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This paper focuses on spin superfluid transport, observation of which was recently reported in antiferromagnet
Cr2O3 [Yuan et al., Sci. Adv. 4, eaat1098 (2018).]. This paper analyzes the role of dissipation in transformation
of spin current injected with incoherent magnons to a superfluid spin current near the interface where spin is
injected. The Gilbert damping parameter in the Landau–Lifshitz–Gilbert theory does not describe dissipation
properly, and the dissipation parameters are calculated from the Boltzmann equation for magnons scattered by
defects. The two-fluid theory is developed similar to the two-fluid theory for superfluids. This theory shows that
the influence of temperature variation in bulk on the superfluid spin transport (bulk Seebeck effect) is weak at low
temperatures. The scenario that the results of Yuan et al. are connected with the Seebeck effect at the interface
between the spin detector and the sample is also discussed. The Landau criterion for an antiferromagnet put in a
magnetic field is derived from the spectrum of collective spin modes. The Landau instability starts in the gapped
mode earlier than in the Goldstone gapless mode, in contrast to easy-plane ferromagnets where the Goldstone
mode becomes unstable. The structure of the magnetic vortex in the geometry of the experiment is determined.
The vortex core has the skyrmion structure with finite magnetization component normal to the magnetic field.
This magnetization creates stray magnetic fields around the exit point of the vortex line from the sample, which
can be used for experimental detection of vortices.
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I. INTRODUCTION

The concept of spin superfluidity is based on the analogy of
the equations of magnetodynamics with the equations of su-
perfluid hydrodynamics [1]. The analogy led to the suggestion
that in magnetically ordered media persistent spin currents are
possible, which are able to transport spin on macroscopical
distances without essential losses [2].

The phenomenon of spin superfluidity has been discussed
for several decades [2–15]. We define the term superfluidity
in its original meaning known from the times of Kamerlingh
Onnes and Kapitza: transport of some physical quantity (mass,
charge, or spin) over macroscopical distances without essen-
tial dissipation. This requires a constant or slowly varying
phase gradient at macroscopical scale with the total phase
variation along the macroscopic sample equal to 2π mul-
tiplied by a very large number. Spin superfluidity assumes
the existence of spin current proportional to the gradient of
the phase (spin supercurrent). In magnetically ordered media
the phase is an angle of rotation in spin space around some
axis (further in the paper the axis z). In contrast to the
dissipative spin-diffusion current proportional to the gradient
of spin density, the spin supercurrent is not accompanied by
dissipation.

Spin superfluidity require special topology of the order
parameter space. This topology is realized at the presence
of the easy-plane magnetic anisotropy, which confines the
magnetization of the ferromagnet or sublattice magnetizations
of the antiferromagnet in an easy plane. In this case one may
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expect that the current state is stable with respect to phase
slips, which lead to relaxation of the supercurrent. In the
phase slip event a vortex with 2π phase variation around it
crosses streamlines of the supercurrent decreasing the total
phase variation across streamlines by 2π . The concept of the
phase slip was introduced by Anderson [16] for superfluid 4He
and later was used in studying spin superfluidity [2,3].

Phase slips are suppressed by energetic barriers for vortex
expansion. But these barriers disappear when phase gradients
reach critical values determined by the Landau criterion. The
physical meaning of the Landau criterion is straightforward:
the current state becomes unstable when there are elementary
excitations with negative energy. So, to check the Landau
criterion one must know the full spectrum of collective modes.

Sometimes any presence of spin current proportional to
the phase gradient is considered as a manifestation of spin
superfluidity [17,18]. However, spin current proportional to
the spin phase gradient is ubiquitous and exists in any spin
wave or domain wall, also in the ground state of disordered
magnetic media. In all these cases the total variation of the
phase is smaller, or on the order of π . Connecting these cases
with spin superfluidity makes this phenomenon trivial and
already observed in old experiments on spin waves in the
middle of the 20th Century. One may call the supercurrent
produced by the total phase variation of the order or less
than 2π microscopical supercurrent, in contrast to persis-
tent macroscopical supercurrents able to transport spin over
macroscopical distances.

The analogy with usual superfluids is exact only if the
spin space is invariant with respect to spin rotation around
the hard axis normal to the easy plane. Then there is the
conservation law for the spin component along the hard axis.
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In reality this invariance is broken by in-plane anisotropy. But
this anisotropy is usually weak, because it originates from the
spin-orbit interaction, which is relativistically small compared
to the exchange interaction, i.e., inversely proportional to the
speed of light [19]. Macroscopical spin supercurrents are still
possible if the energy of supercurrents exceeds the in-plane
anisotropy energy. Thus, one cannot observe macroscopical
spin supercurrents not only at large currents as in usual
superfluids, but also at small currents [2].

From the time when the concept of spin superfluidity
(in our definition of this term) was suggested [2], it was
debated about whether the superfluid spin current is a “real”
transport current. As a response to these concerns, in Ref. [2]
a Gedanken (at that time) experiment for demonstration of
reality of superfluid spin transport was proposed. The spin
is injected to one side of a magnetically ordered layer of
thickness d and spin accumulation is checked at another side.
If the layer is not spin-superfluid, then the spin is transported
by spin diffusion. The spin current and the spin density
exponentially decay at the distance of the spin diffusion
length, and the density of spin accumulated at the other side
decreases exponentially with growing distance d . However, if
the conditions for spin superfluidity are realized in the layer,
then the superfluid spin current decays much slower, and the
accumulated spin density at the side opposite to the side where
the spin is injected is inversely proportional to d + C, where
C is some constant.

The interest to long-distance spin transport, especially
to spin superfluid transport, revived recently. Takei and
Tserkovnyak [7] carried out a microscopic analysis of injec-
tion of spin to and ejection of spin out of the spin-superfluid
medium in an easy-plane ferromagnet justifying the afore-
mentioned scheme of superfluid spin transport. Takei et al. [8]
extended this analysis to easy-plane antiferromagnets. Finally,
Yuan et al. [20] were able to realize the suggested experiment
in antiferromagnetic Cr2O3 observing spin accumulation in-
versely proportional to the distance from the interface where
spin was injected into Cr2O3.

Previously Borovik-Romanov et al. [21] reported evidence
of spin superfluidity in the B phase of superfluid 3He. They
detected phase slips in a channel with superfluid spin current
close to its critical value. It was important evidence that
persistent spin currents are possible. But real long-distance
transportation of spin by these currents was not demonstrated.
Moreover, it is impossible to do in the nonequilibrium magnon
Bose–Einstein condensate, which was realized in the B phase
of 3He superfluid[6] and in yttrium-iron-garnet magnetic films
[22]. The nonequilibrium magnon Bose–Einstein condensate
requires pumping of spin in the whole bulk for its existence.
In the geometry of the aforementioned spin transport exper-
iment this would mean that spin is permanently pumped not
only by a distant injector but also all the way up the place
where its accumulation is probed. Thus, the spin detector
measures not only spin coming from a distant injector but
also spin pumped close to the detector. Therefore, the ex-
periment does not prove the existence of long-distance spin
superfluid transport. There were also reports on experimen-
tal detection of spin superfluidity in magnetically ordered
solids [17,18], but they addressed microscopical spin super-
current [23]. As explained above, “superfluidity” connected

with such currents was well proved by numerous old exper-
iments on spin waves and does not need new experimental
confirmations. The work of Yuan et al. [20] was the first report
on long-distance superfluid spin transport with spin accumu-
lation decreasing with distance from the injector as expected
from the theory. Long-distance superfluid spin transport was
also recently reported in a graphene quantum antiferromagnet
[24].

