Hence, a clear distinction

J

—Bawy

e

Remy = 21 Z Z
n,m

between these two phases can be diagnosed via spin qubit
magnetometry.

VI. CONCLUSIONS AND OUTLOOK

The possibility to sample spin correlations in a wide
range of energy and length scales make spin qubits an in-
valuable tool to probe two-dimensional magnetic insulators.
We found that the probe frequency, sample-probe distance,
and temperature dependence of the spin relaxation time can
furnish valuable information about the nature of the phase
in gapless systems. Given the large number of experimental
candidates for exotic spin liquid phases, this minimally inva-
sive technique holds great promise as a diagnostics of ground
states. Further, spin qubits can also detect anyonic statistics
in gapped systems, which have been difficult to identify via
more traditional probes. Noise magnetometry with single-spin
qubits, therefore, can open up new vistas for probing exotic
phases of matter.
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APPENDIX A: RELAXATION TIME FOR MAGNETIC
INSULATORS

1. Relaxation rate of the spin probe

In this appendix, we compute the relaxation timescale of
the spin probe in response to magnetic field fluctuations, using
Fermi’s “golden rule”. Recall that the probe Hamiltonian is
given by

H=Zo.+ o Bir.).
where B(r,t) represents the time-varying magnetic field at
the location of the sample. We assume that the back-reaction
of the probe spin on the sample can be neglected, and that
the sample is in thermal equilibrium at temperature T = =
Denoting the eigenstate of the sample and spin polarization
probe by the product state |n,0) = |n) ® |o) (with energy
€n), we have the following emission rate of the probe initially
prepared in the |+) state:

(AD)

[(m, —|ugo - Bln, +)1*8(w + &, — &)

—Bwy
= 2n(MB)ZZe ~ (B}, By, + B),B), +iB), By, —iBy, B 8w+ eum)

n,m

=2m(up? Y

n,m

—Bawn

nm- —mn

nm-=—mn

B, Bt 8(w+ €un), where B = B* +iB”,

nm-=—mn nm-=—mn

(A2)
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where B,{m = (n| B/ |m), and &,,, = &, — &,,. Note that only the mode of the magnetic field B oscillating at frequency  couples
to the probe, so the application of Fermi’s “golden rule” is justified. Similarly, the emission rate is given by the following

expression:

e Ben

Rabs = N(MB)Z Z 7 [Br)l(mBI;(m + BzymB;{m - lBrme;m + lB;mB,Ln]S(w - Enm)
n,m
2 e_ﬂs/x i
=7 ——B/ B, 8(& — &um). A3

(1) ij B B8 = enn) (A3)
The relaxation rate is defined as the average of the absorption and emission rates, Tl_l = %[RabS + Rem], and it can be expressed

conveniently in terms of the noise tensor A; j(w) defined as follows:

1 o0 . . . e Pen . , . .

Nij(@) = 3 / di({B'(1). BIONe'™ = 37— —[B1,, Bl 8@+ ) + Bl Bd(© — )] (A4)

n,m

By comparing Eq. (A4) with 1/T;, we see that the following
expression holds:

1
== (B Ny (o). (A5)
1

Using the fluctuation-dissipation theorem (which can be
proven using spectral representations), we can rewrite the
noise tensor in terms of the spectral density of the magnetic
field.

Nij () = %coth (%)Sz’j(w)v where S;; ()

(A6)

foo dt ([B' (1), B/ (0)])e™.

[e¢]

Further, we can also write the spectral density in terms of
the retarded correlators of the magnetic field, which are more
convenient to calculate:

Sij(@) = —Im[Cp. 5, ()], where C, ,, ()

= _i/m dt ©(){[B' (1), B (0)])e'". (A7)

o0

2. Sample-induced magnetic fluctuations

In the main text, we used the dipole approximation (neglecting
retardation effects) to calculate the magnetic field fluctua-
tions at the probe location to the thermal spin fluctuations
in the sample. In this appendix, we obtain the same by a
more elementary approach, i.e., directly solving Maxwell’s
equations. Recall that Maxwell’s equations in Lorentz
gauge are given by (ug = e/2m, is the Bohr Magneton,
h=1):