The experiment on superfluid spin transport [20] has put to
rest another old dispute about the spin superfluidity concept.
At studying spin superfluidity in the B phase of superfluid
3He, it was believed [4] that spin superfluidity is possible
only if there are mobile carriers of spin and a counterflow of
carriers with opposite spins transports spin. If so, then spin
superfluidity is impossible in insulators. Moreover, Shi et al.
[25] argued that it is a critical flaw of spin-current definition
if it predicts spin currents in insulators. Since Cr2O3 is an
insulator the experiment of Yuan et al. [20] rules out this
presumption.

Boosted by the superfluid spin transport experiment[20]
this paper addresses some issues deserving further investiga-
tion. It is especially needed because Lebrun et al. [26] made
an experiment in an antiferromagnetic iron oxide similar to
that of Yuan et al. [20] and observed similar dependence of
spin accumulation on the distance from the injector. However,
Lebrun et al. [26] explain it not by spin transport from the
distant injector but by the Seebeck effect at the detector,
which is warmed by the heat flow from the injector. We shall
compare these two interpretations in Sec. VIII.

We analyzed the role of dissipation in the superfluid spin
transport. A widely used approach to address dissipation in
magnetically ordered solids is the Landau–Lifshitz–Gilbert
(LLG) theory with the Gilbert damping parameter. But we
came to the conclusion that the Gilbert damping does not
provide a proper description of dissipation processes in easy-
plane ferromagnets. The Gilbert damping is described by a
single parameter, which scales all dissipation processes inde-
pendently from whether they do violate the spin conservation
law, or do not. Meanwhile, the processes violating the spin
conservation law, the Bloch spin relaxation in particular, orig-
inate from spin-orbit interaction and must be relativistically
small as explained above. This requires the presence of a small
factor in the intensity of the Bloch spin relaxation, which is
absent in the Gilbert damping approach. So we determined
the dissipation parameters from the Boltzmann equation for
magnons scattered by defects. Dissipation is possible only
in the presence of thermal magnons, and we developed the
two-fluid theory for easy-plane ferromagnets similar to that in
superfluid hydrodynamics for the clamped regime, when the
gas of quasiparticles cannot freely drift without dissipation in
the laboratory frame.

As mentioned above, to check the Landau criterion for
superfluidity, one must calculate the spectrum of collective
modes and check whether some modes have negative energies.
The Landau critical gradient is determined by easy-plane
crystal anisotropy and was known qualitatively both for ferro-
and antiferromagnets long ago [2]. For easy-plane ferromag-
nets the Landau critical gradient was recently determined
quantitatively from the spin-wave spectrum in the analysis
of ferromagnetic spin-1 BEC of cold atoms [15]. But Cr2O3,
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which was investigated in the experiment [20], has no crystal
easy-plane anisotropy, and an “easy plane” necessary for
spin superfluidity is produced by an external magnetic field.
The magnetic field should exceed the spin-flop field, above
which magnetizations of sublattices in antiferromagnet are
kept in a plane normal to the magnetic field. We analyze the
magnon spectrum in the spin current states in this situation.
The analysis has shown that the Landau critical gradient is
determined by the gapped mode but not by the Goldstone
gapless mode as in the cases of easy-plane ferromagnets.

Within the two-fluid theory the role of spatial temperature
variation was investigated. This variation produces the bulk
Seebeck effect. But the effect is weak because it is propor-
tional not to the temperature gradient, but to a higher (third)
spatial derivative of the temperature.

The transient processes near the interface through which
spin is injected were also discussed. Conversion from spin
current of incoherent thermal magnons to coherent (super-
fluid) spin transport is among these processes. The width of
the transient layer (healing length), where formation of the
superfluid spin current occurs, can be determined by different
scales at different condition. But at low temperatures it is
apparently not less than the magnon mean-free-path.

In reality the decay of superfluid currents starts at values
less than the Landau critical value via phase slips produced
by magnetic vortices. The difference in the spectrum of
collective modes in ferro- and antiferromagnets leads to the
difference in the structure of magnetic vortices. In the past
magnetic vortices were investigated mostly in ferromagnets
(see Ref. [15] and references therein). The present work
analyzes a vortex in an antiferromagnet. The vortex core
has a structure of skyrmion with sublattice magnetizations
deviated from the direction normal to the magnetic field. At
the same time inside the core the total magnetization has a
component normal to the magnetic field. In the geometry of
the Cr2O3 experiment this transverse magnetization creates
surface magnetic charges at the point of the exit of the vortex
line from the sample. Dipole stray magnetic fields produced
by these charges hopefully can be used for detection of
magnetic vortices experimentally.

Section II reminds the phenomenological model of Ref. [2]
describing the spin diffusion and superfluid spin transport.
Section III reproduces the derivation of the spectrum of the
collective spin mode and the Landau criterion in a spin current
state of an easy-plane ferromagnet known before [15]. This is
necessary for comparison with the spectrum of the collective
spin modes and the Landau criterion in a spin current state
of an easy-plane antiferromagnet derived in Sec. IV. Thus,
Sec. III, as well as Sec. II, do not contain new results, but were
added to the paper to make it self-sufficient and more read-
able. In Sec. V we address two-fluid effects and dissipation
parameters (spin diffusion and second viscosity coefficients)
deriving them from the Boltzmann equation for magnons. The
section also estimates the bulk Seebeck effect and shows that
it is weak. Section VI analyzes the transient layer near the
interface through which spin is injected and where the bulk
superfluid spin current is formed. Various scales determining
the width of this layer (healing length) are discussed. In
Sec. VII the skyrmion structure of the magnetic vortex in
an antiferromagnets is investigated. The concluding Sec. VIII

summarizes the results of the work and presents some numer-
ical estimations for the antiferromagnetic Cr2O3 investigated
in the experiment. The Appendix analyzes dissipation in the
LLG theory with the Gilbert damping. It is argued that this
theory predicts dissipation coefficients incompatible with the
spin conservation law.

II. SUPERFLUID SPIN TRANSPORT VS SPIN DIFFUSION

Here we remind the simple phenomenological model of
spin transport suggested in Ref. [2] (see also more recent
Refs. [5,7,8]). The equations of magnetodynamics are

dMz

dt
= −∇ · J − M ′

z

T1
, (1)

dϕ

dt
= −γ M ′

z

χ
+ ζ∇2ϕ. (2)

Here χ is the magnetic susceptibility along the axis z, ϕ is
the angle of rotation (spin phase) in the spin space around the
axis z, and M ′

z = Mz − χH is a nonequilibrium part of the
magnetization density along the magnetic field H parallel to
the axis z. The time T1 is the Bloch time of the longitudinal
spin relaxation. The term ∝ ∇2ϕ in Eq. (2) is an analog of
the second viscosity in superfluid hydrodynamic [27,28]. The
magnetization density Mz and the magnetization current J
differ from the spin density and the spin current by sign and
by the gyromagnetic factor γ . Nevertheless, we shall call the
current J the spin current to stress its connection with spin
transport. The total spin current J = Js + Jd consists of the
superfluid spin current

Js = A∇ϕ (3)

and the spin diffusion current

Jd = −D∇Mz. (4)

The pair of the hydrodynamical variables (Mz, ϕ) is a pair
of conjugate Hamiltonian variables analogous to the pair
“particle density–superfluid phase” in superfluid hydrody-
namics [1].

There are two kinds of spin transport illustrated in Fig. 1.
In the absence of spin superfluidity (A = 0) there is no
superfluid current. Equation (2) is not relevant, and Eq. (1)
describes pure spin diffusion [Fig. 1(a)] . Its solution, with the
boundary condition that the spin current J0 is injected at the
interface x = 0, is

J = Jd = J0e−x/Ld , M ′
z = J0

√
T1

D
e−x/Ld , (5)

where

Ld = √
DT1 (6)

is the spin-diffusion length. Thus, the effect of spin injection
exponentially decays at the scale of the spin-diffusion length.

However, if spin superfluidity is possible (A �= 0), the spin
precession Eq. (2) becomes relevant. As a result of it, in a
stationary state the magnetization M ′

z cannot vary in space
[Fig. 1(b)] since according to Eq. (2) the gradient ∇M ′

z is
accompanied by the linear in time growth of the gradient
∇ϕ. The requirement of constant in space magnetization Mz
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FIG. 1. Long-distance spin transport. (a) Spin injection to a
spin-nonsuperfluid medium. (b) Spin injection to a spin-superfluid
medium. (c) Geometry of the experiment by Yuan et al. [20]. Spin
is injected from the left Pt wire and flows along the Cr2O3 film to
the right Pt wire, which serves as a detector. The arrowed dashed line
shows a spin-current streamline. In contrast to (a) and (b), the spin
current is directed along the same axis z as a magnetization parallel
to the external magnetic field H .

is similar to the requirement of constant in space chemi-
cal potential in superfluids, or the electrochemical potential
in superconductors. As a consequence of this requirement,
spin diffusion current is impossible in the bulk since it is
simply “short-circuited” by the superfluid spin current. Only
in AC processes the oscillating spin injection can produce
an oscillating bulk spin diffusion current coexisting with an
oscillating superfluid spin current.

In the superfluid spin transport the spin current can reach
the other boundary opposite to the boundary where spin is
injected. We locate it at the plane x = d . As a boundary
condition at x = d , one can use a phenomenological relation
connecting the spin current with the magnetization: Js(d ) =
M ′

zvd , where vd is a phenomenological constant. This bound-
ary condition was derived from the microscopic theory by
Takei and Tserkovnyak [7]. Together with the boundary con-
dition Js(0) = J0 at x = 0 this yields the solution of Eqs. (1)
and (2):

M ′
z = T1

d + vd T1
J0, Js(x) = J0

(
1 − x

d + vd T1

)
. (7)

Thus, the spin accumulated at large distance d from the
spin injector slowly decreases as the inverse distance 1/d

[Fig. 1(b)], in contrast to the exponential decay ∝ e−d/Ld in
the spin diffusion transport [Fig. 1(a)].

In Figs. 1(a) and 1(b) the spin flows along the axis x, while
the magnetization and the magnetic field are directed along
the axis z. In the geometry of the experiment of Yuan et al.
[20] the spin flows along the magnetization axis z parallel
to the magnetic field. This geometry is shown in Fig. 1(c).
The difference between two geometries is not essential if
spin-orbit coupling is ignored. In this section we chose the
geometry with different directions of the spin current and
the magnetization to stress the possibility of the independent
choice of axes in the spin and the configurational spaces. But
in Sec. VII addressing a vortex in an antiferromagnet we shall
switch to the geometry of the experiment because in this case
the difference between geometries is important.

Without dissipation-connected terms, the phenomenolog-
ical theory of this section directly follows from the LLG
theory. For ferromagnets the LLG equation is

dM
dt

= γ [Heff × M], (8)

where

Heff = − δH
δM

= − ∂H
∂M

+ ∇ j
∂H

∂∇ jM
(9)

is the effective field determined by the functional deriva-
tive of the Hamiltonian H. For a ferromagnet with uniaxial
anisotropy the Hamiltonian is

H = GM2
z

2
+ A∇iM · ∇iM − MzH. (10)

Here H is an external constant magnetic field parallel to
the axis z, and the exchange constant A determines stiffness
with respect to deformations of the magnetization field. In
the case of easy-plane anisotropy the anisotropy parameter
G is positive and coincides with the inverse susceptibility:
G = 1/χ .

Since the absolute value M of the magnetization is a con-
stant, one can describe the 3D magnetization vector M only
by two Hamiltonian conjugate variables: the magnetization z
component Mz and the angle ϕ of rotation around the z axis.
Then the LLG theory yields two equations

Ṁz = −∇ · Js, (11)

ϕ̇ = −γμ, (12)

with the Hamiltonian in new variables

H = M2
z

2χ
+ AM2

⊥∇ϕ2

2
+ AM2(∇Mz )2

2M2
⊥

− MzH. (13)

Here M⊥ = √
M2 − M2

z , and the spin “chemical potential”
and the superfluid spin current are

μ = δH
δMz

= ∂H
∂Mz

− ∇ j
∂H

∂∇ jMz
, Js = γ

∂H
∂∇ϕ

. (14)

After substitution of explicit expressions for functional
derivatives of the Hamiltonian Eq. (13) the equations become

Ṁz

γ
= −∇ · (AM2

⊥∇ϕ), (15)
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ϕ̇

γ
= −Mz

[
1

χ
− A(∇ϕ)2 − AM2(∇Mz )2

M4
⊥

]

+ AM2

M2
⊥

∇2Mz + H. (16)

Equations (1) and (2) without dissipation terms follow from
Eqs. (15) and (16) after linearization with respect to small gra-
dients ∇ϕ and nonequilibrium magnetization M ′

z = Mz − χH
and ignoring the dependence of the spin chemical potential μ

on ∇Mz. Then A = γ AM2
⊥, and M⊥ is determined by its value√

M2 − χ2H2 in the equilibrium.

III. COLLECTIVE MODES AND THE LANDAU
CRITERION IN EASY-PLANE FERROMAGNETS

To check the Landau criterion one should know the spec-
trum of collective modes. In an easy-plane ferromagnet the
collective modes (spin waves) are determined by Eqs. (15)
and (16) linearized with respect to weak perturbations of
stationary states. Further the angle variable θ will be intro-
duced instead of the variable Mz = M sin θ . Let us consider
a current state with constant gradient K = ∇ϕ and constant
magnetization

Mz = M sin θ = χH

1 − χAK2
. (17)

To derive the spectrum of collective modes, we consider weak
perturbations 
 and � of this state: θ → θ + 
, ϕ → ϕ + �.
Equations (15) and (16) after linearization are:


̇ − 2γ MzAK · ∇
 = −γ AM cos θ∇2�,

�̇ − 2γ MzAK · ∇� = −γ M cos θ

χ

(
1 − χAK2)


+ γ AM cos θ∇2
. (18)

For plane waves ∝ eik·r−iωt these equations describe the gap-
less Goldstone mode with the spectrum [13,15]:

(ω + www · k)2 = c̃2
s k2. (19)

Here

c̃s =
√

χ

χ̃
cs, (20)

χ̃ = χ

1 − χA
(

K2 − M2k2

M2
⊥

) , (21)

and

cs = γ M⊥

√
A

χ
(22)

is the spin-wave velocity in the ground state without any spin
current. In this state the spectrum becomes

ω = csk

√
1 + χA

M2k2

M2
⊥

. (23)

The velocity,

www = 2γ MzAK, (24)

can be called Doppler velocity because its effect on the mode
frequency is similar to the effect of the mass velocity on the
mode frequency in a Galilean invariant fluid (Doppler effect).
But our system is not Galilean invariant [13], and the gradient
K is present also in the right-hand side of the dispersion
relation Eq. (19).

In the long-wavelength hydrodynamical limit magnons
have the sound-like spectrum linear in k. Quadratic cor-
rections ∝ k2 become important at k ∼ M⊥/M

√
χA [see

Eq. (23)]. These corrections emerge from the terms in the
Hamiltonian, which depend on ∇Mz. So the hydrodynamical
approach is valid at scales exceeding

ξ0 = M

M⊥

√
χA, (25)

which can be called the coherence length, in analogy with
the coherence length in the Gross–Pitaevskii theory for BEC.
Also in analogy with BEC, the coherence length diverges
at M⊥ → 0, i.e., at the second-order phase transition from
the easy-plane to the easy-axis anisotropy. The same scale
determines the Landau critical gradient and the vortex core
radius. Telling about hydrodynamics we bear in mind hy-
drodynamics of a perfect fluid without dissipation. Later in
this paper we shall discuss hydrodynamics with dissipation.
In this case the condition k 
 1/ξ0 is not sufficient, and an
additional restriction on using hydrodynamics is determined
by the mean-free path of magnons.