2 atz 2
?A* = [ ——L + V2 )|A*
6'2
= 100, V x m)*, where m(p, z, t)

— —gounS(p. 13(2), (A8)

(

where we have set the lattice spacing a = 1. Let us first define
the magnetic kernel G as follows (with Einstein summation
on repeated indices implied):

AR(r, 1) = ,uo/dt/dr’ Gi(r—r',t —t")m;(r', 1), (A9)

where G!'(r —r', 1 — ') satisfies the following differential
equation:

32
(——’2 + V2>G§L(r —rt—1)
C

=38t —1)[0,V x (8(p — pHS(z —2)ep)1".  (Al0)

We now specialize to a translation invariant phase of the
sample of area L2, governed by a time-independent Hamil-
tonian (note that this is justified because we do not consider
back-reaction of the probe). Then, we can rewrite Eqs. (A9)
and the Green’s function in and (A10) in terms of Fourier
modes as follows:

d .
Af(r, 1) = / 2_&) Al (z, q, w)el(qj)fwt)’
T

>
NI
1 dw .
Gl(r,t) = — 2 / — Gl(z,q, w)e! PN, (A11)
i 2 i
L p 27

1 dw .
. - g i(q-p—wt)
m;(r,t) Niz Eq /27[ m;(q, w)e §(2).

Plugging these into Eq. (A10), we end up with the following
equation:

(=22 +32)G (z. 9, 0) = [0, (igy. igy, 3;) x (8(z)e)]",

2
1)
where A = /g% — —

- (A12)
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The solutions to Eq. (A12) can be written as follows:

0 I3
el 0
G* _ .
22, g, 0)= 5 | sign(@) | >
iqy
)
0 14
e [ —sign(z)
I _
Gy(z,q,0) = 7 0 , (A13)
_igx
)
O I3
ezl Yy
Glz.q.0)=——|
n
0

Note that these are consistent with our choice of Lorentz
gauge, for which a sufficient condition is 3, G = 0 for each
i. We use the vector potential to find the magnetic field B(r, t)
at the location of the probe by B(r,t) =V x A(r, t),
Mo dC() i(q-p—
B(r,1)= — —H;(z,q. 0)' """ m;(q, ),
(r,1) m; s Hiz g, @) mi(g, ®)

(A14)
|

1
S(@) =55 ) H; (2.4, 0H] (2, —q, —0)([mi(g, ©), m;(=q, —)]).
q

where H;(z, q, w) = (iqx, iqy, ;) X G;(z, g, w) is given by
(here we choose z > 0):

—Az )\’2 _ 2 ,
HX ¢ ( qy ’ qxq) b qu) )

2 \"x
Az i )\2 _ 2
H, = (q;;% = iqy>, (A15)

ef)»z ) ) q2
HZ:T qu,lqy,—T .

Finally, we plug the resultant expression into Eq. (AS) to
get the relaxation rate for a probe initially polarized in the
|+) direction. The magnetic field correlators can in turn be
expressed in terms of the kernels H; and the magnetization
correlators in the sample, using the form of B(r,t) from
Eq. (A14). We can take advantage of translation invariance
of the sample in the x-y plane and time independence of the
sample Hamiltonian to make the following simplifcation for
the magnetization correlators in the sample:

(Imi(q, w1), mj(q, w)])
=2m8(w) + @284, —g,{[Mmi(q, ), mj(—q, —w)]). (A16)

After this simplication, we find that we can express the
correlator as

(A17)

Note that we can write the correlator as follows (schematically, with the ¢ and w dependencies implicit):

H; H(Imi,m;]) = ([3(H m_+H-my)+ H m, 5(Hfm_+ Hmy)+ HIm_])

— YHTH (Im_ym ) + HOHY (Imy,m_ ) + HXH (I, m ) + ..

The terms included in the ellipsis have zero matrix element if
the total S; commutes with the sample Hamiltonian, so that
the many-body eigenstates |r) also have fixed S,. Alterna-
tively, because of their form, these terms integrate to zero dur-
ing the momentum integration provided the spin-correlators
Cup(g, ) = ([S*(q, ®), SP(—q, —w)]) depend only on g,
i.e., the low-energy theory has rotational symmetry about
q = 0. Even if they do not vanish, they will not make any
qualitative difference to the relaxation-rate, so we will neglect
these terms.