According to the Landau criterion, the current state be-
comes unstable at small k when k is parallel to www and the
frequency ω becomes negative. This happens at the gradient
K equal to the Landau critical gradient

Kc = M⊥√
4M2 − 3M⊥

1√
χA

∼ 1

ξ0
. (26)

Spin superfluidity becomes impossible at the phase transition
to the easy-axis anisotropy (M⊥ = 0). In the opposite limit
of small Mz 
 M the pseudo-Doppler effect is not important,
and the Landau critical gradient Kc is determined from the
condition that the spin-wave velocity c̃s vanishes at small k:

Kc = 1√
χA

= γ M

χcs
. (27)

Expanding the Hamiltonian Eq. (13) with respect to weak
perturbations 
 and � up to the second order one obtains the
energy of the spin wave mode per unit volume,

Esw = M⊥ω(k)

γ
√

χ̃Ak
|
k|2, (28)

where |
k|2 is the squared perturbation of the angle θ with the
wave vector k averaged over the wave period.

In the quantum theory the energy density Esw corresponds
to the magnon density

n(k)

V
= Esw

h̄ω(k)
= M⊥|
k|2

h̄γ
√

χ̃Ak
, (29)

where n(k) is the number of magnons in the plane-wave mode
with the wave vector k and V is the volume of the sample.
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Summing over the whole k space, the averaged squared per-
turbation is

〈
2〉 =
∑

k

|
k|2 = h̄γ
√

A

M⊥

∫ √
χ̃n(k)k

d3k
(2π )3

. (30)

Further we proceed within the hydrodynamical approach
neglecting quadratic corrections to the spectrum. There are
quadratic in spin-wave amplitudes corrections to the spin
superfluid current and to the spin chemical potential:

Js|sw = −γ M⊥A(M⊥〈
2〉K + 2Mz〈
∇�〉), (31)

μ|sw = −A(Mz〈(∇�)2〉 + 2M⊥K · 〈
∇�〉). (32)

Using Eq. (30) and the relation

∇� = 
√
χA

k
k
, (33)

which follows from the equations of motion Eq. (18), one
obtains

Js|sw = −χ2h̄c3
s

γ M2
⊥

∫
n(k)

(
K + 2γ Mz

χcs

k
k

)
k

d3k
(2π )3

, (34)

μ|sw = −χ h̄c2
s

γ M2
⊥

∫
n(k)

(
γ Mz

χcs
+ 2K · k

k

)
k

d3k
(2π )3

. (35)

IV. COLLECTIVE MODES AND THE LANDAU
CRITERION IN ANTIFERROMAGNETS

For ferromagnetic state of localized spins the derivation
of the LLG theory from the microscopic Heisenberg model
was straightforward [29]. The quantum theory of the antifer-
romagnetic state even for the simplest case of a two-sublattice
antiferromagnet, which was widely used for Cr2O3, is more
difficult. This is because the state with constant magneti-
zations of two sublattices is not a well defined quantum-
mechanical eigenstate [29]. Nevertheless, a long time ago
it was widely accepted to ignore this complication and to
describe the long-wavelength dynamics by the LLG theory for
two sublattices coupled via exchange interaction [30],

dMi

dt
= γ [H i × Mi], (36)

where the subscript i = 1, 2 points out to which sublattice the
magnetization M i belongs, and

H i = − δH
δM i

= − ∂H
∂Mi

+ ∇ j
∂H

∂∇ jMi
(37)

is the effective field for the ith sublattice determined by the
functional derivative of the Hamiltonian H. For an isotropic
antiferromagnet the Hamiltonian is

H = M1 · M2

χ
+ A(∇iM1 · ∇iM1 + ∇iM2 · ∇iM2)

2

+ A12∇ jM1 · ∇ jM2 − H · (M1 + M2). (38)

In the uniform ground state without the magnetic field H the
two magnetizations are antiparallel, M2 = −M1, and the total
magnetization M1 + M2 vanishes. At H �= 0 the sublattice

θ

θ0

M1

M

x

z

θ0

θ

H
2

FIG. 2. Angle variables θ and θ0 for the case when the both
magnetizations are in the plane xz (ϕ0 = ϕ = 0).

magnetizations are canted, and in the uniform ground state
the total magnetization is parallel to H:

m = M1 + M2 = χH. (39)

The first term in the Hamiltonian Eq. (38), which determines
the susceptibility χ , originates from the exchange interaction
between spins of two sublattices. This is the susceptibility nor-
mal to the staggered magnetization (antiferromagnetic vector)
L = M1 − M2. Since in the LLG theory absolute values of
magnetizations M1 and M2 are fixed the susceptibility parallel
to L vanishes.

In the uniform state only the uniform exchange energy
∝ 1/χ and the Zeeman energy (the first and the last terms)
are present in the Hamiltonian, which can be rewritten
as

H = −L2 − m2

4χ
− H · m = −M2

χ
+ m2

2χ
− mHm, (40)

where Hm = (H · m)/m is the projection of the mag-
netic field on the direction of the total magnetization m.
Minimizing the Hamiltonian with respect to the absolute
value of m (at it fixed direction, i.e., at fixed Hm) one
obtains

H = −M2

χ
− χH2

m

2
= −M2

χ
− χH2

2
+ χH2

L

2
, (41)

where HL = (H · L)/L is the projection of the magnetic field
on the staggered magnetization L. The first two terms are
constant, while the last term plays the role of the easy-plane
anisotropy energy confining L in the plane normal to H . For
H parallel to the axis z:

Ea = χH2L2
z

2L2
= χH2 sin θ

2
. (42)

Here θ is the angle between the staggered magnetization L
and the xy plane (see Fig. 2).

We introduce the pairs of angle variables θi, ϕi determining
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directions of the sublattice magnetizations:

Mix = M cos θi cos ϕi, Miy = M cos θi sin ϕi,

Miz = M sin θi. (43)

The equations of motion in the angle variables are

cos θiθ̇i

γ
= 1

M

(
∂H
∂ϕi

− ∇ ∂H
∂∇ϕi

)
,

cos θiϕ̇i

γ
= − 1

M

(
∂H
∂θi

− ∇ ∂H
∂∇θi

)
. (44)

In the further analysis it is convenient to use other angle
variables:

θ0 = π + θ1 − θ2

2
, θ = π − θ1 − θ2

2
,

ϕ0 = ϕ1 + ϕ2

2
, ϕ = ϕ1 − ϕ2

2
. (45)

In these variables the Hamiltonian becomes

H = −M2

χ
(cos 2θ0 cos2 ϕ − cos 2θ sin2 ϕ) − 2HM cos θ sin θ0

+ AM2[(1 + cos 2θ0 cos 2θ )
∇ϕ2

0 + ∇ϕ2

2
− sin 2θ0 sin 2θ∇ϕ0 · ∇ϕ + ∇θ2

0 + ∇θ2]

+ A12M2{(cos 2θ sin2 ϕ + cos 2θ0 cos2 ϕ)(∇θ2
0 − ∇θ2) − cos 2θ0 + cos 2θ

2
cos 2ϕ(∇ϕ2

0 − ∇ϕ2)

− sin 2ϕ[sin 2θ (∇θ0 · ∇ϕ0 + ∇θ · ∇ϕ) + sin 2θ0(∇θ · ∇ϕ0 + ∇θ0 · ∇ϕ)]}. (46)

The polar angles θ for the staggered magnetization L and the
canting angle θ0 are shown in Fig. 2 for the case when the both
magnetizations are in the plane xz (ϕ0 = ϕ = 0).