Finally, we calculate the products of the Kernels shown
schematically in Eq. (A18), and make another simplifying
approximation: w/c < ¢g in most condensed matter systems
(equivalent to taking the speed of light to be infinite) so that
ARq:

—az\ 2 4 q2672qz
Hf(q,w)H (—q,—w) = ~ ,
+(q, 0)H_(—q, —w) <2)L)q 1
3 e—)uz 2 ) e qze—2qz
HY(q, w)H{ (—q, —») = ( 7 ) QA —q )y = i
—az\ 2 2 ,—2qz
H(q.0)H, (—q. —w) = (ez ) ¢~ — @

(A18)

(

Plugging these back into the expression for the spectral
function S;;(w) for the magnetic field and setting z = d and
gs = 2, we arrive at Eq. (8), which is reproduced below for
convenience.

~ = 4(M0u3)2coth(%)%ZF(d,q)
q

1
X Im[—z(c—+(q’ Cl)) + C-‘r—(qa a))) - CZZ(q’ a))i|

L—>oo w d2q
% Guaeotn (57) [ S Fidg)

xIm[=(C_1(q, @) +Cy (g, w)) = 4C:.(q, )],
(A20)

where F(d,q) = q’e %/8 ~ Zi:x,y,z |H;(d, q,»)*/2 is
a distance dependent form factor that shows that the inte-
gral over the Brillouin Zone is dominated by g ~ d~!, and
Cij(q, w) are the retarded spin-spin correlations that depend
solely on the equilibrium fluctuations of magnetization of the
sample. Note that here we have also made the approximation
that the typical velocity scale of propagation of excitations in
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the sample is much smaller than ¢, and therefore A =~ g and where m“ and n*¢ are two-by-two diagonal matrices. The
F(d, q) is independent of w. primary contribution to the low-energy structure factor comes
from the first term which is more relevant (the second term has

a derivative). For simplicity, here we just consider m¢ = o

APPENDIX B: COMPUTATIONS OF RELAXATION TIMES and use existing results for density-density correlations for
Dirac fermions in graphene where the dispersion is identical
(although graphene has two flavors of fermions as opposed to
For the clean Dirac spin liquid in the extended Kitaev — j single one here). Further, there is no long-range Coulomb
honeycomb model in Eq. (17), the spin operator can be written  jnteraction for fermionic spinons, and the gapped Z, gauge
down explicitly in terms of the low-energy Dirac fermions  fie]d mediates a weak short-range interaction which is irrele-
[27] as vant. So we can use the bare susceptibility from Ref. [36] by
setting the chemical potential © = 0 as we are interested in

o = yimiy + (Y n - Vi e KT £ He), (Bl)  the case with zero doping.

J

1. Gapless systems

2

q
SR —a?

2

+O(w — vq)%[% —2H.(q, o, T)], where
w? —viq

C. (g, ) = Ovg — w) [G_(q.0,T)— Gi(q,w,T)]

1 V1 —u?

w1 = [ qu—Y——"%
(g, 0, T)= A Ea A T

e(vquxa/2T 4 1° (B2)

oo
Gi(q, 0, T)= / du
1
We note that for 7 — 0, this is reduced to the form we have in Eq. (24) as both G+ and H; go to zero in this limit. Therefore
the relaxation time in the limit 7 < w is given by

1 /v 2 5
F e / dq q3e—2qd q— ~ {a) ’ da)/v < 1 . (B3)
1 0

[o? — g2 | do/v> 1

For very large T > w > 0, we can again find a somewhat simple expression for the structure factor by approximating the
Fermi-Dirac distribution by the Boltzmann distribution:

2

i@~ 00— ) 225 (1) 2051 (32) |+ 000 - w0)

b4
— —(1—e?Ty., (B4
v2q2 2T vg 2T ( ¢ ) ( )

72
Ny
In this limit, we may again calculate the relaxation rate to leading order in w/T. Note that we can also define an effective
temperature scale 7; = hiv/kgd, restoring the fundamental constants for clarity. As discussed in the main text, both 7; > T and
Ta < T ar experimentally accessible limits. However, for our calculations we stick to the regime 7; < T, i.e., the temperature
is the largest energy scale in the problem. In this regime, we can approximate coth(w/2T) =~ 2T /w, and extract analytical
expressions for the relaxation rates in the regimes w < T; and w > 7.