In the uniform ground state θ = 0, ϕ = 0, mz =
2M sin θ0 = χH , while the angle ϕ0 is an arbitrary constant.
Since we consider fields H weak compared to the exchange
field, θ0 is always small. In the state with constant current
K = ∇ϕ0 the magnetization along the magnetic field is

mz = χH

1 − χA−K2/2
, (47)

where A± = A ± A12.
In a weakly perturbed current state small but nonzero θ

and ϕ appear. Also the angles θ0 and ϕ0 differ from their
values in the stationary current state: θ0 → θ0 + 
, ϕ0 →
ϕ0 + �. Linearization of the nonlinear equations of motion
with respect to weak perturbations 
, �, θ , and ϕ yields
decoupled linear equations for two pairs of variables (
,�)
and (θ, ϕ):


̇

γ
− A−mzK · ∇
 = −A−M⊥∇2�,

�̇

γ
− A−mzK · ∇� = −

(
1 − χA−K2

2

)
2M⊥
χ




+ (A + A12 cos 2θ0)

cos θ0
M∇2
, (48)

θ̇

γ
− A+mz K · ∇θ

= −2M⊥
χ

(1 + χA12K2)ϕ + A+M⊥∇2ϕ,

ϕ̇

γ
− A+mz cos θ0K · ∇ϕ

= m2
z

2χM⊥
(1 + χA12K2)θ − A−K2M⊥θ

−A − A12 cos 2θ0

cos θ0
M∇2θ. (49)

For plane waves ∝ eikr−iωt Eq. (48) describes the gapless
Goldstone mode with the spectrum:

(ω + γ mzA−K · k)2

= c2
s

[
1 − χA−K2

2
+ χ (A + A12 cos 2θ0)k2

2 cos2 θ0

]
k2. (50)

Here

cs = γ M⊥

√
2A−
χ

(51)

is the spin-wave velocity in the ground state without spin
current. Apart from quadratic corrections k2 to the frequency,
the gapless mode in an antiferromagnet does not differ from
that in a ferromagnet, if one replaces in all expressions for the
ferromagnet A by A−/2 and the parameter M by 2M.

Equation (49) describes the gapped mode with the spec-
trum

(ω + γ mzA+K · k)2 =
(

1 + χA12K2 + χA+k2

2

)

×
[

(1 + χA12K2)γ 2m2
z

χ2
− c2

s K2

+ 2γ 2M2(A − A12 cos 2θ0)k2

χ

]
.

(52)

Without spin current and neglecting the term ∝ A+k2 the
spectrum is

ω =
√

γ 2m2
z

χ2
+ c2

s k2. (53)

This spectrum determines a new correlation length

ξ = M

H

√
2A−
χ

= cs

γ H
, (54)
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which is connected with the easy-plane anisotropy energy
Eq. (42) and determines the wave vector k = 1/ξ at which
the gap and the k dependent frequency become equal.

Applying the Landau criterion to the gapless mode one
obtains the critical gradient

√
2/χA− similar to the value

Eq. (27) obtained for a ferromagnet. But in contrast to a fer-
romagnet where the susceptibility χ is connected with weak
anisotropy energy, in an antiferromagnet the susceptibility χ

is determined by a much larger exchange energy and is rather
small. As a result, in an antiferromagnet the gapless Goldstone
mode becomes unstable at the very high value of K . But at
much lower values of K the gapped mode becomes unstable.
According to the spectrum Eq. (52), the gap in the spectrum
vanishes at the critical gradient

Kc = 1

ξ
= γ H

cs
= γ mz

χcs
. (55)

V. TWO-FLUID EFFECTS AND DISSIPATION
FROM THE BOLTZMANN EQUATION FOR MAGNONS

Knowledge of the spectrum of collective modes allows to
derive the dynamical equations at finite temperatures taking
into account the presence of thermal magnons. Further we
follow the procedure of the derivation of the two-fluid hydro-
dynamics in superfluids [27]. We address the hydrodynamical
limit when all parameters (Mz, K, T ) of the system slowly vary
in space and time.

We shall focus on ferromagnets. The equilibrium Planck
distribution of magnons in a ferromagnet with a small spin
current ∝ K is

nK = 1

eh̄ω(k)/T − 1
≈ n0(ω0) − 2χc2

s Mz

γ M2
⊥

∂n0(ω0)

∂ω0
K · k,

(56)

where ω0 = csk and

n0(ω0) = 1

eh̄ω0/T − 1
(57)

is the Planck distribution in the state without spin current.
In the theory of superfluidity the Plank distribution of

phonons in general depends not only on density and su-
perfluid velocity (analogs of our Mz and K) but also on
the normal velocity, which characterizes a possible drift
of the gas of quasiparticles with respect to the laboratory
frame of coordinates. This drift is possible because of the
Galilean invariance of superfluids. In our case the Galilean
invariance is broken by possible interaction of magnons with
defects, and in the equilibrium the drift of the quasipar-
ticle gas is impossible. The case of broken Galilean in-
variance, when the normal velocity vanishes, was also in-
vestigated for superfluids in porous media or in very thin
channels, when the Galilean invariance is broken by inter-
action with channel walls. It was called the clamped regime
[31,32].

Substituting the Planck distribution Eq. (56) into Eqs. (34)
and (35) one obtains the contribution of equilibrium magnons
to the spin current and the spin chemical potential:

Js|eq = γ
∂�

∂K
= − π2χ2T 4

30γ M2
⊥h̄3cs

K
(

1 + 16M2
z

3M2
⊥

)
, (58)

μ|eq = ∂�

∂Mz
= π2MzT 4

30h̄3c3
s M2

⊥
, (59)

where

� = T
∫

ln(1 − e−h̄ω(k)/T )
d3k

(2π )3
. (60)

is the thermodynamical potential for the magnon Bose-gas.
The contribution (58) decreases the superfluid spin current at
fixed phase gradient K, similarly to the decrease of the mass
superfluid current after replacing the total mass density by the
lesser superfluid density.

Yuan et al. [20] used in their experiment very thin film
at low temperature, when de Broglie wavelength of magnons
exceeds film thickness, and it is useful to give also the two-
fluid corrections for a two-dimensional case. Repeating our
calculations after replacing integrals

∫
d3k/(2π )3 by integrals

W
∫

d2k/(2π )2, one obtains

Js|eq = − ζ (3)χ2T 3

πW γ M2
⊥h̄2 K

(
1 + 6M2

z

M2
⊥

)
, (61)

μ|eq = ζ (3)MzT 3

πW h̄2c2
s M2

⊥
, (62)

where the value of the Riemann zeta function ζ (3) is 1.202
and W is the film thickness.

The next step in derivation of the two-fluid theory at
finite temperatures is the analysis of dissipation. A widely
used approach of studying dissipation in magnetically order
systems is the LLG theory with the Gilbert damping term
added. However, this approach is incompatible with the spin
conservation law. This law, although being approximate, plays
a key role in the problem of spin superfluidity. Therefore, we
derived dissipation parameters from the Boltzmann equation
for magnons postponing discussion of the LLG theory with
the Gilbert damping to the Appendix.

Dissipation is connected with nonequilibrium corrections
to the magnon distribution. At low temperatures the number
of magnons is small, and magnon-magnon interaction is weak.
Then the main source of dissipation is scattering of magnons
by defects. The Boltzmann equation with the collision term in
the relaxation-time approximation is

ṅ + ∂ω

∂k
· ∇n − ∇ω · ∂n

∂k
= −n − nK

τ
. (63)

If parameters, which determine the magnon distribution func-
tion n, vary slowly in space and time, then one can substitute
the equilibrium Planck distribution nK into the left-hand side
of the Boltzmann Eq. (63). This yields

∂n0

∂ω
ω̇ + ∂n0

∂T

(
Ṫ + ∂ω

∂k
· ∇T

)
= −n − n0

τ
. (64)
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We consider small gradients K when the difference between
nK and n0 is not important. But weak dependence of ω on
K is important at calculation of ω̇. One can see that at the
constant temperature T in any stationary state the left-hand
side vanishes, and there is no nonequilibrium correction to the
magnon distribution. Correspondingly, there is no dissipation.
This is one more illustration that stationary superfluid currents
do not decay.

In nonstationary cases time derivatives are determined by
the equations of motions. The equations of motion for Mz

and K are not sufficient, and the equation of heat balance is
needed for finding Ṫ . In general, the heat balance equation is
rather complicated since it must take into account interaction
of magnons with other subsystems, e.g., phonons. Instead of it
we consider a simpler case, when magnons are not important
in the heat balance, i.e., the temperature does not depend on
magnon processes. In other words we consider the isothermal
regime when Ṫ = 0. But we allow slow temperature variation
in space.

The temporal variation of the frequency ω emerges from
slow temporal variation of Mz and K, and at small K,

ω̇ = ∂ω

∂Mz
Ṁz + ∂ω

∂K
K̇ = − Mz

M2
⊥

(
cskṀz + 2χc2

s

γ
k · K̇

)
.

(65)

The partial derivatives ∂ω/∂Mz and ∂ω/∂K were determined
from the spectrum Eq. (19), while the time derivatives of Mz

and K were found from the linearized Eqs. (15) and (16),
assuming that ∇ϕ = K is small and ignoring gradients of
Mz in the right-hand side of Eq. (16), which are beyond the
hydrodynamical limit. Then

ω̇ = Mz

M2
⊥

c2
s

[
χ

γ
csk∇ · K + 2(k · ∇)Mz

]
. (66)

Eventually the nonequilibrium correction to the magnon dis-
tribution function is

n′ = n − n0 = − Mz

M2
⊥

cs

[
χcs

γ
k∇ · K

+ 2(k · ∇)Mz − M2
⊥

MzT
(k · ∇)T

]
τ

∂n0

∂k
. (67)

Substituting n′ into Eqs. (34) and (35) one obtains dissipa-
tion terms in the spin current and the spin chemical potential:

Jd = −D

(
∇Mz − 1

2T

M2
⊥

Mz
∇T

)
, (68)

μd = − ζ

γ
∇ · K, (69)

where

D = −2χ h̄c3
s

3π2

M2
z

M4
⊥

∫
τ

∂n0

∂k
k4 dk,

ζ = −χ h̄c3
s

2π2

M2
z

M4
⊥

∫
τ

∂n0

∂k
k4 dk. (70)

In addition to the spin diffusion current, the dissipative spin
current Jd contains also the current proportional to the tem-
perature gradient. This is the bulk Seebeck effect. Estimation

of the integral in these expressions requires knowledge of
possible dependence of the relaxation time τ on the energy.
Under the assumption that τ is independent from the energy,

D = 8π2τγ 2T 4M2
z

45h̄3c3
s M2

⊥
, ζ = 2π2τγ 2T 4M2

z

15h̄3c3
s M2

⊥
, (71)

or for the two-dimensional case,

D = 16ζ (3)τγ 2T 3M2
z

3πW h̄2c2
s M2

⊥
, ζ = 4ζ (3)τγ 2T 3M2

z

πW h̄2c2
s M2

⊥
. (72)

Although in antiferromagnets the Landau critical gradient
is connected with the gapped mode, at small phase gradients
the gapless Goldstone mode has lesser energy, and at low
temperatures most of magnons belong to this mode. Since
the Goldstone modes in ferromagnets and antiferromagnets
are similar, our estimation of dissipation coefficients for fer-
romagnets is valid also for antiferromagnets after replacing A
by A−/2 and M by 2M.

The microscopic analysis of this section agrees with the
following phenomenological equations similar to the hydro-
dynamical equations for superfluids in the clamped regime:

Ṁz = −∇ · Js − ∂R

∂μ
+ ∇ ∂R

∂∇μ
, (73)

ϕ̇ = −γμ + ∂R

∂ (∇ · Js)
, (74)

where the spin chemical potential and the superfluid spin
current,

μ = δF

δMz
, Js = γ

∂F

∂∇ϕ
, (75)

are determined by derivatives of the free energy

F = H + � − T S. (76)

The spin conservation law forbids the term ∂R/∂μ in the
continuity Eq. (73), because it is not a divergence of some
current. Thus, the dissipation function is compatible with the
spin conservation law if it depends only on the gradient of the
spin chemical potential μ, but not on μ itself. This does not
take place in the LLG theory with the Gilbert damping dis-
cussed in the Appendix. The analysis of this section assumed
the spin conservation law and corresponded to the dissipation
function

R = χD

2
∇μ2 − D

2T

M2
⊥

Mz
∇μ · ∇T + ζ

2γ AM2
⊥

(∇ · Js)2.

(77)

In general, the dissipation function contains also the term
∝ ∇T 2 responsible for the thermal conductivity. But it is
important only for the heat balance equation, which was not
considered here.

If the temperature does not vary in space, then the only
temperature effect is a correction to the spin chemical po-
tential. This does not affect the basic feature of superfluid
spin transport: there is no gradient of the chemical potential
in a stationary current state, and all dissipation processes are
not effective except for the relativistically small spin Bloch
relaxation. If there is spatial variation of temperature, then the
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spin chemical potential also varies in space. One can find its
gradient by exclusion of ∇ · Js from Eqs. (73) and (74):

∇μ = ∇Mz

χ
= − Dζ

2γ 2AMzT
∇(∇2T ). (78)

Note that the spin chemical potential gradient is proportional
not to the first but to the third spatial derivative of the tem-
perature. The constant temperature gradient does not produce
spatial variation of the chemical potential. This is an analog
of the absence of thermoelectric effects proportional to the
temperature gradients in superconductors [33]. Naturally the
effect produced by higher derivatives of the temperature is
weaker than produced by the first derivative.

The nonuniform correction to the spin chemical potential
strongly depends on temperature. Assuming the T 4 depen-
dence of the dissipation parameters D and ζ in Eq. (71) the
coefficient before the temperature-gradient term in Eq. (78) is
proportional to T 8. Now the spin diffusion current −χD∇μ

does not disappear in the Eq. (73) of continuity for the spin,
but it is proportional to T 12.

Earlier Zhang and Zhang [34] used the Boltzmann equa-
tion for derivation of the spin diffusion coefficient and the
Bloch relaxation time in an isotropic ferromagnet in a con-
stant magnetic field. We derived the spin diffusion and the
second viscosity coefficients in an easy-plane ferromagnet
with different spin-wave spectrum. Two-fluid effects in easy-
plane ferromagnets were investigated by Flebus et al. [35].
They solved the Boltzmann equation using the equilibrium
magnon distribution function with nonzero chemical potential
of magnon (do not confuse it with the spin chemical potential
introduced in the present paper). In contrast, we assumed
complete thermalization of the magnon distribution when
the magnon chemical potential vanishes. The thermalization
assumption is questionable in the transient layer near the
interface through which spin is injected, and in this layer
the approach Flebus et al. [35] may become justified. The
transient layer is discussed in the next section.

VI. TRANSIENT (HEALING) LAYER NEAR
THE INTERFACE INJECTING SPIN

Injection of spin from a medium without spin superfluidity
to a medium with spin superfluidity may produce not only a
superfluid spin current but also a spin current of incoherent
magnons. But at some distance from the interface between
two media, which will be called the conversion healing length,
the spin current of incoherent magnons (spin diffusion cur-
rent) must inevitably transform to superfluid spin current, as
we shall show now.