T2
1 2T [ B ., mdo/v L1
o — | dgg’eC _(qo.T) Y Lo (B5)
T oo Tome 2 dwfv > 1

For the Dirac spin liquid at finite doping, we again use the susceptibility from Ref. [36] at finite chemical potential . We also
assume that u is the largest energy scale in the problem, so that the temperature 7', the probing frequency w, and the temperature
scale 7, set by the inverse distance d are all much less that .

2
” q
C 7(q70))% @(U _a))—[G(i(qiw’ T)_Ga(q’w’ T)]
" a;: =@ i
® ¢ S 7|, wh
+O(w — vq) R [5 v~ — H{(q, o, )], where
w2 —1 V1=u?

(B6)

Y vquzal 20m2T 4 1

oo 1
Gi(q, @, T) = /; du ellvqutol=2ap)/2T 4 1 Hi(q’ o, T)= /;l d

Note that for © > T, the integrals in G* and H® contribute to the correlation function appreciably only for o = +. First,
we look at the limit of w > T, whence we can replace the Fermi functions by theta functions for the integrals in G,
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and we have

70 Qu+tw)/vg Py 2
Gt'q.0.T)-Gi(q,0,T) — duvu?—1~ —(—) and
Qu-w)/vg vg \v

1
o 1) 5 [ an/i=e =7, B7)
—1

210 5, 1. Therefore, up to corrections exponentially suppressed

vg
by e=*/T, the term proportional to ®(w — vq) in Eq. (B6) does not contribute. So the relaxation time in the limit 7 < o < i

where we have used that the theta function imposed upper limit

is given by
1 0 2 2 2,2 2d
— oc/ dggie2d 4 LSS [—wK0(2da)/v)+K1(2dw/v)]
Tl /v U2q2 —w? (UC]) 2d v
(%, do/v <1
N e (B8)
%e‘z“"”“, do/v>1
Now we study the other limit where w « 7" < u, where we have the following limiting form of G§:
e’} (vqu—2p)/2T ; h 2T)
+ _ o+ _ 2 e sinh(w/
G (q,0,T)-Gi(q,0,T) = /1 duvu?—1 ST | oI cosh(e)2T) 1 1
T>o . wy [* u? —1
—— sinh (—) du 3
2T/ Ji 4 cosh“[(vqu —2u1)/2T]
2
~ sinh (ﬁ) LN (B9)
2T/ \ vq

Note that H}rL ~ /2 still holds upto corrections of O(e*/T), and hence the term proportional to ®(w — vq) in Eq. (B6) again
does not contribute. Therefore the relaxation time in the limit w < T < u is given by

q2 MZ

i x /Oodq qSe_zqd
Tl w,

d—13, do/v <1

%e‘z“’d/u, do/v> 1

~
~

v V122 — o2 (vg)?

S| Ki@ze/v) + KaQdo/v)

wraw? |:2da) :|

(B10)

In case of time-reversal symmetry preserving disorder for the Kitaev spin liquid, the disorder term appears like a vector
potential in the low-energy Hamiltonian, which we assume to have short-range correlations:

H=Y e kéy+App o). (AgAg) = Qr)28(q +q)Ax.

kK

The properties of this system has been studied in detail in
Ref. [42], so we use their results to determine the scaling
of the structure factor, and hence, the relaxation time. Let
us review a few key results from Ref. [42], which we will
use extensively. At o =0, the system is described by a
fixed line of interacting 1+1-D theories, characterized by
w/T scaling and a dynamical critical exponent z given by
z=1+4 As/m, where A, is the disorder strength. The fre-
quency w (or energy) corresponds to a relevant operator
with scaling dimension z, i.e., under scaling ¢ — ¢ /b and
w — w/b”.