We return back to Eqs. (1) and (2) but now we neglect
the relativistically small Bloch spin relaxation (the term ∝
1/T1). In Sec. II we considered the stationary solution of the
these equations with constant magnetization and absent spin
diffusion current. But it is not the only stationary solution.
Another solution is an evanescent mode M ′

z ∝ ∇ϕ ∝ e−x/λ,
where

λ =
√

χDζ

γA (79)

is the conversion healing length. We look for superposition of
two solutions, which satisfies the condition that the injected
current J0 transforms to the spin diffusion current, while the
superfluid current vanishes at x = 0:

J0 = −D∇xM ′
z(0), ∇xϕ(0) = 0. (80)

This superposition is

M ′
z(x) = M ′

z + λJ0

D
e−x/λ, ∇xϕ(x) = J0

A (1 − e−x/λ), (81)

where M ′
z in the right-hand side is a constant magnetization

far from the interface x = 0. Thus, at the length λ the spin
diffusion current Jd drops from J0 to zero, while the superfluid
spin current grows from zero to J0 and remains at larger
distances constant.

As pointed out in the end of Sec. II, the phenomenological
Eqs. (1) and (2) were derived assuming that the spin chemical
potential μ = M ′

z/χ − H does not depend on gradients ∇Mz.
However, the dissipation coefficients D and ζ decrease very
sharply with temperature, and the conversion healing length
eventually becomes much smaller than the scale ξ0 [see
Eq. (25)], when the dependence of the free energy and the spin
chemical potential on the gradients ∇Mz becomes important.
But in fact adding ∇Mz-dependent terms into the expression
for μ,

μ = Mz

χ
− H − AM2∇2Mz

M2
⊥

, (82)

does not affect Eq. (79) for the healing length. The general-
ization of the analysis reduces to replacing of M ′

z in Eqs. (1),
(2), and (81) by χμ.

Transformation of the injected incoherent magnon spin
current to the superfluid spin current is not the only transient
process near the interface between media with and without
spin superfluidity. Even in the absence of spin current the
interface may affect the equilibrium magnetic structure. For
example, the interface can induce anisotropy different from
easy-plane anisotropy in the bulk. Then the crossover from
surface to bulk anisotropy occurs at the healing length of
the order of the correlation length ξ0 determined by Eq. (25)
in ferromagnets, or the correlation length ξ determined by
Eq. (54) in antiferromagnets. The similar healing length was
suggested for ferromagnets by Takei and Tserkovnyak [7]
and for antiferromagnets by Takei et al. [8] although using
different arguments.

Equation (79) for λ was derived within hydrodynamics
with dissipation. At distances shorter than the mean-free path
incoherent magnons are in the ballistic regime and cannot
converge to the superfluid current, since conversion is im-
possible without dissipation. Altogether this means that the
real healing length at which the bulk superfluid spin current
state is formed cannot be less than the longest from three
scales: λ, ξ0, and the magnon mean-free path csτ . Apparently
at low temperatures and weak magnetization Mz the latter is
the longest one from three scales. However, close to the phase
transition to the easy-axis anisotropy (Mz = M) the coherence
length ξ0 diverges and becomes the longest scale.

Solving the Boltzmann equation we assumed complete
thermalization of the magnon distribution. At low tempera-
tures when magnon-magnon interaction is weak the length
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FIG. 3. Precession of magnetization m around the direction of
the magnetic field H along the path around the vortex axis. (a) The
geometry of the experiment [20] with the magnetic field (the axis
z) in the plane of the Cr2O3 film. The vortex axis is normal to the
film (the axis y). (b) Precession of the magnetization m is shown in
the plane xz (the plane of the film). The path around the vortex axis
(dashed lines) is inside the vortex core where the total magnetization
is not parallel to H (θ �= 0).

at which thermalization occurs essentially exceeds the mean-
free path on defects. It could be that the healing length would
grow up to the thermalization length. This requires a further
analysis.

VII. MAGNETIC VORTEX IN AN EASY-PLANE
ANTIFERROMAGNET

Let us consider structure of an axisymmetric vortex in an
antiferromagnet with one quantum of circulation of the angle
ϕ0 of rotation around the vortex axis. Now we consider the
geometry of the experiment [20] when the magnetic field H
(the axis z) is in the film plane. The vortex axis is the axis y
normal to the film plane [Fig. 3(a)]. The azimuthal component
of the angle ϕ0 gradient is

∇ϕ0 = 1

r
. (83)

At the same time ϕ = 0 and θ0 is small. Then the Hamiltonian
Eq. (46) transforms to

H = 2M2

χ
θ2

0 − 2HM cos θθ0 + A−M2

(
cos2 θ

r2
+ ∇θ2

)
.

(84)

Minimization with respect to small θ0 yields

θ0 = χH cos θ

2M
, (85)

and finally the Hamiltonian is

H = −χH2 cos2 θ

2
+ A−M2

(
cos2 θ

r2
+ ∇θ2

)
. (86)

The Euler–Lagrange equation for this Hamiltonian describes
the vortex structure in polar coordinates:

d2θ

dr2
+ 1

r

dθ

dr
− sin 2θ

2

(
1

ξ 2
− 1

r2

)
= 0, (87)

where the correlation length ξ is given by Eq. (54) and
determines the size of the vortex core.

The vortex core has a structure of a skyrmion, in which the
total weak magnetization deviates from the direction of the
magnetic field H (θ �= 0). The component of magnetization
transverse to the magnetic field is

m⊥ = γ H sin 2θ

2
. (88)

The transverse magnetization creates stray magnetic fields at
the exit of the vortex line from the sample. Figure 3 shows
variation of the magnetization inside the core along the path
around the vortex axis parallel to the axis y. Along the path the
magnetization m revolves around the direction of the magnetic
field forming a cone. The precession in space creates an
oscillating y component of magnetization my = m⊥(r) sin φ,
where φ is the azimuthal angle at the circular path around the
vortex line. This produces surface magnetic charges 4πmy at
the exit of the vortex to the boundary separating the sample
from the vacuum. These charges generate the curl-free stray
field h = ∇ψ . At distances from the vortex exit point much
larger that the core radius the stray field is a dipole field with
the scalar potential

ψ (R) = πχH

2

(R · n)

R3

∫ ∞

0
sin 2θ (r)r2 dr

= 1.2πχHξ 3 (R · n)

R3
= 1.2πχc3

s

γ 3H2

(R · n)

R3
. (89)

Here R(x, y, z) is the position vector with the origin in the
vortex exit point and n is a unit vector in the plane xz along
which the surface charge is maximal (φ = π/2). In our model
the direction of n is arbitrary, but it will be fixed by spin-orbit
interaction or crystal magnetic anisotropy violating invariance
with respect to rotations around the axis z. These interactions
were ignored in our model. In principle, the stray field can
be used for detection of vortices nucleated at spin currents
approaching the critical value.

VIII. DISCUSSION AND SUMMARY

This paper analyzes the long-distance superfluid spin trans-
port. The superfluid spin transport does not require a gradient
of the spin chemical potential (as the electron supercurrent
in superconductors does not require a gradient of the electro-
chemical potential). As a result, mechanisms of dissipation
are suppressed except for weak Bloch spin relaxation. Other
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dissipation mechanisms affect the spin transport only at the
transient (healing) layer close to the interface through which
spin is injected, or in nonstationary processes.

This paper calculates the Landau critical spin phase gradi-
ent in a two-sublattice antiferromagnet when the easy-plane
topology of the magnetic order parameter is provided not by
crystal magnetic anisotropy but by an external magnetic field.
This was the case realized in the experiment by Yuan et al.
[20]. For this goal it was necessary to derive the spectrum
of collective modes (spin waves) in spin current states. The
Landau instability destroying spin superfluidity sets on not in
the Goldstone gapless mode as in easy-plane ferromagnets but
in the gapped mode, despite that at small spin currents the
latter has energy larger than the Goldstone mode.