To calculate the structure factor, we can expand the
fermionic spinon operators in single particle eigenstates for
a fixed realization of disorder (neglecting interactions). Here
we neglect the sublattice index for notational simplicity, one
can put it back and check that it does not make any qualitative

(B11)

(

difference to the correlations at small momenta:

V)= di(p)f (B12)
s

Using these eigenstates, we shall evaluate the disorder aver-
aged density-density correlator for the Dirac fermions to find
the dynamic spin structure factor. Here we are assuming that
the physical spin operator is o, ~ ¥ m,y¥ with m, ~ oy, as
discussed for the free case. The density operator can be written
as

p(q. i) = / dp Py (p, i) (p. iwy)

= / dp e 1 ()i (p)f) fir.  (B13)

AN
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Therefore the susceptibility in the density channel in imaginary time is given by the thermal and disorder average of the density-
density correlator, under the assumption that the system is self-averaging:

. 1 . .
x(q,iw,) = —W(P(CI’ iwy)p(—q, _la)n))thermal,disorder

! , nrE) = ne @) . o
=1 [do [ T e OO e

, &) —nr) :
=~ [ape qu”fwf*+ S5 0006500 s B14)

where in the last step we assumed that disorder averaging restores translation invariance. Let us introduce the following function
to simplify the calculation (further assuming rotational symmetry after disorder averaging):

g(q.e,¢) = Z / dp ' (@} (p)n(p)$;(0)¢h.(0))disorder (e — £,)8(e — &p). (B15)
Aon
In terms of g(g, ¢, &), we can rewrite the retarded correlator after analytically continuing Eq. (B14) to real frequencies:
_ , np(e) —nr(e) ,
x(q, ®) = /d8 de PR TR — 8(q.e.¢)
1 dnp
=~ Inix(@ o)) = [ delire) ~nre +o)lg(@ e o) 2o [ de (G5 o0 (B16)

In the last step, we made a low-energy approximation assuming o to be the smallest energy scale, i.e @ < T. Now, we need to
find the scaling behavior of g(g, €1, &2):

g(q,e1,8)=b""g(bq, b’e, b’ey). (B17)

This can be done by comparing the expression for x (¢, iw,) in the limit w, — 0 from Eq. (B16) with an alternate derivation of
the static (w, = 0) limit of the susceptibility from the knowledge of the scaling dimension of p(p, 7) in Ref. [42]:

B )
(@, ion = 0,T) = / dr / dp €17 (p(p, T)p(0, 0))
0

=1 Y [ dper? b0, (p/)p(O)

s dxdy ;..
_ oy ~>b2/7€ Ga0/D) (5 (p/b)ow (0))

= Tb* Vy(bq,iw, =0,b*T)

_ 722/ 9
=T ¢1<T1/Z), (B18)

and @ is some universal scaling function. From Eq. (B16), we can see that the

where in the last step we chose b = T~!/*

following scaling holds:

de dé' np(e)—nF(e)
o=0)=T g, 8
x(q ) T T 24042 8(g, ¢

. ds de' n (8)—n (8) 3

=T g, ( ) (B19)

T1/2

(

where we have again used that the integral in the second to last ~ limitw < T
step is dimensionless to cast the result in terms of the scaling

function ®. Comparing Eqs. (B16) and (B19), we find that 1 ONO 0, 2gd q

y =2 — 2z. Now, we can evaluate the relaxation time in the T o coth (2_) =T /0 dgq’e o, (Tl /7>
limit w <« T, using Eq. (B16) again to extract the linear term

in w/ T, which cancels the divergence from coth(w/27T) in the ~ T w T, (B20)
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where W (dT'/%) is another universal scaling function. The
anomalous scaling of frequency becomes apparent in the
scaling of the relaxation time with distance from the sample!

We now check that we get back the previously obtained
results for clean Dirac fermions in the limit of zero disorder.
In this case, we have relativistic scaling of space and time,
i.e., z = 1. From Eq. (B4), we check that the universal func-
tion in the w — 0 limit is given by ®,(¢/T) = 2K,(q/2T).
Accordingly, the integral over ¢ gives a function ¥;(dT) =
(dT)~3, which combined with the T factor upfront for z = 1
reproduces the scaling of the relaxation time as T2/d® in
Eq. (B5). The second limit in Eq. (BS) when dw/v > 1 is
difficult to capture by the scaling argument, which naturally
assumes w to be the smallest energy scale, whereas 7; <
in this case.