This paper analyzes dissipation processes determining dis-
sipation parameters (spin diffusion and second viscosity co-
efficients) by solving the Boltzmann equation for magnons
scattered by defects. The two-fluid theory similar to the su-
perfluid two-fluid hydrodynamics was suggested. It is argued
that the LLG theory with the Gilbert damping parameter
is not able to properly describe dissipation in easy-plane
magnetic insulators. Describing the whole dissipation by a
single Gilbert parameter one cannot differentiate between
strong processes connected with high exchange energy (e.g.,
spin diffusion) and weak processes connected with spin-orbit
interaction (Bloch spin relaxation), which violate the spin
conservation law.

The formation of the superfluid spin current in the tran-
sient (healing) layer near the interface through which spin
is injected was investigated. The width of this layer (healing
length) is determined by processes of dissipation, and at low
temperatures can reach the scale of relevant mean-free paths
of magnons including those at which the magnon distribution
is thermalized.

The structure of the magnetic vortex in the geometry of the
experiment on Cr2O3 is investigated. In the vortex core there
is a magnetization along the vortex line, which is normal to the
magnetic field. This magnetization produces magnetic charges
at the exit of the vortex line from the sample. The magnetic
charges create a stray dipole magnetic field, which probably
can be used for detection of vortices.

Within the developed two-fluid theory the paper addresses
the role of the temperature variation in space on the superfluid
spin transport. This is important because in the experiment
of Yuan et al. [20] the spin is created in the Pt injector
by heating (the Seebeck effect). Thus, the spin current to
the detector is inevitably accompanied by heat flow. The
temperature variation produces the bulk Seebeck effect, which
is estimated to be rather weak at low temperatures. However,
it was argued [26] that probably Yuan et al. [20] detected a
signal not from spin coming from the injector but from spin
produced by the Seebeck effect at the interface between the
heated antiferromagnet and the Pt detector. Such effect has
already been observed for antiferromagnet Cr2O3 [36]. If true,
then Yuan et al. [20] observed not long-distance spin transport
but long-distance heat transport. It is not supported by the
fact that Yuan et al. observed a threshold for superfluid spin
transport at low intensity of injection, when according to the
theory [5] violation of the approximate spin conservation law
becomes essential. Investigation of superfluid spin transport

at low-intensity injection is more difficult both for theory and
experiment. But the existence of the threshold is supported
by extrapolation of the detected signals from high-intensity
to low-intensity injection. According to the experiment, the
signal at the detector is not simply proportional to the squared
electric current j2 responsible for the Joule heating in the in-
jector, but to j2 + a. The offset a is evidence of the threshold,
in the analogy with the offset of IV curves in the mixed state
of type II superconductors determining the critical current
for vortex deepening. With all that said, the heat-transport
interpretation cannot be ruled out and deserves further investi-
gation. According to this interpretation, one can see the signal
observed by Yuan et al. [20] at the detector even if the Pt
injector is replaced by a heater, which produces the same heat
but no spin. An experimental check of this prediction would
confirm or reject the heat-transport interpretation.

Let us make some numerical estimations for Cr2O3 using
the formulas of the present paper. It follows from neutron
scattering data [37] that the spin-wave velocity is cs = 8 ×
105 cm/sec. According to Foner [38], the magnetization of
sublattices is M = 590 G and the magnetic susceptibility is
χ = 1.2 × 10−4. Then the total magnetization mz = χH in
the magnetic field H = 9 T used in the experiment is about
10 G, and the canting angle θ0 = mz/2M ≈ 0.01 is small as
was assumed in our analysis. The correlation length Eq. (54),
which determines vortex core radius, is about ξ ≈ 0.5 ×
10−6 cm. The stray magnetic field produced by magnetic
charges at the exit of the vortex line from the sample is
10(ξ 3/R3) G, where R is the distance from the vortex exit
point. The task to detect such fields does not look easy, but
it is hopefully possible with modern experimental techniques.
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APPENDIX: DISSIPATION IN THE LLG THEORY

For ferromagnets the LLG equation taking into account
dissipation is

dM
dt

= γ [Heff × M] + α

M

[
M × dM

dt

]
, (A1)

where α is the dimensionless Gilbert damping parameter. For
small α this equation is identical to the equation with the
Landau–Lifshitz damping term:

1

γ

dM
dt

=
[

M × δH
δM

]
+ α

M

{
M ×

[
M × δH

δM

]}
. (A2)

Transforming the vector LLG equation to the equations for
two Hamiltonian conjugate variables, the z component Mz of
magnetization and the angle ϕ of rotation around the z axis,
one obtains Eqs. (73) and (74) without the term ∇(∂R/∂∇μ)
and with the dissipation function

R = αγ M2
⊥

2M
μ2 + αM

2M2
⊥

(∇ · Js)2, (A3)
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which depends on the spin chemical potential μ itself but not
on its gradient. Meanwhile, according to the two-fluid theory
of Sec. V, the ∇μ-dependent term in the dissipation function
was responsible for the spin-diffusion term in the continuity
equation for Mz. Indeed, at derivation of the continuity Eq. (1)
from the LLG theory under the assumption that μ ≈ M ′

z/χ =
Mz/χ − H the spin diffusion term ∝ D does not appear. The
term does appear only if μ in the dissipation function Eq. (A3)
is determined by the more general Eq. (82) taking into account
the dependence on ∇Mz. Then one obtains Eqs. (1) and
(2) with the equal spin diffusion and spin second viscosity
coefficients

D = ζ = αγ MA (A4)

and the inverse Bloch relaxation time

1

T1
= αγ M2

⊥
χM

. (A5)

The outcome looks bizarre. The spin diffusion emerges from
the μ-dependent term in the dissipation function, which is
incompatible with the spin conservation law, as if the spin
diffusion is forbidden by the spin conservation law. Evi-
dently this conclusion is physically incorrect. Moreover, in the
analogy of magnetodynamics and superfluid hydrodynamics
the magnetization Mz corresponds to the fluid density. In
hydrodynamics the fluid density gradients are usually not
taken into account in the Hamiltonian and in the chemical
potential since they become important only at small scales

beyond the hydrodynamical approach. This does not rule out
the diffusion process. Similarly, one should expect that it is
possible to ignore the magnetization gradients in the spin
chemical potential either. It is strange that the spin diffusion
becomes impossible in the hydrodynamical limit.

According to the Noether theorem the total magnetization
along the axis z is conserved if the Hamiltonian is invariant
with respect to rotations around the axis z in the spin space.
The Landau–Lifshitz theory of magnetism [19] is based on
the idea that the spin-orbit interaction, which breaks rotational
symmetry in the spin space and therefore violates the spin
conservation law, is relativistically small compared to the
exchange interaction because the former is inversely propor-
tional to the speed of light. So, although the spin conservation
law is not exact, it is a good approximation (see Sec. I). Then
the spin Bloch relaxation term ∝ 1/T1, which violates the spin
conservation law, must be proportional to a small parameter
inversely proportional to the speed of light and cannot be
determined by the same Gilbert parameter as other dissipation
terms, which do not violate the spin conservation law

The insufficiency of the LLG theory for description of
dissipation was discussed before, but mostly at higher tem-
peratures. It was suggested to replace of the LLG equa-
tion by the Landau–Lifshitz–Bloch equation, in which the
Bloch longitudinal spin relaxation is present explicitly (see,
e.g., Ref. [39] and references to earlier works therein).
Our analysis shows that the problem exists also at low
temperatures.
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