We can also study the T — 0 limit by choosing b = w~!/*
in Eq. (B17). In this limit, we find that

1 1) o q
L th (_) 2-2)/z da o3 e=24 @ ( )
T ccomar ) 0 19°¢ BAVAIE

~ oW, (d w'/?) (B21)

For the clean system, we can again put z = 1 and hence see
that for dw < 1 we have W,(d w) ~ 1 for wd/v < 1 and
W, (d w) ~ (d )~ for wd /v < 1, reproducing the relaxation
rates in Eq. (B3).

For the Z, spin liquid with a spinon Fermi surface, we can
study the relaxation time in the limit of 7 <« @ < . In this
regime, the density-density correlation of the fermion field is
given by a diffusive form [44], and therefore the spin structure
factor also assumes a diffusive form:

" vDyq?
C ,w) ~ —Im : ~
—(q. @) (—ia) + D‘Yq2>

In the of limit of small T /w, coth(w/2T) =~ 1, so the relax-
ation time is given by

vD,qw
w? + D2g*’

(B22)

(B23)
|

C, (q.0)=

If d is small so that wd? <« D;, then the integral is essentially
cutoff by the exponential factor at a scale of ¢ ~ d . Setting
D, = 1, we have

T w? + g4
1/2d va? 1
~ 3 Vqgw o w )
Nfo dgq’ s = 3(55 — 40 co” 4d%0)
@ (B24)
842

On the other hand, for large d with wd? > Dy, the integrand
is dominated by small g ~ d~! in the numerator, and the
denominator can be assumed to be roughly w? for the regime
where the exponential factor is small:

1 * 3 —2qd vg’w
7| dad’e T
T, 0 w-+q

~5 /00 dq q* e (vg?) ~
w Jo wds’
Finally, we arrive at the consideration of a clean U(1) spin lig-
uid with a Fermi surface. In this case, the largest contribution
comes from the imaginary part of the self-energy (that scales
as w?/?) in the RPA Green’s function of the spinon [45,46].
In order to evaluate the susceptibility, we write the spinon
Green'’s function in terms of the spectral representation.

*° A
Grlk,iw,) = / QM

(B25)

- )
00 2T iwy, — &

2mé(&)ife =0
where A ¢(k, &) = —2Im[G ¢ (k, &)] = .
f( ) [ f( )] glzzfcizim i ife >0

where C ~ u!/3 is a constant. Writing in terms of the spectral
function allows us to do the Matsubara summation in the
density-density correlator. After some algebra, we can write
the imaginary part of the retarded density-density correlator
(after analytic continuation to real frequencies) as

—/ f(2 A A+ 4,0+ np(e +0) = np(e)]

~ 3)’117

~w/ o )ZA(k 0)AKk +q, w),

(B26)

where we have first assumed w is small compared to p to replace the difference in Fermi functions by a derivative, and then
further used 7 < u to approximate the Fermi function by a step function so that its derivative is a delta function. We can further
simplify the integral in the low-g limit, which is reasonable to consider as typically g < kr. We have &, ~ vpg cos(0) +
O(g?) in this limit, where 6 is the angle between k and q:

/ dk Ak, 0)A(k + ) / dk 5 k2 2C o*? m /d9 C ?*/3
A\ ) , W) = ~_ N =
(2m)? 1 2 \o2m M §I%+q +C?0*? 7w v2g2 cos? 6 + C2w*3

1
X (B27)

/U%qz + C20*3
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Now, we can estimate the relaxation time in the 7 — 0 limit. For w > T, we have coth(w/2T) ~ 1. The scaling of the relaxation
time is then given by

~ 1/3
T L od/vp > 1
At finite temperature T > w, the spinon self-energy formally diverges because the spinon Green’s function is not gauge-
invariant [45]. However, the formal divergence cancels in any gauge-invariant observables, and the z = 3 scaling can be used

to predict the temperature dependence in the w <« T limit as well. For our relaxation time computation, we can write down the
spin-spin correlation function by simply using 7%*/3 instead of w?/? in the self-energy, which gives

™>o @

C._(q, ) . (B29)
JVRg? + C2T43
In the w <« T limit, we have w coth(w/2T) =~ 2T. So, the relaxation time is given by
1/3
1| Erape<(E) <1
i 13 : (B30)
T, T3 T
> Td/vr > (ﬁ)

2. Gapped systems

In this section, we discuss the computations of semiexact expressions for the relaxation time for different systems. We start
off with the case of free noninteracting bosons, when we find that the relaxation time is given by

1 oo 2
—%/ dgg’e ™10 a)—ZAS—q—
T 0 4m

_,—20d 2 3
= Ame BH0dHOD +HOD N6, —2a,), where @ = JAm( — 24,)

N {%“@(w —2A,),0d < 1

2O —2A), 0d > 1

(B31)

For noninteracting anyons with statistics parameter «, the structure factor considering local two-anyon energy eigenstates, as
described in the main text, is given in Ref. [15]:

Cl (g, ) o J2(ay/m(w —2A;) — q2/4) O(m(w — 2A,) — g*/4),

~ (aym(w —204) — @2 /4 O(m(w — 2A;) — ¢°/4), (B32)

where a is a microscopic length scale of the order of lattice spacings. Using the low-energy approximation of the last step, we
find that the relaxation time is given by (we seta = 1):

1 o0 2a 2
— / dg g*e 24 (\/4m(a) —2A) — qz) @(a) —2A; — q_)
0

T] 4dm
4420 d)>/?+e
= 2« +Q1)(a 1+2) - ﬁinga I'(1 4+ a)[315/24«(20d) +20d17/244(204d)

— 2021342 (200) +2(1 + &) L3121 (202)]
4420
- | @m0 — 240, 0d <1 .

0 0w —24,), 0d > 1
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Above, I,(x) and L, (x) refer to the modified Bessel functions and the modified Struve functions respectively. For fermions with
o = 1, the expressions are a lot simpler, so we reproduce them below for completeness:

1 oo rod 2 q2
T 1o / dgq’e ™ (\/4m(a) —2A;) — q2) @(a) —2A; — 4—)
1 0 m

—15 4 30%d?* 4+ ¢7229[15 4+ 300Qd + 27(Qd)* + 14(Qd)* + 4(Qd)*]

o O —24,),

2O —24,), 0d < 1
=i ) (B34)
0@ —24A,), 0d > 1

Finally, for the case of interacting bosons we have the following form of the dynamic spin structure factor as 7 — 0 [15,65]:

(B35)

2
: ® <a) —2A, - q-).
[In (4m(w — 2A;) — q2/16b%) + 2yE)? + 72 4m
In principle, the relaxation time can be evaluated numerically using this correlation function. However, if we further assume that
the range of interaction Qb < 1, where b is the effective range of interaction, then we can make analytical progress. In this
regime, we can neglect yz and 7 in comparison to In>(Qb) in the denominator. For Qd <« 1, also we ignore the exponential
decay factor in the numerator. Then, we have, using Q = /4m(w — 2A;):

1 q3

C, (g, w)~

— d
> /0 T In[(Q? = ¢)b2/16] + 2y + 72

0(0* —¢%)

00 3
~ / dq q
0 In*[(Q? — ¢*)b?/16]

0(Q* —¢%)

0 q3
~ / dq
0 In’[(Q? — ¢?)b?/16]

b4
Q4
" In2(Qb)’

when Qd « 1.

~ i { %(Qb/4)2Ei[2 In(Qb/4)] — Ei[4ln(Qb/4)]}

(B36)

For Qd > 1, the exponential factor in the numerator cannot be neglected, but we can still Taylor expand the denominator in
powers of g/ Q and we find that the dominant contribution to the integral comes from the zeroth order term. Hence, the relaxation

Lo [Tt o(2) o -
— dg Lt |1+0(L) |e?-
; (XA qlnz(Qb)|: +o(5) e ~a

time is given by

3
" 844 1n2(Qb)’

(B37)
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